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Abstract: The aim of this work is to efficiently and robustly solve the statistical inverse problem
related to the identification of the elastic properties at both macroscopic and mesoscopic scales
of heterogeneous anisotropic materials with a complex microstructure that usually cannot be
properly described in terms of their mechanical constituents at microscale. Within the context
of linear elasticity theory, the apparent elasticity tensor field at a given mesoscale is modeled
by a prior non-Gaussian tensor-valued random field. A general methodology using multiscale
displacement field measurements simultaneously made at both macroscale and mesoscale has been
recently proposed for the identification the hyperparameters of such a prior stochastic model by
solving a multiscale statistical inverse problem using a stochastic computational model and some
information from displacement fields at both macroscale and mesoscale. This paper contributes
to the improvement of the computational efficiency, accuracy and robustness of such a method
by introducing (i) a mesoscopic numerical indicator related to the spatial correlation length(s) of
kinematic fields, allowing the time-consuming global optimization algorithm (genetic algorithm)
used in a previous work to be replaced with a more efficient algorithm and (ii) an ad hoc stochastic
representation of the hyperparameters involved in the prior stochastic model in order to enhance both
the robustness and the precision of the statistical inverse identification method. Finally, the proposed
improved method is first validated on in silico materials within the framework of 2D plane stress
and 3D linear elasticity (using multiscale simulated data obtained through numerical computations)
and then exemplified on a real heterogeneous biological material (beef cortical bone) within the
framework of 2D plane stress linear elasticity (using multiscale experimental data obtained through
mechanical testing monitored by digital image correlation).

Keywords: multiscale; mesoscale; statistical inverse problem; random heterogeneous materials;
random elasticity field; stochastic modeling
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1. Introduction

Within the framework of linear elasticity theory, the numerical modeling and simulation of
heterogeneous materials with hierarchical complex random microstructure give rise to many scientific
challenges. Their modeling is a topical issue with numerous applications in diverse material sciences,
including for instance sedimentary rocks, natural composites, fiber- or nano-reinforced composites,
some concretes and cementitious materials, some porous media, some living biological tissues,
among many others [1]. Although such materials are often considered and modeled as deterministic
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and homogeneous elastic media at macroscale in most practical applications, they are not only
random and heterogeneous at microscale but they also usually cannot be explicitly described by
any local morphological and mechanical properties of their constituents and easily reconstructed in a
computational framework in the presence of multiple interfaces. The modeling and identification of
their elastic properties at meso- or microscales have been the subject of many research works in recent
decades. Nowadays, with the recent developments achieved around the construction of stochastic
models for tensor-valued random elasticity fields and their experimental inverse identification using
field imaging techniques, one of the most promising ways consists in introducing a prior stochastic
model of the apparent elasticity tensor field of heterogeneous materials of the considered microstructure
at a given mesoscale. Note that this mesoscopic scale allows the introduction of the spatial correlation
length(s) of the microstructure, and that for materials with a hierarchical structure, such as cortical
bone or tendon, different mesoscopic scales can be defined. Such a mesoscopic stochastic modeling of
random heterogeneous elastic media can further be used to characterize the macroscopic mechanical
properties in the context of the stochastic homogenization over a representative volume element
(RVE) subdomain. This representative volume element should be, provided that it exists, sufficiently
large compared to the microscale and sufficiently small compared to the macroscale. In the present
probabilistic context, a major question concerns the statistical inverse identification of a prior stochastic
model parameterized by a small or moderate number of hyperparameters using only partial and
limited experimental data.

1.1. Overview of Inverse Methods for the Mechanical Characterization of Micro/Meso-Structural Properties

The inverse methods for the experimental identification of elastic properties of homogeneous or
heterogeneous materials at macroscale and/or mesoscale have been the subject of numerous research
works over the three past decades. The first methods related to the experimental characterization
and description of random microstructural morphologies by using image analysis techniques have
been introduced and developed by the end of the 1980s [2–6] for the numerical modeling and
simulation of random microstructures made up with heterogeneous materials. Since the early 1990s,
significant technological advances in the field of optical measuring instruments, such as digital cameras
equipped with Charge-Coupled Device (CCD) or Complementary MetalOxideSemiconductor (CMOS)
image sensors and microscope objectives, have widely contributed to the emergence of imaging
techniques such as two-dimensional (2D) or three-dimensional (3D) digital image correlation (DIC)
for identification purposes. DIC techniques [7–9] are now commonly used in solid mechanics and
material sciences for experimental measurements of elastic displacement fields of samples under
external loading [10–16] in order to identify mechanical properties of complex microstructures
for heterogeneous materials [13,17–24] with different classes of material symmetries. The recent
milestones achieved around data acquisition systems and processing softwares for 3D images
obtained for example by X-ray computed microtomography (µCT) [25–30], magnetic resonance
imaging (MRI) [31–34], optical coherence tomography (OCT) [35–39] or any other non-invasive and
non-destructive testing technique for the reconstruction of 3D images in high resolution, have allowed
the development of three-dimensional measurements of displacement fields by digital volume
correlation (DVC) [9,15,40–50]. Such 3D full-field measurements offer the potential of identifying
stochastic models of 3D tensor-valued random elasticity fields at different scales for the mechanical
characterization of 3D real microstructures made up of heterogeneous materials.

In the mid 2000s, many research works have been carried out on the statistical inverse
identification of stochastic models of the tensor-valued random elasticity field in low or high stochastic
dimension at macroscopic and/or mesoscopic scale for complex microstructures modeled by random
heterogeneous isotropic or anisotropic linear elastic media [51–66]. The proposed methodologies for
solving the statistical inverse problem related to the identification of a non-Gaussian tensor-valued
random field in high stochastic dimension using available, partial and limited experimental
data are mostly based on (i) the mathematical formulations of functional analysis for stochastic
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boundary value problems, (ii) the statistical tools derived from probability theory, information theory,
mathematical statistics and stochastic optimization, such as the least-squares (LS) method [67,68], the
maximum likelihood estimation (MLE) method [68–71], the maximum entropy (MaxEnt) principle
[68,72–78], the nonparametric statistics [69,79], the Bayesian inference method [68,80–86], the statistical
and computational inverse problems and related stochastic optimization algorithms [71,87–93],
(iii) advanced functional representation techniques and probabilistic methods, such as the
Karhunen-Loève (KL) decomposition [94–96] to construct reduced-order stochastic models, the
polynomial chaos (PC) expansion [97–101] for an adapted high-dimensional stochastic representation of
non-Gaussian second-order random fields, (iv) the spectral methods [97,102–105] and sampling-based
approaches [106–108] for solving stochastic boundary value problems, and (v) the stochastic
homogenization methods [1,5,6,109–132] to bridge the meso- or microscopic scale and the macroscopic
scale. Combining such advanced probabilistic and statistical methods has led to early fundamental
works on the statistical inverse identification of non-Gaussian scalar- or tensor-valued random fields
in low or high stochastic dimension based on partial and limited experimental data. These works have
mainly been devoted to the statistical inverse identification of hyperparameters of prior stochastic
models in low stochastic dimension, such as a mean field, a dispersion coefficient and some spatial
correlation length(s) or the deterministic coefficients of a polynomial chaos expansion of the random
field [51–53,55–64,133–135]. To date, the latest and more advanced works focus on the inverse
identification of posterior stochastic models, that are high-dimensional stochastic representations
of prior stochastic models for non-Gaussian scalar- or tensor-valued random fields [65,66,135–139].

