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Bacteria use intercellular signaling, or quorum sensing (QS), to
share information and respond collectively to aspects of their
surroundings. The autoinducers that carry this information are
exposed to the external environment; consequently, they are
affected by factors such as removal through fluid flow, a ubiq-
uitous feature of bacterial habitats ranging from the gut and
lungs to lakes and oceans. To understand how QS genetic architec-
tures in cells promote appropriate population-level phenotypes
throughout the bacterial life cycle requires knowledge of how
these architectures determine the QS response in realistic spa-
tiotemporally varying flow conditions. Here we develop and
apply a general theory that identifies and quantifies the condi-
tions required for QS activation in fluid flow by systematically
linking cell- and population-level genetic and physical processes.
We predict that when a subset of the population meets these con-
ditions, cell-level positive feedback promotes a robust collective
response by overcoming flow-induced autoinducer concentration
gradients. By accounting for a dynamic flow in our theory, we
predict that positive feedback in cells acts as a low-pass filter at
the population level in oscillatory flow, allowing a population to
respond only to changes in flow that occur over slow enough
timescales. Our theory is readily extendable and provides a frame-
work for assessing the functional roles of diverse QS network
architectures in realistic flow conditions.
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Bacteria share and respond collectively to information about
their surrounding environment through the production,

release, and detection of small diffusible molecules called autoin-
ducers (AIs), in a process termed quorum sensing (QS). In
QS systems, the individual bacterial expression of genes rele-
vant to the community is promoted when AIs accumulate to a
threshold concentration, typically associated with an increasing
cell density (1). Population-level behaviors exhibited in QS-
activated states include bioluminescence (2, 3), virulence factor
production (4), modified mutation rates (5), biofilm and aggre-
gate formation (6, 7), and biofilm dispersal (8). As AIs diffuse
between cells, they are often subject to complex and fluctuat-
ing features of their environment, such as extracellular matrix
components (9, 10), interference by other bacterial species (or
the host organism), and external fluid flow. Recent research
has started to show how such environmental factors are closely
linked to the QS response, building on foundational knowledge
gained from studying well-mixed laboratory cultures (11–13).
However, improving our understanding of the functional role of
QS systems requires understanding how these systems promote
appropriate population-level phenotypes in realistic bacterial
environments.

Fluid flow is ubiquitous in a diverse range of bacterial habi-
tats from rivers, lakes, and medical devices to the host teeth, gut,
lungs, and nasal cavity (14). In addition to its mechanical effects
on the structure of cell populations (15–19), external fluid flow
has been found to have a strong influence on the transport of
relevant chemicals including nutrients (8, 20), antibiotics during
host treatment (21, 22), and QS AIs (23–26). Recent experi-
mental (23–27) and numerical (28–34) studies suggest that flow-

induced AI transport can affect population-level phenotypes by
introducing chemical gradients within populations and, if the
flow is strong enough, suppressing QS altogether. These results
raise two important questions about QS genetic networks. First,
how can QS networks ensure a robust population-level response
in order to avoid individual cells committing to a costly multi-
cellular phenotype in isolation, while also avoiding premature
population-level QS activation in a spatiotemporally complex
environment? Second, how can QS networks enable populations
to sense cell density in flow environments that promote high mass
transfer (35–38)?

Here we answer these questions by combining simulations and
a systematic asymptotic analysis of QS in a cell layer subject to an
external flow; we focus on the effect of positive feedback in AI
production, a common feature of QS genetic circuits (39). We
begin by establishing the conditions required for the emergence
of population-level QS activation in steady flow. Our results illus-
trate how the required conditions for activation depend on the
ratio of the timescale of the external flow to the timescale of
diffusion through the cell layer. If the required conditions are
met in a region of the cell layer, positive feedback causes AIs
to flood the population, inducing population-wide QS activation.
Interestingly, by accounting for a dynamic flow in our model we
find that an ability to avoid premature QS activation is built into
systems with positive feedback. We predict that positive feed-
back acts as a low-pass filter to oscillations in the shear rate; if
such oscillations occur over a time period shorter than a critical
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time that we calculate, the QS system is not activated, even if
the required conditions for activation are met during the oscil-
lations. Furthermore, we find that by combining multiple QS
signals, a population can infer both cell density and external flow
conditions. Overall, our findings suggest that positive feedback
allows QS systems to act as spatiotemporally nonlocal sensors of
fluid flow.

