
Frontiers in Endocrinology | www.frontiersi

Edited by:
Haim Werner,

Tel Aviv University, Israel

Reviewed by:
Rati Chkheidze,

University of Alabama at Birmingham,
United States

*Correspondence:
Ana Lucı́a De Paul

adepaul@cmefcm.uncor.edu

Specialty section:
This article was submitted to

Cancer Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 20 April 2022
Accepted: 27 May 2022
Published: 28 June 2022

Citation:
Sabatino ME, Grondona E and
De Paul AL (2022) Architects of

Pituitary Tumour Growth.
Front. Endocrinol. 13:924942.

doi: 10.3389/fendo.2022.924942

MINI REVIEW
published: 28 June 2022

doi: 10.3389/fendo.2022.924942
Architects of Pituitary
Tumour Growth
Maria Eugenia Sabatino1,2, Ezequiel Grondona3,4 and Ana Lucı́a De Paul3,4*

1 Universidad Nacional de Córdoba, Facultad de Ciencias Quı́micas, Córdoba, Argentina, 2 Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas, Instituto de Ciencia y Tecnologı́a de Alimentos Córdoba (ICYTAC), Córdoba, Argentina, 3 Universidad
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The pituitary is a master gland responsible for the modulation of critical endocrine
functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable
prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still
represent a cause of important morbidity, due to hormonal systemic deregulation, with
surgical, radiological or chronic treatment required for illness management. The apparent
scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a
relatively slow progress in depicting their pathogenesis. An appropriate interpretation of
different phenotypes or cellular outcomes during tumour growth is desirable, since
histopathological characterization still remains the main option for prognosis elucidation.
Improved knowledge obtained in recent decades about pituitary tumorigenesis has
revealed that this process involves several cellular routes in addition to proliferation and
death, with its modulation depending on many signalling pathways rather than being the
result of abnormalities of a unique proliferation pathway, as sometimes presented.
PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse
biological, genetic and epigenetic particularities, including tumorigenic potential. Hence,
to obtain a better understanding of PitNET growth new approaches are required and the
systematization of the available data, with the role of cell death programs, autophagy,
stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still
being emerging fields in pituitary research. We envisage that through the combination of
molecular, genetic and epigenetic data, together with the improved morphological,
biochemical, physiological and metabolically knowledge on pituitary neoplastic potential
accumulated in recent decades, tumour classification schemes will become more
accurate regarding tumour origin, behaviour and plausible clinical results.
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INTRODUCTION

Pituitary Tumorigenesis Unintelligibility
The pituitary is a master gland responsible for the modulation of
critical endocrine functions. This entails a subtle responsiveness
to dynamic cell signalling, resulting in a fine physiological
adjustment for homeostasis preservat ion. Pituitary
neuroendocrine tumours (PitNETs) display a considerable
prevalence of 1/1106 in the general population (1), which are
frequently observed as benign solid tumours.

Traditionally, it has been proposed that anterior PitNET
growth starts from a monoclonal origin and propagates slowly,
becoming more aggressive while transiting from microtumour to
early macrotumour and, subsequently, expressing an invasive
profile that eventually transforms into a carcinoma viametastasis
(2). Angiogenesis and invasive performance are presumed to be
determinant for pituitary carcinoma development, and are
assessed by VEGF, EGF, COX-2, HIF-1a expression and
RSUME up-regulation (2–4).Histologic typification is the most
common method used by far for determining particular growth
patterns and prognosis. The actual WHO classification provides
detailed histological subtyping of a PitNET, based on the tumour
cell lineage, cell type, and related characteristics (5). Yet, no
reliable aggressive predictor has been defined for most PitNET,
although some histologic subtypes can present aggressive
behaviour (6, 7). The high-risk PitNETs recognised are:
sparsely granulated somatotroph tumours, lactotroph tumours
in men, Crooke’s cell tumours, silent corticotroph tumours, and
Pit-1 positive plurihormonal tumours (8). The driveline
responsible for the rarely invasive and metastatic profile is
unclear, even when oncogenic pathways are triggered or
tumour suppressor pathways are deactivated.

The apparent scarceness, uncommon behaviour and
molecular features of PitNETs has resulted in a relatively slow
improvement in depicting their pathogenesis. A better
understanding of the several phenotypes or cellular responses
during tumorigenesis is needed, as histological typification has a
limited forecasting potency, although it is still the main option
for prognosis determination.