1.2. Multiscale Statistical Identification Method

In keeping with the aforementioned works, an innovative methodology has been recently
proposed in Reference [140] for the multiscale statistical inverse identification of a prior stochastic
model of the random apparent elasticity field at mesoscale for a heterogeneous anisotropic elastic
microstructure. This multiscale identification procedure has been formulated within the framework of
3D linear elasticity theory under the following assumptions: (i) at macroscale, the elasticity tensor is
deterministic and homogeneous and therefore independent of the spatial coordinates; (ii) at a given
mesoscale, the tensor-valued random elasticity field is the restriction to a mesoscopic subdomain of a
statistically homogeneous random field indexed by R3, allowing to be consistent with the assumption
for the existence of a representative volume element in the framework of stochastic homogenization
[68,128].

The proposed method allows for the multiscale inverse identification of (i) the tensor-valued
random field that models the apparent elasticity tensor field at a given mesoscale, and (ii) the
effective elasticity tensor at macroscale, for a heterogeneous anisotropic elastic material with
a random microstructure whose morphological and mechanical properties cannot be properly
described and reconstructed in a computational framework from the local topology and mechanical
behavior of its constitutive phases. The prior stochastic model of the random elasticity field is
constructed by using the MaxEnt principle [68,72–78], initially derived within the general framework
of information theory [141–143]. We then obtain a second-order mean-square continuous non-Gaussian
positive-definite symmetric real matrix-valued random field. In addition, an explicit algebraic
representation has been established in Reference [144]. Such a prior stochastic model of random
elasticity field has been used, in particular, for stochastic boundary value problems, such as static linear
elasticity problems [68,128,144]. It is classically parameterized by a small or moderate number of scalar-,
vector- and/or tensor-valued hyperparameters, namely the mean function of the random elasticity
field, a dispersion coefficient controlling the level of statistical fluctuations of the random elasticity
field around its mean function and spatial correlation lengths characterizing the spatial correlation
structure of the random elasticity field. The statistical inverse problem for the identification of this
prior stochastic model is formulated as a multi-objective optimization problem for which the optimal
parameters are the optimal values of the hyperparameters of the stochastic model. However, within the
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framework of this identification methodology, it can be shown that the mean function of the random
elasticity field cannot directly be identified using only the available experimental kinematic field
measurements at mesoscale. The experimental values of the stress fields associated with the kinematic
fields observed experimentally at mesoscale should also be known, but these values are not available
in practice. Conversely, it can also be shown that the other hyperparameters (dispersion coefficient and
spatial correlation lengths) controlling the statistical fluctuations of the random elasticity field cannot
directly be identified using only the available experimental kinematic field measurements at macroscale.
Consequently, such a statistical inverse identification procedure requires multiscale experimental
field measurements that must be made simultaneously at both macroscopic and mesoscopic scales,
since by assumption only a single specimen submitted to a given external loading at macroscale is
experimentally tested. A stochastic homogenization method is then used to propagate the uncertainties
at mesoscale towards the macroscale under the classical assumption of scale separation between
macroscale and mesoscale, so that a sufficiently large mesoscopic subdomain can be defined within the
macroscopic domain and considered as a representative volume element. However, it should be noted
that it is not necessary for this representative volume element to be the same size as the mesoscopic
domain(s) of observation on which the experimental measurements are performed. Thus, the multiscale
statistical inverse problem is formulated as a multi-objective optimization problem that consists in
minimizing a (vector-valued) multi-objective cost function defined by three numerical indicators
corresponding to single-objective cost functions [140], namely (i) a macroscopic numerical indicator
allowing the distance between the measured experimental fields and the computed numerical fields to
be quantified at macroscale, (ii) a mesoscopic numerical indicator allowing the distance between the
statistical fluctuations exhibited by the measured experimental fields and the ones exhibited by the
computed numerical fields to be quantified at mesoscale, and (iii) a multiscale numerical indicator
allowing the distance between the elasticity tensor at macroscale and the effective elasticity tensor
constructed by computational stochastic homogenization of the random apparent elasticity field in a
representative volume element at mesoscale.

1.3. Drawbacks and Limitations of the Multiscale Identification Method

The multiscale identification method proposed in Reference [140] has been first validated
by numerical simulations on in silico materials and then successfully applied to the experimental
characterization of the elastic properties of a biological tissue (beef cortical bone) within the framework
of 2D plane stress linear elasticity from multiscale optical measurements of displacement fields
performed at both macroscopic and mesoscopic scales on a single cortical bone specimen under
static external loading at macroscale [145]. Nevertheless, the proposed identification method has
some drawbacks that limit its use. First, it should be noted that the cost functions introduced for the
multi-objective optimization problem are not dedicated to a particular hyperparameter of the prior
stochastic model of the random field to be identified. Therefore, the only approach considered for
solving the multi-objective optimization problem was to use a global optimization algorithm (genetic
algorithm) that belongs to the class of random search, genetic and evolutionary algorithms [146–156]
to randomly explore the admissible set of hyperparameters. Despite a suitable parameterization
(population size at each new generation, random generation of initial population, selection procedure
for reproduction including crossover and mutation operators, elite count, stopping criteria, etc.) of
the genetic algorithm used in Reference [140] and the use of parallel processing and computing,
the computational cost for solving the multi-objective optimization problem is high. This is due in
particular to the large stochastic dimension of the tensor-valued random elasticity field. Secondly,
during the validation and implementation of the multiscale identification method proposed in
Reference [140], it was found that, for different mesoscopic domains of observation within the same
macroscopic domain, the resolution of the multi-objective optimization problem led to different optimal
values of hyperparameters from one domain to another. Indeed, the experimental field measurements
over each mesoscopic domain of observation can be modeled as different random fields, and therefore
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the multi-objective cost function on each mesoscopic domain of observation is a deterministic function
of these random fields. This explains why the statistics of the multi-objective cost function are different
from one mesoscopic domain of observation to another. In Reference [140], the multi-objective cost
function has been replaced by the statistical average of the multi-objective cost functions calculated
over each of the mesoscopic domains of observation.

1.4. Improvements of the Multiscale Identification Method and Novelty of the Paper

In order to overcome the issues outlined above, this research work aims to present two major
improvements of the methodology initially proposed in Reference [140] allowing the statistical
inverse identification of the tensor-valued random elasticity field at mesoscale to be performed
with a better computational efficiency, higher accuracy and improved robustness. First, we introduce
an additional mesoscopic numerical indicator allowing the distance between the spatial correlation
length(s) of the measured experimental kinematic fields and the one(s) of the computed numerical
kinematic fields to be quantified at mesoscale, so that each hyperparameter of the prior stochastic
model has its own dedicated single-objective cost function, thus allowing the time-consuming global
optimization algorithm (genetic algorithm) used in Reference [140] to be avoided and replaced with
a more efficient algorithm, such as a fixed-point iterative algorithm, for solving the underlying
multi-objective optimization problem. Secondly, in the case where experimental field measurements
are available on several mesoscopic domains of observation, we propose to not replace “naively” the
multi-objective cost function by its empirical mean over all the mesoscopic domains of observation,
but to consider a multi-objective optimization problem for each mesoscopic domain of observation.
Thus, each mesoscopic domain of observation leads to a possible solution of the values of the
hyperparameters. Each of these values is then considered as a realization of a random vector
of hyperparameters whose prior stochastic model is constructed by using the MaxEnt principle,
and whose hyperparameters can be determined by using the MLE method, in order to improve both
the robustness and the accuracy of the inverse identification method of the prior stochastic model.

