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Efficient production of polymer-grade
L-lactic acid from corn stover hydrolyzate by
thermophilic Bacillus sp. strain XZL4
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Abstract

Lactic acid has been identified as one of the top 30 potential building-block chemicals from biomass. Therefore, the
search for cheap raw materials is an objective to reduce the production costs. Efficient polymer-grade L-lactic acid
production was achieved in this report by a thermophilic strain Bacillus sp. XZL4 using corn stover hydrolyzate as
sole carbon source. High L-lactic acid concentration (81.0 g L-1) was obtained from 162.5 g L-1 concentrated corn
stover hydrolyzate (total reducing sugar of 83.0 g L-1) with a volumetric productivity of 1.86 g L-1 h-1 (0–36 h) and a
product yield of 0.98 g g-1 total reducing sugars. This is the highest L-lactic acid concentration and yield reported
from corn stover hydrolyzate. And the high optical purity of L-lactic acid obtained in this study also indicated that
Bacillus sp. XZL4 is a promising polymer-grade L-lactic-acid producer from cellulosic biomass.
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Background
Lactic acid is a valuable chemical and one of its exten-
sive applications is for polymerization of L-lactic acid to
poly (L-lactic acid), which is an attractive polymer be-
cause it can be produced from renewable resources and
is biodegradable. These properties have strengthened
interest in developing more efficient production pro-
cesses for optical purity of L-lactic acid (Wang et al.
2010a). As lactic acid has been identified as one of the
top 30 potential building-block chemicals from biomass
(http://www.eere.energy.gov/biomass/pdfs/35523.pdf ),
the search for cheap raw materials is some of the most
important objectives to be achieved to reduce the costs.
To improve productivity and economy of lactic acid pro-
duction, some reports have investigated the potential of
utilizing low-cost raw materials as carbon sources, such
as molasses and cellulosic materials (Patel et al. 2004;
Romaní et al. 2008; Wang et al. 2010a). Corn stover, one
of the lignocellulosic biomasses, is the agricultural resi-
due left unutilized in harvested. Corn stover is not a
food source and has high concentration of mixed sugars,

mainly including glucose and xylose, and therefore it
is considered as one of the most important global
feedstocks for the production of chemicals in future
(Georgieva and Ahring 2007). Furthermore, the addition
of large amounts of yeast extract in lactic acid fermenta-
tion was also economically prohibited for producing such
low-value biocommodities (Altaf et al. 2007). Various
low-cost raw materials such as tryptic soy (Nancib et al.
2005), soybean hydrolyzate (Kwon et al. 2000), corn
steep liquor (Nancib et al. 2001), whey protein hydroly-
zate (Fitzpatrick and O’Keeffe 2001) and red lentil and
baker’s yeast cells (Altaf et al. 2006) have been investi-
gated to substitute yeast extract for lactic acid produc-
tion. However, most of the substitutes were not very
effective. Therefore, development of an efficient and
cost-effective process for lactic acid fermentation from
cheap and non-food substrates is highly desired.
Bacillus species are the most widely utilized microor-

ganisms for L-lactic acid production (Budhavaram and
Fan 2009; Danner et al. 1998; Patel et al. 2004; Qin et al.
2010; Walton et al. 2010; Wang et al. 2010b; Zhao et al.
2010). As potential industrial strains, thermophilic Bacillus
species offers several remarkable advantages for lactic acid
production, including the reduction of contamination
from competing microbes, simple nutrition requirements,
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and simple maintenance of stock cultures (Patel et al.
2004; Qin et al. 2009). In this study, corn stover hydroly-
zate was chosen as sole carbon and different low-cost ni-
trogen sources (peanut meal, dry corn syrup and soybean
meal) were tested as sole nitrogen source, respectively, for
polyer-grade L-lactic acid production by a thermophilic
Bacillus strain. The aim of this study was to develop an
encouraging process for the economical L-lactic acid pro-
duction based on cheap raw materials. The batch fer-
mentation results of high yield and high optical purity of
L-lactic acid from corn stover hydrolyzate indicated that
Bacillus sp. strain XZL4 used in this study is a promising
L-lactic-acid producer from cellulosic biomass.