New Approaches for Pituitary
Tumorigenic Models
Despite their generally benign growth, PitNETs still represent a
cause of important morbidity due to hormonal systemic
deregulation, which requires surgical, radiological or chronic
treatment for illness management (1, 9). Most PitNETs appear as
macrotumours (1, 10), which are submitted to surgical removal
as the first-line treatment, except for dopamine agonist treated
lactotroph tumours (7, 9). However, entire surgical resection can
be arduous due to the pituitary location. In addition, considering
that PitNETs show relatively lower remission rates (10, 11), novel
models with greater forecasting efficacy continue to be necessary.

Currently, PitNET diagnosis and classification are in routine
practice still based on hormone immunohistochemical
examination. As every cell type within the pituitary gland is
able to yield tumours, a varied group of neoplasms can occur,
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usual ly re lated to over ly secreted hormones . This
subclassification could become more complex since it is now
recognised that there are also tumours with varied secretory
properties, either due to plurihormonal or multicellular pituitary
neoplasia (8, 12, 13). Some of these discrepancies have been
resolved by molecular studies, through typification of tumour
origin by the transcription factors involved in the differentiation
of anterior pituitary cells, with PIT1, TPIT, SF1, GATA3, and
ERa providing histological subtyping of PitNETs (9). However,
the numerous stages of pituitary tumorigenesis are still
poorly understood.

We envisage that through a combination of molecular,
genetic and epigenetic data, together with morphological,
biochemical, physiological and metabolically knowledge on
pituitary neoplastic potential accumulated in recent decades,
tumour classification schemes will become more enlightened
regarding tumour origin, behaviour and plausible clinical results
(14, 15). Thus, with the aim of improving pituitary tumorigenesis
aetiology comprehension, new integrative perspectives should
help to unravel the underlying mechanisms of PitNET
tumour growth.

Models of Unconstrained Cell Proliferation
in Pituitary Neuroendocrine Tumours
Many efforts have been made to identify the mechanisms and
agents involved at either the beginning or evolution of PitNETs.
Typical oncogene mutations such as Ras or p53 genes, have not
been effectively associated with unconstrained pituitary cell
proliferation (16–19). As an alternative, other reports have
pointed out that PTTG, abundantly expressed in most human
PitNETs, with its role in initial pituitary tumorigenesis having
been experimentally established and related to invasiveness,
recurrence, metastasis (20–26). Subsequent reports have
recognized PTTG as being the human homolog of securin,
which acts in sister chromatid separation during mitosis (27),
thereby accounting for PitNET aneuploidy (28). Nevertheless, no
substantial association has been determined between PTTG
expression and tumour size, grade, or even prognosis or
treatment responses (25, 29). Related to this, unconstrained
PitNET growth has also been associated with disrupted cell
cycle regulation through the alteration of cyclins D1, D3, and
E, or cyclin-dependent kinase inhibitor family-like CDKN1A
(p21Cip1), CDKN1B (p27Kip1), CDKN2A (p16INK4a p14Arf),
CDKN2B (p15INK4b), CDKN2C (p18INK4c) and pRb
expression (7, 30–33).

Cell Death Contribution to Pituitary
Neuroendocrine Tumour Development
Despite there being few reports referring to apoptosis in
PitNETs, its contribution in tumour growth and as a prognosis
biomarker have been explored (34, 35). Although apoptotic cells
are practically absent or difficult to identify in PitNETs (36, 37), a
greater apoptotic activity has been reported in aggressive and
drug-resistant tumours (34, 38–41), particularly in corticotroph
tumours (39, 40). However, since no association with growth rate
or recurrence has been noted, there is no support for using the
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apoptosis index as a prognostic indicator (29, 37). On the other
hand, from a molecular point of view, deregulation of apoptosis-
related proteins might be a relevant marker of tumorigenesis,
with the BCL2/BAX ratio having been proposed (34, 42, 43).