Results
Population-Level Theory for QS in Flow. To understand how genetic
circuits in individual cells affect population-level bacterial signal-
ing, we investigated an archetypal QS circuit in gram-negative
bacteria called a LuxIR system (Fig. 1A and Materials and Meth-
ods). In this system, AIs in cells bind to a cognate LuxR protein,
and the bound AI–LuxR dimer promotes the transcription of
downstream genes. The system exhibits a positive feedback loop
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Fig. 1. Conditions for the onset of QS activation in a LuxIR-type system in
steady flow. (A) We model a population of cells and an external fluid flow
above the population (Left). Inside cells, we model a LuxIR-type genetic cir-
cuit with positive feedback (12, 39) (Right). (B) AI concentration in steady
simulations with an imposed uniform shear flow. If the density is below a
critical value, the system remains inactivated (Left). If the density rises just
above this critical value, positive feedback causes robust population-level QS
activation (Right). (C) The maximum (green line) and minimum (red line) AI
concentrations inside a population rise drastically around the critical den-
sity in steady simulations (vertical axes scaled logarithmically). Results are
shown for shear rates of 100 s−1 (Top) and 10,000 s−1 (Bottom); the height
of the cell layer is taken to be H = 5 µm. Dashed black lines correspond to
the activation threshold, and dashed green lines show the maximum con-
centration in the cell population when no feedback is present (λ= 0); we
note that setting the binding parameters k+ = 0 and k− = 0 does not have
a distinguishable effect in that case. (D) The simulations show that the criti-
cal density is larger for a larger shear rate and smaller for a thicker cell layer
(dots). Lines show the predicted critical density from Eqs. 6–8. All kinetic
parameters in these simulations are given the values listed in SI Appendix,
Table S1.

through the presence of an AI synthase, LuxI, whose expression
is promoted by the bound dimer (12, 39). Thus, to summarize, as
the concentration of AIs in a cell increases, there is an increase
in the number of bound dimers. Consequently, this promotes
the production of LuxI, which further increases the production
of AIs.

Here, we model the concentration of AIs (A), LuxR (R),
LuxI (I ), and bound AI–LuxR dimers (C ) in a population of
cells through a locally averaged set of governing equations (40,
41). The important cell-scale information is captured through
the local volume density of cells ρ (Materials and Methods). We
consider the scenario where cells are embedded in an extracellu-
lar matrix [matrix generation precedes QS activation in species
including Vibrio cholerae (8) and Pseudomonas aeruginosa (25)]
over which a fluid flows. As such, the fluid flow imparts a shear
stress (which may vary in space and time) to the upper bound-
ary of the cell layer. We neglect growth-induced flows inside the
cell layer because their timescales are typically much slower than
those of diffusion and external flow (18, 42).

Thus, our problem consists of two coupled domains. To obtain
nondimensional equations in each domain, we scale lengths with
the height of the cell layer H , fluid velocities with γ̇H , where
γ̇ is a typical shear rate, and times with the diffusion timescale
H 2/Dc , where Dc is the AI diffusion coefficient in the cell pop-
ulation (Materials and Methods). In the cell population region, a
reaction-diffusion equation holds for the AI concentration

∂A

∂t
=∇2A+ ρ (q +λI − k+AR + k−C )−κA, [1]

where∇2A represents AI diffusion, q is the base production rate
of AIs, λ is the synthesis rate of AIs by LuxI, k+ is the binding
rate of AIs and LuxR proteins, k− is the corresponding unbind-
ing rate, and κ is the decay rate of AIs. Reaction equations hold
for the concentrations of the proteins and dimers inside cells

∂I

∂t
=µC −αI ,

∂R

∂t
= r − k+AR + k−C −βR,

∂C

∂t
= k+AR− k−C − γC ,

[2]

where µ is the activation rate of LuxI by AI–LuxR complexes; r
is the base production rate of LuxR; and α, β, and γ are decay
rates. We combine the kinetic parameters into two parameter
groups,

K =
β(k−+ γ)

k+γ
, Λ =

λµ

αγ
, [3]

where K represents an effective equilibrium constant for AI–
LuxR complex formation and Λ represents the strength of positive
feedback in the system. In the external flow region, with flow
field u that satisfies the Navier–Stokes equations, an advection-
diffusion equation with decay holds for the AI concentration

∇·u = 0,
∂u
∂t

+ u ·∇u =−∇p +
1

Re
∇2u,

∂A

∂t
=∇· (D∇A−PeuA)−κA,

[4]

where Re is the Reynolds number of the flow and D is the ratio
of AI diffusivity in the flow to AI diffusivity in the cell layer. The
key control parameter that we use to investigate how external
flow affects QS in cell populations is the Péclet number