Results
Effects of corn stover hydrolyzate concentrations on
L-lactic acid production
Different concentrations of corn stover hydrolyzate with
the total reducing sugars of 41, 53, 83 and 133 g L-1, re-
spectively were firstly used to test the effects of corn

stover hydrolyzate concentrations on L-lactic acid pro-
duction. As shown in Figure 1, when the initial corn
stover hydrolyzate concentration was below 162.5 g L-1

(total reducing sugar is 83 g L-1), L-lactic acid con-
centration increased with the addition of corn stover
hydrolyzate. Glucose in corn stover hydrolyzate was
depleted within 48 h, and after 72 h of incubation, the
total reducing sugars were almost completely consumed
(Figure 1). It is notable that Bacillus sp. strain XZL4
could utilize both the two sugars simultaneously, al-
though glucose was utilized a little faster than xylose.
When the initial reducing sugar concentration condition
reached 133.7 g L-1, strain XZL4 could only consume
approximately 80 g L-1 reducing sugars and produce al-
most the same amount of lactic acid as the culture with
83 g L-1 initial total reducing sugars. Further increasing
the reducing sugar concentration could not lead to the
increase of lactic acid concentration, so 83 g L-1 initial
total reducing sugar concentration was chosen for the
subsequent studies.

Figure 1 Effects of corn stover hydrolyzate concentrations on L-lactic acid production by Bacillus sp. XZL4. (A) The total reducing sugars
consumption. (B) Glucose and xylose consumption. (C) L-lactic acid production. (D) Cell growth. Symbols represent different initial concentrations
of total reducing sugars of corn stover hydrolysis (g L-1): 133 (■), 83 (●), 53 (▲), and 41 (▼). The symbols for xylose consumption under different
initial concentrations of total reducing sugars of corn stover hydrolysis (g L-1) were 133 (□), 83 (○), 53 (△), and 41 (▽), respectively. The error bars
in the figure indicate the standard deviations of three parallel replicates.
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Effects of nitrogen source on L-lactic acid production by
strain XZL4
To reduce the cost, different kinds of organic and inor-
ganic nitrogen sources were investigated to substitute
the expensive yeast extract during L-lactic acid fer-
mentation. Quantities of the nitrogen sources used
for L-lactic acid production were added corresponding to
a nitrogen concentration of 4.5 g L-1. As shown in Figure 2,
when strain XZL4 was cultivated in a medium containing
two kinds of the inorganic nitrogen source ((NH4)2SO4

and (NH4)2HPO4), few L-lactic acid was produced. In the
medium with 12 g L-1 dry corn syrup and 6 g L-1

soybean meal, the produced L-lactic acid concentra-
tions were 77 g L-1 and 78 g L-1, respectively. A higher L-
lactic acid concentration was obtained with peanut meal

as nitrogen source although it was a little lower than that
of yeast extract (Figure 2).
To investigate the effects of peanut meal concentrations

on L-lactic acid production, strain XZL4 was cultivated in
fermentation medium with different initial concentrations
of peanut meal (3.2, 6.6, 9.9 or 13.2 g L-1). Figure 3
showed that L-lactic acid concentration increased with the
addition of peanut meal and 9.9 g L-1 peanut meal could
meet the requirement for L-lactic acid production.

L-Lactic acid production from corn stover hydrolyzate by
batch fermentation
Batch fermentations were performed in a 3-L Erlenmeyer
flask containing 1 L fresh medium, with initial concentra-
tion of 162.5 g L-1 corn stover hydrolyzate (83 g L-1 of
total reducing sugars). The lactic acid concentration
reached 63 g L-1 within 36 h and the average L-lactic acid
productivities of this time period were 1.86 g L-1 h-1

Figure 2 Effects of different nitrogen sources on L-lactic acid
production by Bacillus sp. XZL4. (A) Reducing sugars
consumption. (B) L-lactic acid production. Symbols represent
different nitrogen sources in the fermentation medium: yeast extract
(■), dry corn syrup (●), peanut meal (▲), soybean meal (▼),
peptone (◂), (NH4)2SO4 (▸), and (NH4)2HPO4 (◆). The error bars in the
figure indicate the standard deviations of three parallel replicates.

Figure 3 Effects of different nitrogen concentrations on L-lactic
acid production by Bacillus sp. XZL4. (A) Reducing sugars
consumption. (B) L-lactic acid production. Symbols represent
different concentration of peanut meal in the fermentation medium
(g L-1): 13.2 (■), 9.9 (●), 6.6 (▲), and 3.3 (▼). The error bars in the
figure indicate the standard deviations of three parallel replicates.
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(Figure 4). The production of lactic acid terminated at
96 h with a final concentration of 81.0 g L-1 with only
trace amounts of acetic acid detected (< 0.1 g L-1), when
the residual reducing sugars were almost completely con-
sumed. The yield of lactic acid was 0.98 g g-1 total redu-
cing sugars, which was very close to its theoretical value.
No D-isomer of lactic acid was detected in the broth.