1.5. Outline of the Paper

The paper is organized as follows. Following this introduction, Section 2 presents the general
assumptions for solving the underlying multiscale statistical inverse problem. Then, Section 3
is dedicated to the description of the multiscale experimental test configuration for obtaining
experimental data at both macroscale and mesoscale. Section 4 describes the prior stochastic model of
the fourth-order tensor-valued random elasticity field and its parameterization. Section 5 focuses on the
objectives of the multiscale statistical inverse problem and the multiscale identification strategy. Next,
Section 6 presents the construction of the macroscopic, mesoscopic and multiscale numerical indicators
that are used for solving the multiscale statistical inverse problem as a multi-objective optimization
problem. In this section, a focus is made on the improvements proposed by this paper in the definition
of these numerical indicators with respect to the previous work presented in Reference [140]. The
multi-objective optimization problem is then set in Section 7 and some numerical methods for solving
such a multi-objective problem are presented in Section 8. Section 9 discusses an improvement
proposed in this paper for a robust identification when some experimental field measurements are
available on several mesoscopic domains of observation. Section 10 presents a numerical validation of
the proposed multiscale identification methodology on in silico test specimens within the framework
of 3D linear elasticity under 2D plane stress assumption and in the general 3D case, for which
the multiscale experimental data have been numerically simulated. Finally, Section 11 presents an
experimental application to a real heterogeneous biological material constituted of beef cortical bone
within the framework of linear elasticity under 2D plane stress assumption, for which the multiscale
experimental data have been obtained from a single static uniaxial compression test performed on
a specimen of beef femoral cortical bone and monitored by 2D digital image correlation at both
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macroscale and mesoscale. Lastly, Section 12 gives some conclusions and potential perspectives of
this work.

2. Assumptions for Solving the Multiscale Statistical Inverse Problem

In the present work, we address the statistical inverse identification of the elastic properties
for a complex microstructure made up of a heterogeneous anisotropic material and considered as
a random linear elastic medium. In this section, we first state suitable assumptions for solving this
multiscale statistical inverse problem. Within the framework of linear elasticity theory, probability
theory and computational stochastic homogenization in micromechanics and multiscale mechanics
of heterogeneous materials, the following assumptions related to scale separation, stationarity and
ergodicity properties are introduced:

• there exists a scale separation between macroscale and mesoscale, so that a mesoscopic subdomain
can be defined and for which the dimensions are sufficiently large with respect to the size of the
heterogeneities and sufficiently small with respect to the size of the macroscopic domain. Such a
mesoscopic subdomain can then be considered as a representative volume element;

• the random apparent elasticity tensor field at mesoscale is the restriction to one or more
bounded mesoscopic subdomain(s) of a second-order stationary random field indexed by R3,
and consequently the mean function of the random elasticity field at mesoscale is independent of
the spatial coordinates;

• the random apparent elasticity tensor field at mesoscale is ergodic in average in the mean-square
sense, so that the homogenized elasticity tensor at macroscale calculated by stochastic
homogenization of the random apparent elasticity field in a mesoscopic subdomain corresponding
to a representative volume element can be considered as almost deterministic, in the sense that
(i) its spatial average reaches an asymptotic convergence with a very high level of probability
for a sufficiently large mesoscopic subdomain size, and therefore (ii) its level of statistical
fluctuations around its mean function at macroscale can be considered as negligible, thus yielding
a deterministic homogenized elasticity tensor at macroscale.

In this work, we focus on the class of heterogeneous materials that can be considered as random
elastic media and for which the hypothesis stated on the scale separation between macroscale and
mesoscale is verified. It should be noted that, if such a scale separation assumption was not satisfied,
then the multiscale statistical inverse problem under consideration would be an ill-posed problem
if only a single experimental field measurement at macroscale was available, because in this case
the macroscopic elasticity (or compliance) tensor must be modeled by a random tensor and a single
experimental measurement is not sufficient to identify its stochastic model. The proposed identification
methodology is therefore not adapted to this case and would require several experimental field
measurements at macroscale as well as modifications of the macroscopic and multiscale indicators
introduced in Section 6, and also the introduction of additional numerical indicators at macroscale.
Hereinafter, since the present identification methodology is developed within the framework of linear
elasticity theory, we will use the terminology “strain field” to make reference to the “linearized strain
field” for the sake of conciseness.

3. Multiscale Experimental Test Configuration

The difficulties related to the acquisition of the experimental measurements for the inverse
identification procedure to be carried out are induced not only by the complex nature of the
heterogeneous anisotropic elastic microstructure but also by the need to obtain multiscale kinematic
field measurements at two different scales (macroscale and mesoscale) for a single test specimen under
given static loading conditions through a multiscale DIC performed simultaneously at both macroscale
and mesoscale. To overcome such difficulties, a suitable experimental protocol, including the
preparation of the test specimen, the development of a measuring bench, the acquisition system
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of digital images and the DIC method, has been set up in Reference [145] for the acquisition of 2D
multiscale optical measurements of displacement fields performed at both macroscale and mesoscale
on a single beef cortical bone specimen submitted to a static vertical uniaxial compression test. Such a
living biological tissue with a complex hierarchical microstructure is of particular interest in the present
context of multiscale modeling and identification for random heterogeneous materials. The multiscale
experimental test configuration is briefly recalled here. A sketch of the multiscale experimental
configuration of the specimen at macroscale and mesoscale is represented in Figure 1.

f macro

Ωmacro
exp

Γmacro
N

Γmacro
D

∂Ωmacro
exp

umacro
exp

Ωmeso
exp,q

∂Ωmeso
exp,q

umeso
exp,q

Figure 1. Multiscale experimental configuration: displacement field umacro
exp measured in the

macroscopic domain of observation Ωmacro
exp and displacement field umeso

exp,q measured in each mesoscopic
domain of observation Ωmeso

exp,q, for q = 1, . . . , Q.

The test specimen has a cubic shape and is submitted to a simple external load. On the upper
side of the specimen, a surface force field is applied, while the opposite side of the specimen is
clamped. Then, during the same and unique experimental loading, the displacement fields at both
macroscale and mesoscale are simultaneously measured, for instance in using two optical digital
cameras equipped with CCD imaging sensors with different spatial resolutions for the simultaneous
acquisition of displacement field optical measurements at both macroscopic and mesoscopic scales.
The measurements are performed on the domain Ωmacro

exp at macroscale and on the domain Ωmeso
exp

at mesoscale that are 2D or 3D parts of the specimen at macroscale and mesoscale, respectively.
These domains can be 3D in the case of microtomography techniques for the acquisition of 3D
experimental data, or they can be 2D in the case of digital camera techniques for the acquisition of 2D
experimental data. Note that in case the dimensions of the mesoscopic domain of observation Ωmeso

exp are
very small with respect to the dimensions of the macroscopic domain of observation Ωmacro

exp , then more
information can be used by collecting additional experimental field measurements at mesoscale
on Q non-overlapping mesoscopic domains of observation Ωmeso

exp,1, . . . , Ωmeso
exp,Q for which the relative

mutual locations into the test specimen are not necessarily recorded. The experimental database is
then constituted of the vector-valued experimental displacement fields umacro

exp and umeso
exp,1, . . . , umeso

exp,Q,
respectively, at macroscale on Ωmacro

exp and at mesoscale on Ωmeso
exp,1, . . . , Ωmeso

exp,Q. The experimental
tensor-valued strain fields εmacro

exp and εmeso
exp,1, . . . , εmeso

exp,Q, respectively associated to the experimental
displacement fields umacro

exp and umeso
exp,1, . . . , umeso

exp,Q, can be calculated by post-processing through
interpolation techniques.
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4. Prior Multiscale Stochastic Model and Its Hyperparameters