Pe = γ̇H 2/Dc , [5]

which quantifies the relative effects of advection in the external
flow to diffusion in the cell layer.
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QS Activation in Steady Flow. First, we performed numerical simu-
lations of the governing equations in the finite-element computa-
tional software COMSOL Multiphysics for an imposed spatially
uniform shear flow, which we assumed to be free of AIs far
upstream (see SI Appendix, Fig. S1, for a full description of the
numerical procedure). This incorporates a very wide range of
laminar flows in simple geometries owing to the large Schmidt
number (Sc = ν/De > 1,000, where ν is the kinematic viscos-
ity and De is the diffusion coefficient in the flow) of AIs in
water, so that the flow profile can be linearized in the mass-
transfer boundary layer. We performed steady simulations to
understand the conditions in which it is possible for a popula-
tion to enter a QS-activated state for typical kinetic and physical
parameter values (summarized in SI Appendix, Table S1). The
results show that a strong flow can entirely suppress QS activa-
tion by removing AIs from the population boundary (Fig. 1B).
However, above a critical cell density ρc , the cell population
is able to exhibit QS activation through the positive feed-
back present in the system. At steady state in this regime, the
domain becomes flooded with AIs, which increase in concentra-
tion by several orders of magnitude throughout the population
(Fig. 1B); the large increase does not occur in systems with-
out positive feedback (Fig. 1C). This change occurs over very
small changes in cell density (Fig. 1C). In larger cell popula-
tions, populations with restricted or reduced AI diffusion, and
weaker external flows, the critical density is smaller owing to the
reduced mass transfer of AIs out of the population (Fig. 1D and
SI Appendix, Fig. S5).

To understand the general principles that guide how the var-
ious kinetic, physical, and geometric parameters determine ρc ,
we analyzed the system of equations for a thin cell layer, where
diffusion through the cell layer in the direction of flow is much
less important than diffusion in the direction normal to the sur-
face of the cell layer (43). In this systematically reduced model,
the entire effect of the external flow region on the AI concentra-
tion A within the cell population is reduced to an effective Robin
boundary condition on the surface of the cell layer. To derive this
condition, we constructed a similarity solution for A in the mass-
transfer boundary layer (44) in the external fluid (SI Appendix).
This yielded an effective Péclet number, Peeff, which quantifies
the local ratio of advective to diffusive transport at the position x
(where the x axis is directed with the flow and x = 0 corresponds
to the upstream edge of the population). Our analysis predicts
the effective Péclet number to be

Peeff =
Γ(2/3)Pe1/3D2/3

32/3x1/3
≈ 0.65

Pe1/3D2/3

x1/3
, [6]

where Γ is the Gamma function and D is the ratio of the diffu-
sion coefficient in the external flow to the diffusion coefficient
in the cell layer (Eq. 16). Our Peeff prediction agrees well with
simulation results (Fig. 2A) outside a small diffusive boundary
layer of thickness O(Pe−1/2) at the downstream end of the cell
population (SI Appendix, Fig. S3).

The steady thin-film governing equations admit a solution for
A that satisfies an ordinary differential equation, which we ana-
lyze here through the method of matched asymptotic expansions
(SI Appendix). Based on the expected orders of magnitude of the
parameter values (SI Appendix, Table S1), we exploit the phys-
iologically relevant limits K � 1 and Λ� 1, corresponding to a
relatively large equilibrium constant for AI–LuxR complex for-
mation and strong positive feedback, respectively (Eq. 3). Our
analysis demonstrates that for a fixed Peeff, the system exhibits
an imperfect transcritical bifurcation at a critical density, which
marks an orders of magnitude increase in A owing to a dras-
tic increase in positive feedback. We identify this point as the
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Fig. 2. An algebraic relationship links flow, biomass, and kinetics at the
onset of QS activation. (A) For the simulations in Fig. 1D, when the cal-
culated effective Péclet number at the cell population boundary, Ay/A,
is scaled by Pe1/3, the simulation data collapse onto the curve 0.65/x1/3

(dashed line), as predicted in Eq. 6 with D = 1 (both axes scaled logarith-
mically). Here A is the AI concentration, Ay is its derivative in the vertical
direction (perpendicular to the flow), x is the coordinate parallel to the
flow, and y is the coordinate perpendicular to the flow. (B) When plotted
against the appropriate nondimensional variables identified in Eqs. 6 and 8,
the simulations from Fig. 1D collapse onto the curve defined by Eq. 7 (see
also SI Appendix, Fig. S4). (C and D) Illustrative examples of how cells can
measure density and flow by measuring activation (Eq. 7) of two different
AIs, splitting parameter space into four regions A, B, C, and D (vertical axes
scaled logarithmically). (C) Cell population of height 10 µm. The first AI has
kinetic parameters from SI Appendix, Table S1 (blue line), and the second
AI also has a factor of 10 reduction in diffusivity in the cell layer and factor
of 5 reduction in LuxR production rate (red line) compared to the first AI.
(D) Cell population of height 100 µm. The first AI has kinetic parameters
from SI Appendix, Table S1, but with factor of 10 increase in LuxI and LuxR
decay rates (blue line), and the second AI also has a factor of 500 increase
in AI decay rate and factor of 2 increase in LuxR production rate (red line)
compared to the first AI.