Discussion
Inexpensive underutilized agricultural by-products, such
as corn stover hydrolyzate offers an attractive possibility
to be used as substrate in biotechnological production of
L-lactic acid, but the lactic acid yield and volumetric
productivity in fermentation of agricultural by-products
are generally low. The lactic acid production titers from
different agricultural by-products were summarized in
Table 1. Relatively low lactic acid concentrations were
obtained when lime-treated wheat straw hydrolyzate
(Maas et al. 2008), cellobiose (Abdel-Rahman et al.
2011), sugar cane bagasse hemicellulose hydrolyzate
(Patel et al. 2004), and corn fiber hydrolyzate (Walton
et al. 2010) were used for lactic acid production.
Lactobacillus pentosus ATCC 8041 has been reported to
produce 74.8 g L-1 lactic acid from corn stover hydroly-
zate and yeast extract by fed-batch fermentation process
while the low productivity (0.26 g L-1 h-1) and yield
(0.65 g g-1) were reported (Zhu et al. 2007a). To further
reduce the cost, different kinds of organic and inorganic
nitrogen sources were also investigated to substitute the
expensive yeast extract during L-lactic acid fermentation
in this study. Peanut meal is the high-protein solid resi-
due gained from the extraction of peanut oil, which is
cheap and very abundant in China. Substitution of yeast
extract with peanut meal will significantly reduce the

production cost of lactic acid. High concentration of
D-lactic acid was obtained using peanut meal as nitro-
gen source by Sporolactobacillus sp. CASD (Wang
et al. 2011). Bacillus sp. strain XZL4 could efficiently
produce L-lactic acid from corn stover hydrolyzate
with a yield of 0.98 g g-1 reducing sugars using peanut
meal as sole nitrogen source. Our results demonstrated
that peanut meal was an efficient and economic nitro-
gen alternative for polymer-grade L-lactic acid fermen-
tation by thermophilic Bacillus strains.
Additionally, cellulose- and hemicellulose-derived carbo-

hydrate feedstocks contained a variety of mixed sugars,
mainly glucose and xylose. In order to maximize lactic acid
yield and production, complete utilization of mixed sugars
is essential. Carbon catabolite repression (CCR) is a com-
mon phenomenon in bacteria and very few bacteria have
been reported which consume different sugars simultan-
eously (Görke and Stülke 2008). Therefore, for indus-
trialization of lactic acid production from cellulosic
materials, it is desirable to use CCR-positive strain for lactic
acid production from mixed sugar substrates. Bacillus sp.
strain XZL4 could utilize both the two sugars simultan-
eously, although glucose was utilized a little faster than xy-
lose (Figure 1), proving its feasibility for L-lactic acid
production from low-cost raw materials.
High L-lactic acid concentration with a volumetric prod-

uctivity of 1.86 g L-1 h-1 (0–36 h) and a product yield of
0.98 g g-1 total reducing sugars was obtained in batch fer-
mentation by Bacillus sp. strain XZL4. The mechanisms
that strain XZL4 produced L-lactic acid so effectively could
be explained by the analysis results from genome sequen-
cing data (Su et al. 2011). The genome size of Bacillus sp.
strain XZL4 is only 2.8 Mb. The small genome size with
less genomic redundancy was thought to improve the prod-
uctivity of platform chemicals or other products (Zhu et al.
2007b; Morimoto et al. 2008). The pathway of EMP is well
known for its high efficiency to utilize hexose. Compared to
the hexose, the pathways of utilization of pentose are more
flexible. In theory, the transketolase/transaldolase pathway
has higher carbon efficiency than the phosphoketolase
pathway. Based on carbohydrate metabolism analysis, the
key enzymes (xylose/arabinose isomerase, ribulokinase, and
ribulose-5-phosphate 4-epimerase) involved in the pentose
metabolite were found in the genome. The transketolase/
transaldolase pathway, instead of phosphoketolase, was in
the genome, implying that strain XZL4 could utilize pen-
tose more efficiently. Furthermore, few pyruvate-dissipating
enzymes were found in strain XZL4 (Su et al. 2011). There-
fore, simple and efficient carbohydrate metabolism systems,
especially the absence of pyruvate decarboxylase and the
existed transketolase/transaldolase pathway in thermophilic
Bacillus sp. strain XZL4, should be responsible for the
high-yield lactic acid production from corn stover hydroly-
zate. Additionally, the absence of D-lactate dehydrogenase

Figure 4 Batch fermentations from corn stover hydrolyzate by
Bacillus sp. XZL4. Symbols represent carbohydrates consumption
and cell growth in the fermentation medium (g L-1): Reducing
sugars consumption (■), L-lactic acid production (●), and Cell
growth (◆). The error bars in the figure indicate the standard
deviations of three parallel replicates.
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genes in the genome of Bacillus sp. strain XZL4 also
resulted in producing such high-optical purity L-lactic acid.