At the macroscale, the specimen under test is modeled as a deterministic homogeneous linear
elastic medium for which the effective mechanical properties are represented by a deterministic
model of the fourth-order elasticity tensor Cmacro(a) that is independent of spatial position x and
parameterized by a vector a belonging to an admissible set Amacro. The vector-valued parameter
a is constituted of the algebraically independent coefficients spanning the macroscopic elasticity
tensor Cmacro(a) having a given symmetry class induced by linear elastic material symmetries.
At the mesoscale, the specimen under test is modeled as a random heterogeneous linear elastic
medium for which the apparent mechanical properties are represented by a prior stochastic model
of the fourth-order tensor-valued random elasticity field. In Reference [144], the ensemble SFE+ of
non-Gaussian second-order stationary random fields has been introduced and constructed in using
the theory of information, the MaxEnt principle and the theory of random matrices. Such a family
of tensor-valued random fields is completely parameterized by the values of their mean function, a
dispersion coefficient usually denoted as δ, and d n(n + 1)/2 = (d3(d + 1)2 + 2 d2(d + 1))/8 = 63
possibly different spatial correlation lengths, with d = 3 and n = d(d + 1)/2 = 6 in 3D linear elasticity
(see References [128,144] for a definition of the spatial correlation lengths of a random field). All these
parameters are independent of the spatial position x since every tensor-valued random field in SFE+ is
second-order stationary on R3 by construction. In addition, the dispersion coefficient δ introduced in
Reference [144] is such that

0 6 δ < δsup, with δsup =
√
(n + 1)/(n + 5) =

√
7/11 ≈ 0.7977 < 1, (1)

where n = d(d + 1)/2 = 6 with d = 3 in 3D linear elasticity. Hence, any tensor-valued random
field in SFE+ has no statistical fluctuations when δ = 0 and consequently its values are almost surely
(a.s.) equal to its mean function. In addition, the level of statistical fluctuations of any tensor-valued
random field in SFE+ increases with the value of δ. Consequently, the highest statistical fluctuations
are obtained when δ = δsup. Ensemble SFE+ has been especially constructed in Reference [144] for
offering a prior stochastic model that can be used for modeling the tensor-valued apparent elasticity
(or compliance) fields at mesoscale. Consequently, in this paper, we will use the same approach and the
prior stochastic model of the elasticity tensor field Cmeso (resp. the compliance tensor field Smeso) will
be defined as the restriction to a given bounded subdomain in R3 of a random tensor field belonging
to SFE+ and indexed by R3. The prior stochastic model of Cmeso or Smeso can then be deduced from
each other by inverse of each other. In this work, we will only consider the special case for which
the spatial correlation structure of Cmeso (resp. Smeso) is defined by only 3 (instead of 63) different
values `1, `2, `3 for the spatial correlation lengths and consequently some of the 63 spatial correlation
lengths are mutually equal to each other. Furthermore, the mean function of Cmeso (resp. Smeso) can
be represented by a set of nsym 6 n(n + 1)/2 parameters h1, . . . , hnsym that might have or not physical
meaning in mechanical engineering such as Young’s moduli, Poisson’s ratios, bulk and shear moduli,
and so forth (see for instance Section 10). Finally, the hyperparameters of the prior stochastic model
of Cmeso (resp. Smeso) are δ, `1, `2, `3 and h1, . . . , hnsym that can be gathered into the vector-valued
hyperparameter b = (δ, `, h) in which ` = (`1, `2, `3) and h = (h1, . . . , hnsym). Hereinafter, the set of
all the admissible values of vector h is denoted byHmeso and the admissible set of vector b is denoted
by Bmeso.

5. Objectives and Strategy for Solving the Multiscale Statistical Inverse Problem

5.1. Objectives of the Multiscale Statistical Inverse Problem

The deterministic model of Cmacro(a) at macroscale and the prior stochastic model of Cmeso(b)
at mesoscale have to be identified by calculating the optimal values amacro and bmeso of the
vector-valued parameter a ∈ Amacro and the vector-valued hyperparameter b ∈ Bmeso, respectively,
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according to the experimental kinematic field measurements available at both macroscale and
mesoscale. While the vector-valued parameter a can completely be identified by solving a usual
deterministic inverse problem using only the available experimental field measurements at macroscale,
the vector-valued hyperparameter b = (δ, `, h) cannot directly be identified by solving a statistical
inverse problem using only the available experimental field measurements at mesoscale. More precisely,
the dispersion parameter δ and the vector of spatial correlation lengths ` require only experimental
field measurements at mesoscale to be identified, whereas the vector h requires additional experimental
field measurements at macroscale to be identified. Indeed, the hyperparameters δ and ` controlling
respectively the level of statistical fluctuations and the spatial correlation structure of the random
elasticity field require experimental field measurements with a sufficiently fine spatial resolution
to be identified, while the hyperparameters h representing the mean elasticity field would require
the experimental values of the stress fields associated with the kinematic (displacement or strain)
fields observed experimentally at mesoscale to be identified, but these values are not available in
practice. The complete statistical information on random field Cmeso(b) must then be transferred to
the macroscale in order to identify its mean function Cmeso using the available experimental field
measurements at macroscale. A natural choice for such a transfer of information consists in computing
the effective elasticity tensor Ceff(b) by a computational stochastic homogenization method and in
comparing it with the previously identified elasticity tensor Cmacro(a). Thus, unlike the vector-valued
parameter a, the vector-valued hyperparameter b requires multiscale experimental field measurements
(at macroscale and mesoscale) to be completely identified, thus leading to a challenging multiscale
statistical inverse problem to be solved. Since by assumption only a single specimen is experimentally
tested under a given static external loading applied at macroscale, the experimental field measurements
must be performed simultaneously at both macroscale and mesoscale on the single test specimen,
but they do not need to be performed on the whole domain of the specimen.

5.2. Strategy for Solving the Multiscale Statistical Inverse Problem

Due to the major difficulties stated above and induced by the complexity of the challenging
multiscale statistical inverse problem to be solved, a first complete methodology concerning such
a multiscale identification has been recently proposed in Reference [140], in which a multiscale
statistical inverse identification strategy is introduced and developed for an elastic microstructure
with heterogeneous anisotropic statistical fluctuations within the framework of 3D linear elasticity
theory. The proposed strategy allows for the identification of (i) the optimal value amacro of
vector-valued parameter a, and (ii) the optimal value bmeso of vector-valued hyperparameter b,
by using the experimental displacement field measurements at both macroscale and mesoscale. The
multiscale experimental identification methodology originally developed in Reference [140] consists in
introducing and constructing three different numerical indicators allowing the multiscale statistical
inverse problem to be formulated as a multi-objective optimization problem. In the present work, we
develop an improved multiscale experimental identification methodology involving four numerical
indicators that are sensitive to the variation of the parameters and hyperparameters to be identified,
which are:

1. A macroscopic numerical indicator J macro(a), dedicated to the identification of parameter a,
that allows for quantifying the distance between the experimental strain field εmacro

exp associated to
the experimental displacement field umacro

exp measured at macroscale in the macroscopic domain
Ωmacro

exp and the strain field εmacro(a) associated to the displacement field umacro(a) computed from
a deterministic homogeneous linear elasticity boundary value problem (with both Dirichlet and
Neumann boundary conditions) that models the experimental test configuration at macroscale
and involves the unknown deterministic elasticity tensor Cmacro(a);