A programmed non-apoptotic cell death was described in
PitNET, paraptosis or parapoptosis induced by EGF in a
pituitary cell line (44), or by bromocriptine in experimental
tumours (45). Furthermore, “dark cells”, referring to a cell death
type thus named due to its electron-dense morphological
features, was described in dopamine-treated lactotroph
turmors and oncocytomas, alongside apoptotic cells (40) and
in functional pituitary glands (46). Furthermore, bromocriptine
treatment also provokes another cell death type recognised as
programmed necrosis or necroptosis, in human lactotroph
turmours and in a pituitary cell line (47, 48). To date, however,
little information has been combined regarding different types of
cell death in the regulation of PitNET formation and
progression. Moreover, certain contradictions about the precise
role of cell death pathways in pituitary tumorigenesis require
further elucidation (7, 29, 37). Thus, apoptosis has not been
shown to be a decisive factor in PitNET growth.

Beyond “to Live or to Die” Cellular
Decisions During Tumorigenesis
With the aim of understanding tumorigenesis, many models
have principally projected two major cellular fates leading to an
extended dichotomised analysis: to proliferate or to die, usually
presenting both as excluding outcomes (49–59). Current
knowledge has established the intricacy of the signalling
networks that guide and preserve tumours, implying
coordination of the intra- and extracellular cues that trigger
various pathways, either simultaneously or in a spatio-temporal
dynamic. Cell survival and proliferation are interrelated with cell
death, acting as combined interdependent processes at several
points by molecular links responsible for the coordination of cell
growth (53, 60, 61). Remarkably, tumour cells harbour the
possibility of eliciting intrinsic suppressor programmes, thus
permitting tumour progression once this interlinked molecular
network between proliferation and growth suppression gets
uncoupled (62). Consequently, several mechanisms might be
triggered to thwart uncontrolled cell division, such as autophagy,
cellular senescence, programmed cell death and necrosis; all of
which actually appear as crucial responses to tumoral alterations
(61, 63, 64).

Pituitary neoplasm behaviour presents a significantly
inconsistent and unpredictable growth performance (7–9, 14,
15, 29), so that events such as mitosis and apoptosis have ended
up being unhelpful measures (36, 52), thereby requiring models
based on proliferation and cell death to be reconsidered.

Achieving successful tumour development not only entails
sustained cell division, but also their survival and thriving,
circumstances that may require cellular physiology and
metabolic reprogramming to cope with a changing
environment and cellular damage (62). All these adjustments
might transform a unified group of cells into a small tumour
ecosystem, in which different cell phenotypes compete and may
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eventually collaborate for available space and resources (65).
Accordingly, tumour progression represents the coevolution of a
heterogeneous group of cells, which instead of acting as an
individual uncontrolled cell, needs to coordinate and obtain
the cooperation of the neighbourhood (66).

Evidence accumulated about pituitary tumorigenesis reveals it
involves more than just the rate of cell multiplication and loss,
with it also depending on more than a univocal abnormality
factor in a central proliferation pathway (7). PTs can display
intrinsic heterogeneity and cell subpopulations with diverse
biological, genetic and epigenetic particularities, including
tumorigenic potential (15, 55, 67). Hence, PitNET growth
understanding requires new approaches and systematisation of
the available data.

The role of cell death programs, autophagy, stem cells,
cellular senescence, microenvironment, inflammation,
mitochondrial function and metabolic reprogramming are
s t i l l emerging fie lds in pi tu i tary research . Future
morphological and molecular studies also need to establish
spatio-temporal dynamics, cellular heterogeneity, cell
physiology adaptation and the ability to cope with cellular
damage. To date, few studies have been based on integrative
analysis, where proteomic data is used for defining which cell-
signalling and metabolic pathways could be the most relevant
during PitNET pathogenesis (14, 68–72).

Genetic and Epigenetic Regulation in
Pituitary Neuroendocrine Tumours
Whole genomic sequencing has exposed numerous mutations in
PitNETs. However, they display comparatively less genetic
anomalies than other tumour types or cancers (73). In general
terms, genetic anomalies associated with PitNET tumorigenesis
progression may not be conclusive (73). Consequently, as only a
small number of pituitary neuroendocrine tumours may be
correlated with recurrent somatic mutations and unusual
hereditary variations (74), some evidence has suggested that
epigenetic modifications may participate in pituitary
tumorigenesis (73, 75, 76).

Several reports have identified epigenetic modifications in
PitNETs, and DNA methylation has been designated a major
strategy for epigenetic modification, (77–79) in addition to the
aberrant expression of DNMT enzymes (80, 81). However, even
if increased amounts of methylation could be connected with
more aggressive PitNETs (73), a correlation between gene
expression and promoter methylation may not always be
detected (74).