critical density ρc above which the population exhibits QS
activation, which reveals the algebraic relationship

ω tanω= Peeff at ρ= ρc [7]

where

ω :=

√
ρrΛ

K
−κ. [8]

Here r and κ represent LuxR production and AI decay, respec-
tively (see Eqs. 1 and 2). In Eq. 7, the effect of flow is captured
in Peeff and the effect of the kinetic parameters at the population
level is captured in the single nondimensional parameter groupω.

To compare the predictions from our systematically reduced
model to the simulation results, we note that the onset of QS
activation will occur at the lowest effective Péclet number at
the boundary of the cell population. Because Peeff decreases
in x (Eq. 6), we ignore the small downstream boundary layer
for simplicity and assume that Peeff is minimized at the down-
stream end of a cell population of length L. Therefore, we
insert x =L into Eq. 6 to predict Peeff for a general popula-
tion of cells in a uniform shear flow. Plotting our simulation
results against the nondimensional parameter groups Peeff and
ω (defined in Eqs. 6 and 8, respectively) demonstrates a remark-
able collapse onto the predicted curve of Eq. 7 for a wide range
of typical kinetic, geometric, and physical parameters (Fig. 2B
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and SI Appendix, Fig. S4), despite the assumptions in our thin-
film reduction. We note that we slightly underestimate Peeff
(and therefore ρc) due to the thin diffusive region at the down-
stream end of the population; an improvement would require
a full spatial asymptotic analysis of the problem. This collapse
onto Eq. 7 can be unwrapped to calculate the critical condi-
tions for activation for a QS network with a given set of kinetic
parameters.

For example, we found that by combining two different AI sig-
nals, a bacterial population can respond separately to the cell
density and the external shear rate, by measuring the activation
state of both signals. The key tunable parameters for sensing
this difference are the diffusion coefficients of each AI within
the cell layer, the decay rates of each AI, and the kinetics of
each QS network through the strength of the positive feedback
(or, more specifically, the ratio rΛ/K in Eq. 7). We found that
two of these parameters must be different between the two AI
signals to separate parameter space into four regions that cor-
respond to low and high values of both cell density and shear
rate (Fig. 2 C and D). In thin cell layers, where the overall decay
of AIs within the cell layer is very small for typical parameters
(SI Appendix, Table S1), populations can combine two signals
with different diffusion coefficients and different strengths of
positive feedback (Fig. 2C). In larger cell layers, populations
can also incorporate information from two AIs with different
decay rates (Fig. 2D). We note that in very large populations, our
model may need to be modified to account for nutrient limita-
tions (SI Appendix, Fig. S10). This ability to measure cell density
and shear rate separately is possible because the three tunable
parameters affect QS activation conditions in distinct ways: AI
diffusivity within the cell layer has a larger effect at larger shear
rates, AI decay has a consistent effect across shear rates, and
the effect of positive feedback is strongly dependent on the cell
density.

QS Activation in Complex Geometries. In complex geometries
there will be regions of low shear on the cell layer surface, on
which the local effective Péclet number (Eq. 6) will be reduced.
Eq. 7 predicts that the global ρc will be lowered in such cell
populations, in agreement with a recent experimental study in
which QS activation was found to be promoted in crevices or
pores (26). To further understand the local and global effects
of complex geometries on QS, we performed simulations of the
three-dimensional (3D) governing equations in channels which
mimic typical host environments such as intestinal crypts and
tooth cavities. The channels contain crevices that extend in the
horizontal direction transverse to a pressure-induced flow over
a cell population that coats the channel floor (Fig. 3A and SI
Appendix, Fig. S1). We found that ρc is reduced in channels
with crevices, by an amount that depends on the crevice depth
(Fig. 3B) and the number of crevices (SI Appendix, Fig. S6),
in agreement with experimental findings (26). Furthermore,
we found that once QS is activated in the crevices, diffusion
of AIs activates further regions of the cell population outside
the crevices, particularly downstream (Fig. 3C). This activa-
tion region can extend for lengths far beyond the size of the
crevices themselves, even in conditions for which QS activation
would be precluded completely in a simple channel (Fig. 3 B
and C). This demonstrates that local geometric complexities can
have highly nonlocal effects on QS activation through positive
feedback.