2. A mesoscopic numerical indicator J meso
δ (b), dedicated to the identification of hyperparameter δ,

that allows for quantifying the distance between a pseudo-dispersion coefficient δε
exp modeling the

level of spatial fluctuations of the experimental strain field εmeso
exp associated to the experimental
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displacement field umeso
exp measured at mesoscale in a mesoscopic domain of observation Ωmeso

exp ,
and a random pseudo-dispersion coefficient DE (b) representing the level of statistical fluctuations
of the random strain field Emeso(b) associated to the random displacement field Umeso(b)
computed from a stochastic heterogeneous linear elasticity boundary value problem (with only
Dirichlet boundary conditions) that models the experimental test configuration at mesoscale
and involves the random elasticity tensor field Cmeso(b) with an unknown level of statistical
fluctuations δ that must be identified;

3. Another mesoscopic numerical indicator J meso
` (b), dedicated to the identification of

hyperparameter ` = (`1, `2, `3), that allows for quantifying the distance between the 3 different
pseudo-spatial correlation lengths `ε

exp,1, `ε
exp,2, `ε

exp,3 of the experimental strain field εmeso
exp in each

spatial direction, measured at mesoscale in a mesoscopic domain of observation Ωmeso
exp , and the 3

pseudo-spatial correlation lengths LE
1 (b), LE

2 (b), LE
3 (b) of the random strain field Emeso(b) in each

spatial direction, computed from the same mesoscopic stochastic boundary value problem as for
J meso

δ (b) for which the random elasticity tensor field Cmeso(b) has a spatial correlation structure
induced and characterized by an unknown vector of spatial correlation lengths ` = (`1, `2, `3)

that must be identified;
4. A multiscale numerical indicator J multi

h (a, b), dedicated to the identification of hyperparameter h,
that allows for quantifying the distance between the homogeneous deterministic elasticity tensor
Cmacro(a) at macroscale and the effective elasticity tensor Ceff(b) resulting from a computational
stochastic homogenization in a representative volume element ΩRVE at mesoscale of the random
elasticity tensor field Cmeso(b) whose mean function Cmeso is unknown and must be identify.

The multiscale statistical inverse problem then consists in identifying the optimal values amacro

and bmeso of the parameters a in Amacro and hyperparameters b in Bmeso, respectively, by solving a
multi-objective optimization problem that consists in minimizing the (vector-valued) multi-objective
cost function J (a, b) =

(
J macro(a),J meso

δ (b),J meso
` (b),J multi

h (a, b)
)

involving the four
aforementioned numerical indicators. However, for further computational savings, the multi-objective
optimization problem can be decomposed into (i) a single-objective optimization problem that consists
in minimizing J macro(a) for identifying the optimal vector-valued parameter amacro using only the
experimental field measurements at macroscale, and (ii) a multi-objective optimization problem
that consists in minimizing J meso(b) =

(
J meso

δ (b),J meso
` (b),J multi

h (amacro, b)
)

for identifying the
optimal vector-valued hyperparameter bmeso using the experimental field measurements at mesoscale
and exploiting the optimal vector-valued parameter amacro previously identified at step (i).

6. Construction of the Numerical Indicators for Solving the Multiscale Statistical Inverse Problem

In this section, the construction of the macroscopic, mesoscopic and multiscale numerical
indicators for solving the multiscale statistical inverse problem is presented.

6.1. Deterministic Macroscopic Boundary Value Problem for the Macroscopic Indicator

At macroscale, the deterministic boundary value problem modeling the experimental test
configuration described in Section 3 is written over an open bounded domain Ωmacro ⊂ R3 with
macroscopic dimensions of the specimen. The experimental domain of observation Ωmacro

exp is simulated
as one given 2D or 3D part Ωmacro

obs of Ωmacro. The boundary ∂Ωmacro of Ωmacro consists of two
disjoint and complementary parts Γmacro

N , on which Neumann boundary conditions are applied,
and Γmacro

D , on which Dirichlet boundary conditions are applied, such that ∂Ωmacro = Γmacro
N ∪ Γmacro

D
and Γmacro

N ∩ Γmacro
D = ∅, with |Γmacro

D | 6= 0, where |Γmacro
D | denotes the 2D measure of Γmacro

D . A given
deterministic surface force field f macro is applied on Γmacro

N , while homogeneous Dirichlet conditions
are applied on Γmacro

D , so that there is no rigid body motion during the test. Within the context of
linear elasticity theory, the deterministic boundary value problem at macroscale consists in finding the
vector-valued displacement field umacro and the associated tensor-valued Cauchy stress field σmacro
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satisfying the following equilibrium equations, stress-strain constitutive equation and Neumann and
Dirichlet boundary conditions

−div(σmacro) = 0 in Ωmacro, (2)

σmacro = Cmacro(a) : εmacro in Ωmacro, (3)

σmacro · nmacro = f macro on Γmacro
N , (4)

umacro = 0 on Γmacro
D , (5)

in which div denotes the divergence operator of a second-order tensor-valued field with respect to x,
the colon symbol : denotes the classical twice contracted tensor product, nmacro is the unit normal vector
to ∂Ωmacro pointing outward Ωmacro and εmacro is the classical tensor-valued strain field associated to
displacement field umacro and defined by

εmacro = ε(umacro) =
1
2

(
∇ umacro + (∇ umacro)T

)
, (6)

in which ε denotes the deterministic linear operator mapping the displacement field to the
corresponding linearized strain field, the superscript T denotes the transpose operator and ∇ denotes
the gradient operator of a vector-valued field with respect to x. Recall that, as the material is assumed
to be deterministic and homogeneous at macroscale, the unknown fourth-order deterministic elasticity
tensor Cmacro(a) involved in constitutive Equation (3) is independent of x and parameterized by a
parameter a belonging to an admissible set Amacro depending on the considered material symmetry
class. A sketch of the deterministic boundary value problem at macroscale is represented in Figure 2a.

f macro

Ωmacro

Γmacro
N

Γmacro
D

∂Ωmacro

Cmacro(a)

umacro(a)

(a)

f macro

Ωmacro

Γmacro
N

Γmacro
D

∂Ωmacro

Cmacro(a)

umacro(a)

umeso
exp

Ωmeso

∂Ωmeso

Cmeso(b)

Umeso(b)

(b)
Figure 2. Boundary value problems at (a) macroscale and (b) mesoscale. (a) Deterministic boundary
value problem characterized by deterministic elasticity tensor Cmacro(a) at macroscale: deterministic
displacement field umacro(a) computed at macroscale in Ωmacro; (b) Stochastic boundary value problem
characterized by random elasticity tensor field Cmeso(b) at mesoscale: random displacement field
Umeso(b) computed at mesoscale in Ωmeso.

6.2. Stochastic Mesoscopic Boundary Value Problem for the Mesoscopic Indicators

At mesoscale, the stochastic boundary value problem modeling the experimental test
configuration described in Section 3 is written over an open bounded domain Ωmeso ⊂ R3 with
mesoscopic dimensions. A given domain of observation Ωmeso

exp corresponds to one given 2D or 3D
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part Ωmeso
obs of Ωmeso. Within the context of linear elasticity theory, the stochastic boundary value

problem at mesoscale consists in finding the vector-valued random displacement field Umeso and
the associated tensor-valued random Cauchy stress field Σmeso satisfying the following equilibrium
equations, stress-strain constitutive equation and Dirichlet boundary conditions

−div(Σmeso) = 0 in Ωmeso, (7)

Σmeso = Cmeso(b) : Emeso in Ωmeso, (8)

Umeso = umeso
exp on ∂Ωmeso, (9)

where Emeso is the tensor-valued random strain field associated to random displacement field Umeso

and defined by

Emeso = ε(Umeso) =
1
2

(
∇Umeso + (∇Umeso)T

)
. (10)

Note that non-homogeneous Dirichlet boundary conditions (9) are prescribed on the whole
boundary ∂Ωmeso of Ωmeso, which correspond to the displacement field umeso

exp that is experimentally
measured over a given domain of observation Ωmeso

exp on the test specimen at mesoscale. Note also
that (8) can equivalently be rewritten as

Σmeso = (Smeso(b))−1 : Emeso in Ωmeso, (11)

where Smeso(b) = (Cmeso(b))−1 is the random compliance tensor field of the considered material
at mesoscale. For some linear elasticity problems, such as with 2D plane stress assumption,
constitutive Equation (11) is more appropriate than (8). A sketch of the stochastic boundary value
problem at mesoscale is represented in Figure 2b.