Recent studies have explored multiple dysregulated histone
acetylation in PitNETs (82–85), which may lead to acetylation of
the PTTG promoter (86), suggesting the presence of different
arrangements of histone modifications (73). In addition,
fluctuations in miRNA expression in several tumours reveal
that this kind modification could be involved in essential
decisions throughout tumour progression (87, 88). Indeed,
altered miRNA expression has been shown to be related with
increased or decreased tumour diameter, invasiveness, tumour
subtype and therapeutic outcomes (89–97).
June 2022 | Volume 13 | Article 924942
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Coping With Cellular Stress: Cellular
Physiology and Metabolic Status in
Pituitary Neuroendocrine Tumour Cells
DNA Damage
Genomic instability is an extended feature of almost all tumour
cells (98), Concerning pituitary neoplasia, it has been stated that
genomic instability and oxidative DNA damage often occurs and
could be associated with an early biomarker of invasive and
aggressive behaviour (99–101). Moreover, loss of heterozygosity
and an altered number of somatic copies of genes were reported
in secreting and aggressive sporadic pituitary neuroendocrine
tumours, and may correlate with clinical phenotypes (99,
102–104).

DNA repair systems is a main constituent of DNA damage
response (DDR) in normal conditions, with ineffectiveness in
this process being linked with the susceptibility to tumour
growth through the occurrence of genomic instability (105,
106). Conversely, DDR also serves as a physiological barrier
against tumour initiation or progression (107, 108). However,
information about the DDR contribution to pituitary
tumorigenesis is scarce. Gene mutations involved in DNA
mismatch repair have been recognised in Lynch syndrome
patients presenting aggressive corticotropin-secreting tumours
(109, 110). Also, missense mutations have also been reported in
mismatch repair genes in non-secreting tumours (111). DNA
damage signs have appeared in association with cellular
senescence in somatotroph tumours (112) and also in
experimental lactotroph turmors (113). Moreover, PTTG was
related to aneuploidy and DNA damage senescent GH-secreting
cells, which are potentially responsible for growth constraint
(114). Recently, it was shown that cAMP and Fanconi anemia
DNA damage repair pathways were affected by alterations in the
somatic copy number in somatotroph tumours, which could act
as pathogenetic drivers of tumorigenesis (104).

Cellular Bioenergetics
The mitochondria’s mandatory role as an energy provider
establishes it as a crucial link of cellular metabolism and
oxidative stress management, thus supporting processes such
as proliferation, apoptosis, autophagy, senescence and immunity
response (115). In addition, mitochondrial proteins can regulate
numerous signalling pathway networks and cellular behaviours,
with this organelle being involved in an extensive range of
diseases, including tumorigenesis (116). Molecular network
studies have revealed that mitochondrial dysfunction, oxidative
stress and mitochondria-mediated ROS-mitogen-activated
protein kinase (MAPK) signalling abnormality are significantly
associated with the pathogenesis of PitNETs (69, 70, 72,
117–120).

The modification in energy metabolism needed for tumour
formation or progression is related to mitochondrial adaptation
and seems to play an imperative role in PitNETs by influencing
cell proliferation, growth, and angiogenesis. Increases in the
mitochondria number (121–124), fusion process and
biogenesis have been found during experimental pituitary
tumorigenesis (124), with the volume of mitochondria varying
Frontiers in Endocrinology | www.frontiersin.org 4
between diverse tumour subtypes (118). In addition, an
augmented production of lactate dehydrogenase toward
aerobic glycolysis (124, 125) and a modification in the fatty
acid metabolism have also been observed (97).

Amplified ROS and RNS actions and oxidative stress have
been regarded as critical contributors in the pathogenesis of
PitNETs (124–130). Furthermore, mitochondrial dysfunction
has been described showing morphological and functional
changes, such as bigger mitochondria with irregular swelling
and fragmented cristaes (124). An activation of the nuclear factor
erythroid 2 like 2 (Nrf2) pathways, a main regulator of oxidative
stress response along with oxidative damage signal reduction,
have been reported during PitNET development, which might
provide cellular survival advantages (120, 124). Indeed, elevated
mitophagy and mitochondrial dysfunction may favour resistance
to chemotherapy in the pituitary GH3 cell line (131). Conversely,
activation of mitochondria-mediated apoptosis has been
proposed, which might favour novel therapy drugs (132–134).
Although this evidence validates the significant roles of
mitochondrial functions and adaptability in pituitary
tumorigenesis, their molecular mechanisms still need to
be clarified.