QS Activation in Unsteady Flow. To understand the transient pro-
cess of QS activation in unsteady flows, which are common in
bacterial habitats such as the lungs and medical devices, we
performed simulations of the dynamic governing equations for
spatially uniform flows with a sinusoidally oscillating shear rate.
Each oscillating flow is characterized by the time tact during an
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Fig. 3. In complex geometries, positive feedback causes robust QS activa-
tion based on the region with the lowest effective Péclet number. (A) We
simulate steady flow in a channel with crevices in its sidewall; a cell popula-
tion coats the channel floor. (Top) The shear rate applied by the flow to the
top of the cell population is lower in the crevices (no shear is applied to the
sides of the cell population). (Bottom) The AI concentration in the cell popu-
lation is higher in the crevices and downstream. Simulations are performed
with ρ= 0.168 and a crevice depth of 10 µm, which is twice the height of
the population (see SI Appendix, Fig. S1, for further details of the simula-
tion geometry and boundary conditions). (B) Steady simulations show that
QS is activated at lower densities in populations in channels with deeper
crevices. The maximum AI concentration in the population, which occurs in
the most downstream crevice (A), is plotted (vertical axis scaled logarith-
mically). (C) Steady simulations show that for a larger density, a larger
region of the population is activated. The density is plotted against the QS-
activated distance along the line transverse to the center of each of the
four crevices; the downstream distance of each crevice from the upstream
edge of the population is labeled. The QS-activated region is defined as the
region for which A> 5 nM, which we take to be the activation threshold.
All kinetic parameters in these simulations are given the values listed in SI
Appendix, Table S1.

oscillation period for which the system is in the QS activation
region of parameter space,

tact =

∫
V

dt , [9]

where V is the set of times such that Peeff(t)<Peeff(tc) over
one oscillation and tc is the time at which the effective Péclet
number Peeff falls below its critical value identified in Eq. 7
(Fig. 4A, Inset). For the range of shear rates spanned by the
oscillations, the steady solution for AI concentration varies over
orders of magnitude as the system passes through the criti-
cal Peeff (Fig. 4A). However, in the dynamic simulations, for
a fixed mean and amplitude of oscillation, this range is only
achieved for long enough oscillation periods (i.e., larger tact).
Surprisingly, for shorter oscillation periods (i.e., smaller tact),
the AI concentration remains below the QS-activation thresh-
old; we note that throughout these simulations, tact remains
well above the diffusive timescale. We found that there is a
critical oscillation period (i.e., a critical tact) and that as the
period increases over this critical value, the mean (and max-
imum) concentration of AIs increases over several orders of
magnitude (Fig. 4B and Movies S1 and S2). We did not observe
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Fig. 4. Conditions for QS activation in an oscillating flow. (A) In steady
simulations with fixed density, the maximum concentration of AIs rises dras-
tically when the shear rate is below its critical value (both axes scaled
logarithmically). In the following simulations we oscillate the shear rate
across this critical value with a fixed mean and amplitude; the oscillations
are defined by the activation time tact for which the system is in the QS
activated region of parameter space (Inset). (B) Simulations are performed
with oscillations in the shear rate with mean γ̇= 500 s−1 and amplitude
γ̇= 400 s−1. For oscillation time periods slower than a critical time, corre-
sponding to a critical tact, the mean (green line) and range (gray area) of
the maximum AI concentration throughout each oscillation rise drastically
(both axes scaled logarithmically; see also SI Appendix, Fig. S7 and Movies S1
and S2). Inset: oscillations in the AI concentration are filtered out for t< tact

(red line), but not for t> tact (blue line; vertical axis scaled logarithmically).
(C) Over a range of oscillation periods, for each oscillation we calculate the
activation time using Eq. 9 and the delay time using Eq. 10. Thus, we predict
a critical oscillation period by finding the oscillation at which the activation
time is equal to the delay time. If the activation time is below the delay
time, the oscillation is in the filtered region of parameter space, and the
QS system is predicted to remain inactivated. (D) To confirm the validity of
our prediction of the critical oscillation period, we perform 1D simulations
of the thin-film equations, where the Péclet number is directly controllable.
We define the critical oscillation as the one at which the maximum AI con-
centration first rises above the threshold value of 5 nM; then, we calculate
the critical activation time using Eq. 9. We find that when plotted against
the predicted critical delay time Eq. 10, this critical activation time collapses
onto Eq. 11. All kinetic parameters in these simulations are given the param-
eter values in SI Appendix, Table S1, and the height of the cell layer is taken
to be H = 8 µm.

such a critical oscillation period for a system without feedback
(λ= 0), suggesting that this effect is caused by positive feedback
(SI Appendix, Fig. S8).