6.3. Macroscopic Numerical Indicator

Within the context of inverse identification, the optimal identified value amacro of parameter
a can be determined by exploiting the sensitivity of the model strain field εmacro with respect to a
and using the experimental strain field εmacro

exp , which is obtained in Ωmacro
exp but can be rewritten in

Ωmacro
obs , through the introduction of a macroscopic numerical indicator J macro(a) defined for any

vector a ∈ Amacro by

J macro(a) =
1

|Ωmacro
obs |

∫
Ωmacro

obs

‖εmacro(x; a)− εmacro
exp (x)‖2

F dx, (12)

where |Ωmacro
obs | denotes the measure of domain Ωmacro

obs and ‖ · ‖F denotes the Frobenius
(or Hilbert-Schmidt) norm. Macroscopic numerical indicator J macro(a) allows for quantifying the
spatial average over the macroscopic domain Ωmacro

obs of the distance between the model strain field
εmacro(a) and the experimental strain field εmacro

exp at macroscale. The optimal vector-valued parameter
amacro can then be identified by minimizing J macro(a) over all vector-valued parameter a in Amacro,
provided that the model strain field εmacro(a) computed by solving the deterministic boundary value
problem (2)-(6) is sufficiently sensitive to parameter a.

6.4. Mesoscopic and Multiscale Numerical Indicators

Within the context of statistical inverse identification, the optimal identified values bmeso =

(δmeso, `meso, hmeso) of b = (δ, `, h) can be determined by exploiting the sensitivity of some quantities
of interest of the stochastic boundary value problem (7)-(10) with respect to δ, ` = (`1, `2, `3) and
h, respectively, and using their counterparts coming from the experimental measurements through
the introduction of two mesoscopic numerical indicators J meso

δ (b) and J meso
` (b) and one multiscale

numerical indicator J multi
h (a, b).
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6.4.1. Mesoscopic Numerical Indicator Associated to the Dispersion Parameter

A first mesoscopic numerical indicator J meso
δ (b) is introduced to identify the dispersion

parameter δ controlling the level of statistical fluctuations of random elasticity field Cmeso(b) at
mesoscale and defined for any vector b ∈ Bmeso by

J meso
δ (b) =

(
E{DE (b)} − δε

exp

δε
exp

)2

, (13)

where E denotes the mathematical expectation, DE (b) is a positive-valued random variable that
models the random level of spatial fluctuations of the random solution obtained by solving the
stochastic boundary value problem (7)–(10) at mesoscale and where δε

exp is its counterpart for the
experimental test specimen at mesoscale, such that

DE (b) =

√
VE (b)

‖Emeso(b)‖F
and δε

exp =

√
Vε

exp

‖εmeso
exp ‖F

, (14)

where Emeso(b) and εmeso
exp are the spatial averages of random strain field Emeso(b) and experimental

strain field εmeso
exp , respectively, and where

VE (b) =
1

|Ωmeso
obs |

∫
Ωmeso

obs

‖Emeso(x; b)− Emeso(b)‖2
F dx, (15)

Vε
exp =

1
|Ωmeso

obs |

∫
Ωmeso

obs

‖εmeso
exp (x)− εmeso

exp ‖2
F dx, (16)

where |Ωmeso
obs | denotes the measure of domain Ωmeso

obs . Note that it can easily be shown that Emeso(b) =
εmeso

exp for all b ∈ Bmeso a.s. and consequently Emeso(b) is a deterministic tensor. Also, since random
strain field Emeso(b) is a priori nor statistically homogeneous neither ergodic in average, Emeso(b) does
not correspond to the statistical mean function of Emeso(b) and therefore VE (b) (resp. DE (b)) does
not correspond to the variance (resp. dispersion coefficient) of Emeso(b). The mesoscopic numerical
indicator J meso

δ (b) defined by (13) allows for quantifying the relative distance between the statistical
mean value of DE (b) and its experimental observation δε

exp. It should also be noted that a mesoscopic
numerical indicator similar to this one was introduced in Reference [140], but with different expressions
than that of (13), (15) and (16) for the definitions of J meso

δ (b) and VE (b), respectively.

6.4.2. Mesoscopic Numerical Indicator Associated to the Spatial Correlation Lengths

A second mesoscopic numerical indicator J meso
` (b) is introduced to identify the vector of spatial

correlation lengths ` = (`1, `2, `3) characterizing the spatial correlation structure of random elasticity
field Cmeso(b) (or random compliance field Smeso(b)) and defined for any vector b ∈ Bmeso by

J meso
` (b) =

3

∑
α=1

(
E{LE

α (b)} − `ε
exp,α

`ε
exp,α

)2

, (17)

where LE
α (b) is a positive-valued random variable that models the spatial correlation length along

the α-th spatial direction (relative to the spatial coordinate xα) characterizing the spatial correlation
structure of the statistical fluctuations of random strain field Emeso(b) and where `ε

exp,α is its observation
for the experimental test specimen at mesoscale. Usual signal processing methods (such as the
periodogram method) are used for estimating LE

α (b) and `ε
exp,α by considering the approximation that

they are independent of x which is not the case since Emeso(b) and εmeso
exp are usually not statistically

homogeneous because of the non-homogeneous Dirichlet boundary conditions (9) involving the
experimental displacement field umeso

exp on ∂Ωmeso. The mesoscopic numerical indicator J meso
` (b)
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defined by (17) allows for quantifying the relative distance between the statistical mean values of
LE

1 (b), LE
2 (b), LE

3 (b) and their experimental observations `ε
exp,1, `ε

exp,2, `ε
exp,3.

6.4.3. Multiscale Numerical Indicator Associated to Computational Stochastic Homogenization

A multiscale numerical indicator J multi
h (a, b) is introduced to identify the mean function Cmeso(b)

of the random elasticity field Cmeso(b) at mesoscale and defined for any vector a ∈ Amacro and any
vector b ∈ Bmeso by

J multi
h (a, b) =

(
‖E{Ceff(b)} − Cmacro(a)‖F

‖Cmacro(a)‖F

)2

, (18)

where Ceff(b) is the effective elasticity tensor constructed by computational stochastic homogenization
of Cmeso(b) in an open bounded mesoscopic domain ΩRVE, which is assumed to be a representative
volume element. It should be noted that, under scale separation assumption, Ceff(b) is actually a
random tensor for which the level of statistical fluctuations tends to zero when the size of domain
ΩRVE tends to infinity [68,128,131]. This is the reason why the statistical mean value E{Ceff(b)} has
been considered in the definition (18) of J multi

h (a, b) instead of the effective elasticity tensor Ceff(b)
itself. The multiscale indicator J multi

h (a, b) defined by (18) allows for quantifying the relative distance
between (i) the macroscopic elasticity tensor Cmacro(a) involved in the deterministic boundary value
problem (2)-(6) at macroscale, and (ii) the statistical mean value of the effective elasticity tensor Ceff(b)
calculated by a computational stochastic homogenization method in the mesoscopic subdomain ΩRVE

of the random elasticity field Cmeso(b) involved in the stochastic boundary value problem (7)–(10)
at mesoscale.