Surviving or Thriving: Senescence and
Autophagy in Pituitary Neuroendocrine
Tumours
Cellular Senescence
Cellular senescence (CS) is considered a stress response
determined by stable cell cycle arrest in which cells remain
viable and metabolically active (135, 136), with many studies
having reported the presence of CS in PitNETs. As it is
understood to be a spontaneous initial barrier in tumorigenesis
(137), CS might constitute a conceivable explanation for the slow
and benign growth of PTs (2, 138).

Significant differences in CS marker expression have been
detected in human PitNETs (139–141). Moreover, a certain
specificity of this cellular phenomenon to the tumour subtype
has been suggested, as frequently aggressive ACTH tumours
present lower senescence signs (141). Several experimental
models have reported the contribution of CS during pituitary
tumorigenesis (112–114, 142–144), supporting the idea it may be
an impediment against oncogenic stimulation and prevent
cellular transformation (145).

The driver forces underlying pituitary senescence are not
entirely deciphered, as various cellular pathways and cytokines
seem to contribute in triggering and modifying CS acquisition,
such as PTTG, which displays oncogene activities and is
overexpressed in many PitNETs (146). Yet, its deletion or
overexpression promotes pituitary p53/p21-dependent
senescence in GH-secreting cells (22, 112, 114, 147).
Furthermore, the involvement of tissue-specific pathways has
been proposed of intra-nuclear p21Cip1 diverse expression,
p16Ink4a and p15Ink4b (112, 114, 139–141).

CS also develops a complex senescence-associated secretory
phenotype (SASP) that emulates an inflammatory response. In
particular, IL-6 contributes to maintaining pituitary senescence
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during tumorigenesis by its autocrine action, providing an IL-6-
mediated benign tumour senescence model (67, 113, 138, 144,
148, 149). However, detrimental functions of senescent cells have
also been uncovered in cancer development, mainly through
pro-tumorigenic factor secretion inducing paracrine
tumorigenesis (150). Indeed, pituitary IL-6 may provoke
contrary effects (inhibitory or stimulatory) in different tumours
such as ACTH-, PRL-, GH-secreting and non-functioning
tumours (148). Furthermore, paracrine IL-6 triggered by
surrounding folliculo-stellate cells is capable of stimulating
tumour development (151).

Autophagy
Autophagy is an intracellular catabolic pathway based on self-
degradation and recycling of the cellular components that
collaborate to physiological homeostasis. However, as
autophagy is also implicated under pathological conditions, it
is considered a ‘double-edged sword’ for being a tumour
suppressor as well as a pro-survival factor (152–154). It is
triggered in response to a variety of stimuli and also connected
with CS, due to both factors protecting cells from external and
internal stressors (63). Autophagy could also be permissive for
tumour survival in the face of stress (155, 156).

Concerning autophagy research in PitNETs, crinophagy, a
specific form of autophagy of secretory granules, has been
reported to have a role in intracellular hormone level
modulation (157–159). Autophagy participates in lactotroph
turmors cell survival and proliferation by the action of a long
non-coding RNA CLRN1-AS1 affecting the Wnt/b-catenin
signalling pathway (160).

Several reports have related autophagy to PitNET clinical
behaviour and drug therapy sensitivity (161, 162). Dopamine
agonists, cabergoline and bromocriptine, the first choice
treatments for lactotrophs tumours, trigger autophagy in
tumoral cells (163–165). Also, somatostatin analogue
(octreotide, lanreotide or pasireotide) treatment induces
concomitantly apoptosis and autophagy in GH tumours of
acromegaly patients (166). The contribution of autophagy to
radiotherapy and its manifestation in pituitary carcinomas has
yet not been examined. Therefore, it is possible to suggest that
the role of autophagy in PitNET cell biology might be context-
dependent (161, 162, 167), although its mechanism elucidation
requires further investigation.