Conclusions
In conclusion, the highest lactic acid concentration
(81.0 g L-1) and yield (0.98 g g-1 total reducing sugars)
was obtained from corn stover hydrolyzate in this study.
Corn stover hydrolyzate can provide an economic L-
lactic acid production process with cheap and renewable
biomass by Bacillus sp. strain XZL4. Although the rela-
tively higher concentrations of lactic acid were previ-
ously reported by using paper sludge (Budhavaram and
Fan 2009) and wood hydrolysate (Wee et al. 2004)
(Table 1), expensive yeast extract used as nitrogen
source reduced their industrial applicability. And more,
the absence of pyruvate decarboxylase and D-lactate hydro-
genase genes in the genome demonstrated that Bacillus sp.
strain XZL4 is a high-efficient polymer-grade L-lactic-acid
producer from cellulosic biomass.

Methods
Chemicals
The corn stover hydrolyzate, kindly provided by Energy
Research Institute of Shandong Academy of Sciences

(China), was prepared by following the procedures: 1)
Pretreatment: The corn straw was grinded, then the
powder was sieved and the particle sizes ≤2 mm were
collected; 2) HCl treatment: The collected powder was
treated with 6% HCl at 90°C for 1 h, then washed by water
and adjusted to pH 4.8-5.0; 3) Cellulase hydrolysation:
The powder of corn straw was hydrolyzed with cellulase
(20 FPIU/g dry mass, solid–liquid ratio was 1:50–1:10)
at 50°C for 48 h, and the corn straw hydrolysate was
concentrated and used in this study. The contents of
concentrated corn stover hydrolyzate was glucose 555.3
(g L-1), xylose 174.2 (g L-1), arabinose 19.9 (g L-1), acetic
acid 7.1 (g L-1), 2-furfural 1.9 (g L-1) and 5-hydroxy-
methyl-2-furaldehyde 0.7 (g L-1). All other chemicals
were of analytical grade and commercially available.

Strain and culture conditions
Bacillus sp. strain XZL4 used in this study is a homofer-
mentative L-lactic acid producer (Su et al. 2011). The strain
has been deposited in the Deutsche Sammlung von Mik-
roorganismen und Zellkulturen GmbH (DSM №23183).
The slant was inoculated at 50°C after 24 h of incu-
bation and stored at 4°C. Strain XZL4 was inoculated in
the culture medium containing (per liter) 50 g glucose,

Table 1 Comparison of lactic acid production from agricultural by-products by lactic acid producing microorganisms

Lactic acid

Substrate Organism Fermentation
process

Lactic acid
concentration (g/L)

Productivity
(g/L/h)

Yield
(g/g)

References

lime-treated wheat straw
hydrolyzate

Bacillus coagulans DSM 2314 Continuation
of the SSF

40.7a 0.74 0.43 Maas et al.
2008

sugar cane bagasse
hemicellulose hydrolyzate

thermotolerant acidophilic Bacillus sp.
strain 17C5

Batch 55.8a 0.8 0.93 Patel et al.
2004

cellobiose Enterococcus mundtii QU25 Batch 20.4a 3.44 1.04 Abdel-Rahman
et al. 2011

reed hemicellulose liquor Lactococcus lactis IO-1 JCM 7638/
Lactobacillus pentosus ATCC 8041

Batch 33.0c 0.6 0.66 Perttunen et al.
2001

wheat straw hydrolyzate fungus Rhizopus oryzae CBS 112.07 Batch 6.8a 0.14 0.23 Maas et al.
2006

hot water-extracted
Siberian larch

moderate thermophile Bacillus
coagulans MXL-9

SSF 33.0a 0.55 0.73 Walton et al.
2010

paper sludge Bacillus coagulan strains 36D1 SSCF 92.0c 0.96 0.77 Budhavaram
and Fan 2009

defatted rice bran Lactobacillus delbrueckii IFO 3202 SSF 28.0b 0.78 0.28 Tanaka et al.
2006

wood hydrolyzate Enterococcus faecalis RKY1 Batch 93.0a 1.7 0.93 Wee et al. 2004

corn fiber hydrolyzate moderate thermophile Bacillus
coagulans MXL-9

Fed batch 45.6a 0.21 0.46 Bischoff et al.
2010

corn stover hydrolyzate Lactobacillus pentosus ATCC 8041 Fed batch 74.8c 0.26 0.65 Zhu et al.
2007a

corn stover hydrolyzate Bacillus sp. strain XZL4 Batch 81.0a 1.86(0–36 h) 0.98 This work