6.5. Comments

It should be noted that in the original formulation initially proposed [140], the numerical indicator
J meso
` (b) was not introduced. The improved formulation proposed in the present work is more

advanced than the original formulation initially proposed in Reference [140] to the extent that it
involves an additional mesoscopic numerical indicator, namely J meso

` (b), so that the parameter
a and the three components δ, ` and h of the hyperparameter b each have their own dedicated
numerical indicator. Thus, the number of single-objective cost functions being equal to the number
of parameters to optimize, it is possible to substitute the computationally expensive global search
algorithm used in Reference [140], which belongs to the class of random search, genetic and
evolutionary algorithms [146–156], with a more computationally efficient optimization algorithm,
such as the fixed-point iterative algorithm considered in the present work (see Section 8). Indeed,
even using parallel processing and computing tools, the computational cost incurred by the global
optimization algorithm (genetic algorithm) used in Reference [140] remains high due to the large
stochastic dimension of the tensor-valued random elasticity field Cmeso(b), so that the multi-objective
optimization problem can be numerically intractable, with the current available computer resources, in
very high stochastic dimension for large-scale (non-)linear computational models of three-dimensional
random microstructures. The computational cost of the genetic algorithm is compared to the
one of the fixed-point iterative algorithm in terms of the number of evaluations of the stochastic
computational model in the 2D validation example presented in Section 10.1. It provides a measure
of the computational efficiency that is independent of the computer hardware used to perform the
numerical simulations. Lastly, it should be noted that an alternative mesoscopic numerical indicator
J meso

δ (b) is used compared to the previous work in Reference [140] without degrading the performance
in terms of accuracy.
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7. Multiscale Statistical Inverse Problem Formulated as a Multi-Objective Optimization Problem

The multiscale statistical inverse identification of parameter a and hyperparameter b can be
performed simultaneously by formulating the multiscale statistical inverse problem as a multi-objective
optimization problem, that is

(amacro, bmeso) = arg min
a∈Amacro,b∈Bmeso

J (a, b), (19)

where J (a, b) is the (vector-valued) multi-objective cost function consisting of the four aforementioned
numerical indicators as single-objective cost functions and defined for any vector a ∈ Amacro and any
vector b ∈ Bmeso by

J (a, b) =
(
J macro(a),J meso

δ (b),J meso
` (b),J multi

h (a, b)
)

. (20)

In accordance with the strategy for solving the multiscale statistical inverse problem
(see Section 5.2), for a better computational efficiency, the multiscale statistical inverse identification
of a and b is performed sequentially by splitting the multi-objective optimization problem into two
subproblems solved one after the other:

1. a macroscale inverse problem formulated as a single-objective optimization problem that consists
in calculating the optimal value amacro of parameter a in Amacro that minimizes the macroscopic
numerical indicator J macro(a), that is

amacro = arg min
a∈Amacro

J macro(a); (21)

2. a mesoscale statistical inverse problem formulated as a multi-objective optimization problem that
consists in calculating the optimal value bmeso of hyperparameter b in Bmeso that minimizes the
two mesoscopic numerical indicators J meso

δ (b) and J meso
` (b) as well as the multiscale numerical

indicator J multi
h (amacro, b) simultaneously, that is

bmeso = arg min
b∈Bmeso

J meso(b), (22)

where J meso(b) is the (vector-valued) multi-objective cost function defined for any vector b ∈
Bmeso by

J meso(b) =
(
J meso

δ (b),J meso
` (b),J multi

h (amacro, b)
)

. (23)

8. Numerical Methods for Solving the Multi-Objective Optimization Problem

The deterministic boundary value problem (2)–(6) defined on domain Ωmacro at macroscale
and the stochastic boundary value problem (7)–(10) defined on a subdomain Ωmeso ⊂ Ωmacro at
mesoscale are both discretized using a classical displacement-based finite element method (FEM)
[157,158]. The mathematical expectations of the quantities of interest of the stochastic boundary value
problem (7)–(10) involved in the three numerical indicators J meso

δ (b), J meso
` (b) and J multi

h (amacro, b)
are estimated using the Monte Carlo numerical simulation method [106–108,159,160] with Ns

independent realizations {Cmeso(θr)}16r6Ns of Cmeso. For the computation of the optimal value amacro,
the classical single-objective optimization problem (21) is solved using the Nelder-Mead simplex
algorithm [161–165]. For the computation of the optimal value bmeso, the non-trivial multi-objective
optimization problem (22) does not admit a single global optimal solution, but inherently gives
rise to a set of optimal solutions (called Pareto optima) resulting from a trade-off among the three
components J meso

δ (b), J meso
` (b) and J multi

h (amacro, b) of the multi-objective cost function J meso(b)
which are competing and a priori conflicting. Based on the concept of noninferiority [166] (also called
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Pareto optimality) for characterizing the components of a multi-objective function, a noninferior
(or Pareto optimal) solution is such that an improvement in any objective function requires a
degradation of some of the other objective functions, whereas an inferior solution is such that an
improvement can be attained in all the objective functions. The set of all the noninferior solutions
in the parameter space is called the Pareto optimal set and the corresponding objective function
values in the multidimensional objective function space is called the Pareto optimal front. The
interested reader can refer to References [151–156,167] and the references therein for an overview of
nonlinear multi-objective optimization methods including the fundamental principles, some Pareto
(near-)optimality conditions and a number of traditional and evolutionary optimization algorithms. In
Reference [140], the multi-objective optimization problem under consideration has been successfully
solved by using the genetic algorithm [151,156] that allows for constructing and finding a set of local
Pareto optimal solutions that should be sufficiently representative of the whole Pareto optimal set and
as many and diverse as possible for further selection [153,167]. The best compromise optimal solution
is selected among all the potential Pareto optimal solutions as the one that minimizes the distance to a
utopian solution that is constituted by the individual optimal solutions of the conflicting components
of the multi-objective function, which corresponds to the origin of the Pareto front.

In the present work, a dedicated numerical indicator has been set up specifically for each
component of hyperparameter b = (δ, `, h), allowing for the use of a simpler and more efficient
multi-objective optimization algorithm, namely a fixed-point iterative algorithm. Starting from an
ad hoc initial guess, it consists in sequentially minimizing J meso

δ (b), J meso
` (b) and J multi

h (amacro, b)
respectively with respect to δ, ` and h in their sets of admissible values that are such that b = (δ, `, h)
belongs to Bmeso. The iterative process is stopped when the residual norm between two iterates
becomes lower than a user-specified prescribed tolerance for each of the three single-objective
optimization problems. Numerical results have shown that, for the problem under consideration,
such a fixed-point iterative algorithm can achieve the same precision as the genetic algorithm in terms
of convergence but with a lower overall computational cost (see the numerical examples in Sections 10
and 11). The main drawback of such a numerical optimization algorithm lies in the choice of the initial
values used to start the algorithm that may be critical for the localization of the final global convergence
region. Besides, note that the fixed-point iterative method introduced in this work could a priori be
applied to the original formulation proposed in Reference [140], but it would lead to minimize the
objective function J meso

δ (b) with respect to δ and ` simultaneously given the other hyperparameters
h. Although it is possible, the problem is that J meso

δ (b) is very sensitive to δ but less sensitive with
respect to `, since it has been tailored to perform the identification of the optimal value δmeso of δ

and not the one `meso of `. Consequently, using such a fixed-point iterative strategy would yield
uncertainties on the identified value `meso of `. It is the reason why the additional objective function
J meso
` (b) has been introduced and for which the sensitivity is of first order with respect to ` and of

second order with respect to δ.