A Novel Cellular Population Susceptible to
Contributing to Pituitary Neuroendocrine
Tumours: Pituitary Stem Cells
Resident pituitary stem cells (PSCs) exist at the marginal zone
(MZ) of the intermediate lobe, dorsal anterior lobe (AL) and
throughout the AL parenchyma (168–170). This group of cells
are involved, at least in part, in tissue remodelling and hormone-
producing cell generation during embryonic and postnatal life
(171–173). This long-term pool of undifferentiated progenitors
shares stemness-related factors which confer on them self-
renewal and pluripotency properties responsive to homeostatic
balance and injury (174–179). In addition, the in vivo expression
Frontiers in Endocrinology | www.frontiersin.org 5
of multiple markers indicates the existence of PSC population
subsets or heterogeneity, which act as a cellular niche driving
physiological pituitary plasticity (179–181).

Stem cells and cancer stem cells have been described in
PitNETs (CSCs) (182–184) displaying SOX2 and NANOG
expression, two pluripotency-associated transcription factors
(185), possibly representing a tumour-initiating cell population
(173, 186). In addition, the presence of plurihormonal and null
cell-type tumours and the low mitotic rate present in the
hyperplastic pituitary suggest that PSC are a potential cellular
source of PitNETs (187). Pituitary neuroendocrine tumour stem
cells (PASCs) expressing GFRa2, Sox9, Nestin, CD133 and
CD44, identified in normal and experimental PitNETs, along
with variations in PSC/CSC marker expression, were notably
detected at tumour initiation (184). Further characterizations of
human adult PSCs are now necessary to obtain better
understanding of the physiological and pathological roles of
these cell subsets. Innovative in vitro investigations, such as
PSC-derived organoid models (188, 189), should provide a
deeper insight into the role of PSC/CSC in pathophysiological
contexts, thereby contributing to PitNET growth control.
PERSPECTIVES AND
FINAL CONSIDERATIONS

Tissues execute a continuous counterbalance between
proliferation, differentiation and death in order to preserve a
normal and healthy structure and function. These tasks involve
an unceasing choreography, as evidenced by cellular architecture,
and are coordinated by paracrine interactions. The loss of
homeostatic dynamics can arise by mutations, cellular damage
or stress, leading to aberrant proliferation, an essential step for
tumour formation.

Many decades of tumorigenesis research have been devoted to
identifying the genetic and molecular players, central keys or
pathways that are mainly responsible for a particular cell fate
decision, frequently within the proliferate/die binary axiom.
However, the cellular decision process in tumour biology may
result from redundant, interconnected and double-edged sword
molecular signalling pathways. Biological networks are
characterised by multiple feed-forward, feedback, and cross-
talk characteristics that compensate for perturbations affecting
individual components and provide them with great robustness.
These are intricate dialogs entailing soluble molecules that
comprise growth factors, cytokines, hormones and proteases,
and also insoluble factors such as extracellular matrix
components or cell-cell interactions. Figuring out how single
components of such a complex and multifaceted network
collaborate to the output of each programme network is a key
requirement, because analysing components separately cannot
provide a whole picture of the network dynamics.

As intratumoral heterogeneity might exist in many forms, the
alteration of multiple, sometimes superposed molecular
pathways can be condensed and understood as an array of
phenotypes or behaviours, which can then be incorporated
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into a cellular interaction model. This involves not just the
determination of individual genetic or epigenetic subtypes, but
also the integration of consequent phenotypic features with the
microenvironment to reflect this complex interplay, which may
help to dissect definable tumour outcomes. We should emphasise
the incorporation of cellular physiology and metabolic status and
reprogramming examination as a tumour fitness depiction,
thereby providing a measure of the ability of tumour cell
phenotypes to survive and grow.

We have only lately begun to understand the variety and
complexity of machinery by which tumorigenic lesions develop.
The deficiency of many long-used models to faithfully represent
the complexity of systemic tumour behaviour has generated a
greater necessity for combining several viewpoints, to produce a
wider comprehension of the critical objective of interventional
therapies. By considering an ecological perspective for tumour
cells, it is possible to define grouped or collective phenotypes
beyond searching for individual mutations. In this cellular
ecosystem, the relations among confined contributors will
progressively transform, creating a vast net of cellular cross-
talking and structural components that can promote growth
(Figure 1). We suggest that the tissue architecture and
microenvironment could play vital roles in neoplasms. New
models that envisage a major complexity will be able to
generate a tumour fitness interpretation, and allow the
Frontiers in Endocrinology | www.frontiersin.org 6
gradation of pituitary trophic plasticity to be discerned in
order to bring boosted responses to regular stimuli throughout
life and to the suboptimal reactions or homeostasis restoration
that possibly influence trophic anomalies.
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