To explore how this observation depends on the LuxIR sys-
tem kinetics and to determine whether it is a general property
of the system, we performed a dynamic analysis of the thin-
film equations as Peeff passes below its critical value at t = tc
and the system enters the QS activation region of parameter
space. We found that there is a critical slowing down due to
the imperfect transcritical bifurcation which marks the onset of
QS activation (SI Appendix); these dynamics are reminiscent of
the effects of “ghosts” of saddle-node bifurcations (45–47). This
slower timescale introduces a delay time, tdelay, which determines
the time t = tc + tdelay at which dynamic QS activation occurs
if the effective Péclet number remains below its critical value,
i.e., if Peeff(t)<Peeff(tc) for t > tc . The delay time depends
on the system kinetics through two nondimensional parameter
groups ν1 and ν2 (defined in Eq. 17; Materials and Methods)

and on the imposed external flow through the time-derivative
Pe′eff(tc) of the effective Péclet number as it passes below its
critical value:

tdelay = ν1

√
log ν2|Pe′eff(tc)|
|Pe′eff(tc)| . [10]

Thus, the delay time depends on whether the shear rate changes
slowly or quickly through the critical value that marks the onset
of QS activation.

Interestingly, this result suggests that in a dynamic flow, even
if the shear rate falls below its critical value into the QS activa-
tion region, the onset of QS activation would not be triggered
if the shear rate increases back above its critical value after a
time shorter than the delay time of the system. Therefore, for an
oscillating flow that enters the QS activation region of parameter
space for an activation time tact during each oscillation, we iden-
tify the oscillation period as the critical period if the activation
and delay times are equal (Fig. 4C):

tact = tdelay. [11]

Eqs. 10 and 11 predict that for a flow oscillating over a long
enough time period, such that tact > tdelay, the QS system passes
through cycles of dynamic activation and deactivation. Con-
versely, for a flow oscillating over a short enough time period,
such that tact < tdelay, the system is predicted to remain in the QS-
inactivated state. We confirmed the validity of our prediction of
the critical oscillation period by performing simulations of the
governing thin-film equations, in which the Péclet number and
its derivatives are directly controllable. The results show that for
a wide range of oscillating Péclet numbers, the calculated prop-
erties for the onset of dynamic QS activation collapse onto the
curve defined by Eqs. 10 and 11 (Fig. 4D).

In experiments and in our simulations of the governing equa-
tions with an imposed flow, it is not possible to control the
effective Péclet number and its derivatives directly. However,
we can make an order of magnitude estimate of the required
conditions for the onset of dynamic QS activation for a sinu-
soidally oscillating flow with a time period Tp as follows. At
onset, Pe′eff(tc) =O(1/Tp) and tact =O(Tp). Combining Eqs. 10
and 11 and neglecting the effect of the logarithmic term in Eq. 10
(which we expect to have a lesser effect than the algebraic terms)
yields an estimate of Tp =O(ν21 ) at the onset of dynamic QS acti-
vation. For the typical kinetic parameters used in our simulations
(SI Appendix, Table S1), this suggests a critical oscillation period
of approximately 10 h, which is in agreement with our simulation
results for a wide range of oscillating flows (Fig. 4 B and D and
SI Appendix, Fig. S7).

Discussion
This study demonstrates how positive feedback in the LuxIR
system, an archetypal bacterial QS genetic circuit, promotes
a robust population-level response in spatiotemporally varying
flow conditions. Because QS systems measure the concentration
of passively transported AIs, even simple fluid flows generate
concentration gradients which can cause phenotypic gradients
within a population. Our results show that positive feedback
in QS genetic architectures allows bacteria to overcome flow-
induced AI gradients at the population level for a wide range
of conditions that represent flows encountered in bacterial habi-
tats such as lakes, rivers, and hosts (Figs. 1 and 3). The key
physical determinant of the onset of QS activation in a pop-
ulation is the minimum value of the effective Péclet number
Peeff (Eq. 6), which quantifies the local advective to diffusive
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transport at the surface where the population meets the exter-
nal fluid. Furthermore, a systematic reduction of the governing
equations via a thin-film model reveals that for a given Peeff,
the critical population density for the onset of QS activation is
determined by a single dimensionless kinetic parameter group
ω (Eq. 8). A compact relationship between these two param-
eter groups, Eq. 7, links the physical, geometric and kinetic
parameters at the onset of QS activation (Fig. 2). Through their
transparent dependence on these system parameters, Eqs. 6–
8 explain how QS activation is promoted in bacteria with QS
architectures with stronger positive feedback or with smaller AI–
LuxR dissociation constants (48); in conditions of restricted AI
diffusion inside the population, which can be caused by inter-
actions with the extracellular matrix (9) (SI Appendix, Fig. S5);
in larger or denser populations; and in populations subject to
weaker external flow, in agreement with recent experimental
results (25, 26).