SSF: Simultaneous saccharification and fermentation.
SSCF: Semi-continuous simultaneous saccharification and co-fermentation.
a L-lactic acid.
b D-lactic acid.
c DL-lactic acid.
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10 g yeast extract (YE), 30 g calcium carbonate (Wang
et al. 2010b). The seed culture was prepared as follows:
a loop of cells from the fully grown LB agar slant was
inoculated into 30 mL of the above sterile medium in
100-mL conical flasks and incubated at 50°C for 24 h
without agitation. All experiments were 10% (v/v) in-
oculum volume and carried out in triplicate.

Effects of corn stover hydrolyzate concentrations on
L-lactic acid production
The medium used to study the effects of corn stover
hydrolyze concentrations on L-lactic acid production
contained 41–133 g L-1 reducing sugars and 10 g L-1 YE.
Calcium carbonate was added as 60% (w/w) of the redu-
cing sugars to the medium (Wang et al. 2010a). The well
mixed samples were taken periodically and the concen-
trations of total residual reducing sugar, glucose, xylose
and the L-lactic acid production were determined.

Effects of different nitrogen sources on L-lactic acid
production
The variables used in the study were peanut meal and soy-
bean meal (with 0.3 g L-1 neutral proteinase, respectively, to
release the nitrogen element), peptone, yeast extract, dry
corn syrup, (NH4)2SO4 and (NH4)2HPO4. The 162.5 g L-1

corn stover hydrolyzate (containing 83.0 g L-1 reducing
sugar) and 49.5 g L-1 CaCO3 were added. The quantities of
nitrogen in all medium were controlled at 4.5 g L-1. The
well mixed samples were taken periodically and the con-
centrations of total residual reducing sugar and the L-lactic
acid production were determined.

Effects of peanut meal concentrations on L-lactic acid
production
The fermentation medium for studying nitrogen concen-
tration utilization contained 1.3-13.2 g L-1 peanut meal
and 162.5 g L-1 corn stover hydrolyzate, calcium carbon-
ate was added as 60% (w/w) of reducing sugars to the
medium. Fermentations were carried out at 50°C under
static conditions in 100-mL Erlenmeyer flasks each con-
taining 30 mL medium. The well mixed samples were
taken periodically and the concentrations of total re-
sidual reducing sugar and the L-lactic acid production
were determined.

Batch fermentation
Batch fermentation was conducted in a 3-L Erlenmeyer
flask containing 1 L fresh medium at 50°C under static
conditions. The corn stover hydrolyzate (162.5 g L-1) con-
taining 83.0 g L-1 of total reducing sugars was used. The
medium contained 9.9 g L-1 peanut meal and 0.3 g L-1

neutral proteinase, and the culture pH was maintained at
5.1-6.3 by calcium carbonate present in the medium. The
well mixed samples were taken periodically and the

concentrations of total residual reducing sugar and
L-lactic acid production were determined.

Analytical methods
The glucose and L-lactate concentration were measured
by SBA-40D biosensor analyzer (Institute of Biology,
Shandong Academy of Sciences, China). The total con-
centration of reducing sugars was measured by SGD-IV
automatic analyzer of reducing sugar (Institute of Biol-
ogy, Shandong Academy of Sciences, China). The xylose
concentration was determined by xylose assay kit
(Nanjing Jiancheng Technology Company Ltd, China). For
quantification of formatic acid and acetatic acid, an Aminex
HPX-87H column (Bio-Rad, Hercules, CA) was used. The
column was maintained at 65°C and eluted with 5 mM
H2SO4 at a flow rate of 0.6 mL/min. Peaks were detected
by Refractive Index Detector and quantified by comparison
to retention times of authentic standards. The optical purity
of L-lactic acid was determined by HPLC equipped with a
chiral column (MCI GEL CRS10W, Japan) at 254 nm. The
mobile phase was 2 mM CuSO4 at a flow rate of 0.5 ml/min
(25°C).
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