The dependence of the critical density on the flow conditions
raises the question of whether bacterial QS systems in fluid flow
respond to increasing cell density, decreasing mass transfer, or a
combination of these factors (37). By calculating the QS activa-
tion conditions for AIs with different sets of physical and kinetic
parameters using Eqs. 6–8, we suggest that a bacterial popula-
tion can integrate information from multiple signals to measure
cell density and shear rate separately (Fig. 2 C and D). Our
results are in qualitative agreement with previous work which
considered a well-mixed population subject to spatially uniform
AI removal by mass transfer and AI decay (37). However, our
results also suggest that in smaller populations subject to exter-
nal flow, the overall decay of AIs may be too small to separate
parameter space into distinct regions; in such populations, phys-
ical differences between AI diffusivities [which could be caused
by different interactions with surrounding matrix proteins (9)]
may provide more information. These results suggest that by
combining multiple AI signals with different physical and kinetic
properties, bacterial populations in complex environments can
add fidelity to measurements of their surrounding conditions
and promote the appropriate phenotypic response to these
conditions.

An individual bacterium committing to a QS-activated pheno-
type can incur significant individual costs, such as the generation
or abandonment of important extracellular material. It is there-
fore often beneficial for such a commitment to be shared by the
rest of the bacterial population (49). As we have shown, posi-
tive feedback promotes a robust, population-scale QS response
if appropriate conditions are met in only a local region of a cell
population. While this feature of positive feedback is very useful
for population-wide commitment, it has the potential downside
of triggering premature QS activation in noisy or intermittent
flow conditions. However, our analysis of the LuxIR system
in dynamic flow conditions suggests that the positive feedback
mechanism actually reduces the potential for such a prema-
ture response because the feedback itself acts as a low-pass
filter at the population level. That is, in a flow oscillating with
period smaller than a critical value that we calculate (but still
slower than the diffusion timescale), a population responds to
the mean effective Péclet number, rather than exhibiting quasi-
steady oscillations in QS activation and inactivation (Fig. 4 and
SI Appendix, Fig. S11). In such conditions, a growing population’s
QS system would be expected to activate eventually through
its increasing density (growth is also associated with an acti-
vation delay time, but for typical parameters it is of the same
order of magnitude as the doubling time; SI Appendix, Fig. S9).
The critical time period depends on the nature of the flow
oscillation and the system parameters through Eq. 10, which
manifests due to a bottleneck induced by an imperfect tran-
scritical bifurcation in the system; such critical slowing down
is a universal feature of dynamical systems near critical points

(45–47). Overall, this result suggests that population-level low-
pass filtering via positive feedback complements other previously
identified sources of noise-filtering, or time-averaging (50), in QS
systems such as slow AI–LuxR unbinding (51) and diffusional
dissipation (52, 53).

Our findings allow us to interpret typical QS network fea-
tures in a manner that accounts for their expected response to
spatiotemporal variations in flow. Our analysis suggests that bac-
terial species with positive feedback in their QS network, such as
P. aeruginosa, use QS as a spatiotemporally nonlocal sensor of
flow conditions and cell density. In these systems, positive feed-
back causes AIs to flood the population if the required conditions
are met in a local region, inducing QS activation in a large pro-
portion of the population. Built into this mechanism is an ability
to avoid premature population-wide activation in unsteady flow
through the delay time that we have identified; the required con-
ditions must persist for long enough for activation to occur. Our
predictions of the effects of flow on AI concentration in species
in which feedback does not link back to AI production, such as
V. cholerae and Vibrio fischeri (39, 54), are shown in Fig. 1C and
SI Appendix, Fig. S8. In these systems, AI concentration is much
less sensitive to cell density and shear rate, and if the required
conditions for QS activation are met in a local region of the
population, this does not cause other regions of the population
to be activated. Furthermore, in unsteady flows, such systems
will exhibit repeated variations in AI concentration, and these
variations will occur over diffusive timescales, which are usually
faster than timescales of flow variation. Therefore, we expect
these species to use QS as a spatiotemporally local sensor of flow
conditions and cell density.

To conclude, we have predicted the required conditions for
the emergence of robust, population-level QS activation in a
spatiotemporally varying fluid flow, for systems that exhibit pos-
itive feedback in their QS network architecture. Our results
suggest that positive feedback allows cells to avoid an isolated
or premature commitment to costly multicellular phenotypes.
Furthermore, we have found that populations can integrate
multiple signals to sense cell density and flow conditions sepa-
rately. Our theory demonstrates how QS genetic architectures
play a key role in determining the population-level functional
response of bacterial intercellular signaling systems in complex
environments.

Materials and Methods
Governing Equations. Inside the cell population, the governing
equations are

∂Ã

∂ t̃
= ∇̃ ·

(
D̃c∇̃Ã

)
+ ρf̃A(Ã, Ĩ, R̃, C̃)− κ̃Ã,

∂ Ĩ

∂ t̃
= f̃I (̃I, C̃),

∂R̃

∂ t̃
= f̃R(Ã, R̃, C̃),

∂C̃

∂ t̃
= f̃C (Ã, R̃, C̃),

[12]

where ρ is the volume fraction of cells, Ã is the concentration of AIs,
Ĩ is the concentration of LuxI, R̃ is the concentration of LuxR, and C̃ is
the concentration of AI–LuxR dimers. The reaction terms in the system
(Fig. 1A) are

f̃A(Ã, Ĩ, R̃, C̃) = q̃ + λ̃̃I− k̃+ÃR̃ + k̃−C̃,

f̃I (̃I, C̃) = µ̃C̃− α̃̃I,

f̃R(Ã, R̃, C̃) = r̃− k̃+ÃR̃ + k̃−C̃− β̃R̃,

f̃C (Ã, R̃, C̃) = k̃+ÃR̃− k̃−C̃− γ̃C̃.

[13]

The meanings and typical orders of magnitude of each dimensional param-
eter are listed in SI Appendix, Table S1. Here we have assumed that the cells
are embedded in extracellular matrix, such that the fluid flow imparts a
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shear stress to the upper boundary of the cell layer. In our simulations here,
this shear stress is below 10 Pa, which is expected to be lower than the yield
stress of a cell population embedded in matrix (16). For simplicity we have
assumed that mRNA concentrations are quasi-steady and have linearized the
activation of LuxI by the AI–LuxR dimers (55) (see SI Appendix, Fig. S2, for
a discussion of how saturation in promoter occupancy of the transcription
factor affects QS activation in flow). We assume that all cells in the popu-
lation have access to nutrients and are physiologically active, so that base
AI production q̃ is uniform throughout the population. This assumption is
based on the observation that hemispherical biofilms with radius around
10 µm remain uniformly growth-active even in shear rates a hundredfold
smaller than the smallest shear rates used here (17) (where a smaller shear
rate implies reduced access to nutrients). This assumption may need to be
relaxed in nutrient-limited conditions (SI Appendix, Fig. S10). Note also
that we do not consider the basal expression of LuxI, which is expected
to be small (56), because its only effect is to slightly change the concen-
tration of AIs before activation. Outside the cell population, the governing
equations are

∇̃ · ũ = 0,
∂ũ

∂ t̃
+ ũ · ∇̃ũ =−

1

ρw
∇̃p̃ + ν∇̃2ũ, [14]

∂Ã

∂ t̃
= ∇̃ ·

(
D̃e∇̃Ã− ũÃ

)
− κ̃Ã, [15]

where ũ is the velocity field of the fluid and ρw and ν are the fluid density
and kinematic viscosity, respectively, which we take to be those of water.
We assume that the flow is free of AIs far upstream and apply continuity
of AI concentration and concentration flux at the interface between the
cell population and the flow. Full technical details of the boundary con-
ditions, the nondimensionalization of the problem, and the procedures for
the asymptotic and numerical solution of the governing equations are given
in SI Appendix.

Nondimensional Parameters. The nondimensional parameters, defined in
terms of the dimensional parameters in Eqs. 12 and 13, are

q =
q̃H̃2

Ã0D̃c
, r =

r̃H̃2

Ã0D̃c
, λ=

λ̃H̃2

D̃c
,

µ=
µ̃H̃2

D̃c
, k+ =

k̃+Ã0H̃2

D̃c
, k− =

k̃−H̃2

D̃c
,

α=
α̃H̃2

D̃c
, β=

β̃H̃2

D̃c
, γ=

γ̃H̃2

D̃c
,

κ=
κ̃H̃2

D̃c
, Re =

γ̇H2

ν
, D =

D̃e

D̃c

[16]

where H̃ is the height of the cell population and Ã0 is the threshold
concentration of AIs for QS activation. For a compact representation of
the time-dependent results, these parameters can be combined into the
parameter groups

ν1 =

√
2I2ξ

cosω
, ν2 =

I2ξK2 cos2 ω

ρ2
c qrI1I3Λ

,

ξ= 1 +
rρcΛ

K

(
1

α
+

1

γ+ k−

)
,

[17]

where

I1 =
sinω

ω
, I2 =

1

2
+

sin 2ω

4ω
, I3 =

sinω

ω
−

sin3 ω

3ω
, [18]

and ω is defined in Eq. 8.

Data Availability. All data related to this paper are within the main text and
SI Appendix. All code required to generate the simulation results is available
on GitHub at https://github.com/philip-pearce/quorum-flow.
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