9. Probabilistic Model for a Robust Identification of the Hyperparameters

When several non-overlapping mesoscopic domains of observation Ωmeso
exp,1, . . . , Ωmeso

exp,Q are
available for experimental measurements for the same test specimen instead of a unique observation
domain Ωmeso

exp , then the solution of the multi-objective optimization problem presented in Section 7
can yield different optimal values bmeso

1 , . . . , bmeso
Q of hyperparameter bmeso when experimental data

comes from one mesoscopic domain of observation to another since mesoscopic indicators J meso
δ (b)

and J meso
` (b) depend on the values of experimental displacement fields umeso

exp,1, . . . , umeso
exp,Q that are

measured on each of them. Consequently, the optimal value bmeso of hyperparameter b should be
considered as uncertain and should be modeled as a vector-valued random variable B = (D, L, H) for
which bmeso

1 , . . . , bmeso
Q are assumed to be Q independent realizations. Thus, in Reference [140], a robust

identification of the optimal value bopt is proposed by averaging the identified values bmeso
1 , . . . , bmeso

Q .
Nevertheless, in the present work, an improved strategy is proposed that consists in constructing a prior
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stochastic model of the vector-valued hyperparameter B by using the MaxEnt principle [68,72,73,77]
and the available information allowing for the explicit construction and parametric representation of
the probability density function pB : b 7→ pB(b) of random vector B. A robust identified value bopt

is finally obtained using the MLE method [68–71] with the independent realizations bmeso
1 , . . . , bmeso

Q .
The available information for constructing the prior stochastic model of B is as follows: (i) random
variables D, L and H are mutually statistically independent, (ii) random variable D takes its values
a.s. in ]0 , δsup[ with δsup =

√
(n + 1)/(n + 5) =

√
7/11 ≈ 0.7977 < 1 (with n = 6 in linear elasticity),

(iii) the random components of random vector L are (statistically independent) positive-valued random
variables a.s. for which the mean value is given in ]0 ,+∞[ and the values are unlikely near zero by
construction of the mesoscale modeling, otherwise it would mean the current scale of the computational
model is not correct and too large, (iv) the random components of random vector H take their values
a.s. in the admissible setHmeso. We then have for all b = (δ, `, h) ∈ Bmeso,

pB(b) = pD(δ) pL(`) pH(h), (24)

where
pD(δ) =

1
δsup

1]0,δsup[(δ), (25)

pL(`) =
3

∏
α=1

pLα(`α) with pLα(`α) = 1]0,+∞[(`α)
1

bα
aα Γ(aα)

`α
aα−1 exp(−`α/bα). (26)

in which 1]0,δsup[ is the indicator function of the interval ]0 , δsup[ such that 1]0,δsup[(δ) = 1 if δ ∈ ]0 , δsup[

and 1]0,δsup[(δ) = 0 if δ 6∈ ]0 , δsup[, where s1 = (a1, b1), s2 = (a2, b2), s3 = (a3, b3) are positive
parameters to be identified. We refer the reader to Reference [168] for a detailed construction of the
prior stochastic model of H and a rigorous characterization of the statistical dependence between the
components of random elasticity tensors exhibiting a.s. some given material symmetry properties for
the six highest levels of linear elastic symmetries. For the special case of isotropic materials, we have
Hmeso = ]0 ,+∞[×]0 ,+∞[ and the prior probability density function pH of random vector H is written
as for all h = (h1, h2) ∈ Hmeso,

pH(h) = pH1(h1)×pH2(h2), (27)

in which

pH1(h1) = 1R+(h1)k1h1
−λ exp (−λ1h1) , (28)

pH2(h2) = 1R+(h2)k2h2
−5λ exp (−λ2h2) , (29)

where k1 = λ1
1−λ/Γ(1− λ) and k2 = λ2

1−5λ/Γ(1− 5λ) are two positive normalization constants.
The probabilistic model of H is then parameterized by the vector-valued hyperparameter s =

(λ, λ1, λ2) ∈ ]−∞ , 1/5[× ]0 ,+∞[2. The mean values of H1 and H2 are respectively equal to
(1 − λ)/λ1 and (1 − 5λ)/λ2, and the dispersion coefficients of H1 and H2 are respectively equal
to 1/

√
1− λ and 1/

√
1− 5λ. Note that the probability density functions of H1 and H2 both involve

the same hyperparameter λ < 1/5 that controls the level of statistical fluctuations of both H1 and
H2. In addition, H1 and H2 cannot be deterministic variables, since their dispersion coefficients
are non zero whatever the value of λ < 1/5. Finally, the probabilistic model of B = (D, L, H)

involves the unknown vector-valued hyperparameter s = (s1, s2, s3, s) = (a1, b1, a2, b2, a3, b3, λ, λ1, λ2)

belonging to the admissible set S = (]0 ,+∞[2)3×]−∞ , 1/5[×]0 ,+∞[2. The optimal value sopt of s is
determined using the MLE method with the available data that are the Q independent realizations
bmeso

1 , . . . , bmeso
Q of random vector B. The MLE method consists in computing sopt by solving the

following optimization problem

sopt = arg max
s∈S

L(s; bmeso
1 , . . . , bmeso

Q ), (30)
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where s 7→ L(s; bmeso
1 , . . . , bmeso

Q ) is the log-likelihood function for the Q independent realizations
bmeso

1 , . . . , bmeso
Q of B which is defined for all s ∈ S by

L(s; bmeso
1 , . . . , bmeso

Q ) =
Q

∑
q=1

log(pB(bmeso
q ; s)). (31)

The accuracy of the identified optimal value sopt is then all the higher as the number Q of
mesoscopic domains of observation is large but at the expense of a higher computational cost. Lastly,
the optimal value bopt of vector-valued hyperparameter b ∈ Bmeso is computed by solving the
following optimization problem

bopt = arg max
b∈Bmeso

pB(b; sopt). (32)

Hence, optimal value bopt corresponds to the most probable value of random vector B according
to the identified probability distribution represented by its probability density function pB(·; sopt)

parameterized by sopt. Note that the averaging approach presented in Reference [140] is a particular
case of the MLE method presented in this section if the prior stochastic models of D, L and H are
uniform random variables. It is the reason why a better robust identification is expected since the prior
stochastic model of B has been improved in this work. In the present work, since D is modeled as
a uniform random variable on ]0 , δsup[, the optimal value δopt of δ is simply obtained by averaging
the Q independent realizations δmeso

1 , . . . , δmeso
Q of D. A more advanced prior stochastic model for D

could have been considered, for instance by adding as available information that its mean value is
given and its values are unlikely near zero, thus leading to a unimodal probability density function pD
with support ]0 , δsup[ and with a higher parameterization than the simple uniform probability density
function considered here.

10. Numerical Validation of the Multiscale Identification Method on In Silico Materials in 2D
Plane Stress and 3D Linear Elasticity

In this section, we present a numerical application of the improved multiscale identification
methodology proposed in the present work within the framework of 2D plane stress and 3D linear
elasticity theories by using in silico materials for which the macroscopic and mesoscopic mechanical
properties are known. The required multiscale “experimental” kinematic fields have been obtained
through numerical simulations using one random realization of the random elasticity field in SFE+

(see Section 4) not restricted from R3 to some mesoscopic domain Ωmeso but restricted to the whole
macroscopic domain Ωmacro for a given experimental value bmeso

exp of hyperparameter b ∈ Bmeso.
The solution of a deterministic boundary value problem over this macroscopic domain Ωmacro is then
computed for a heterogeneous random elasticity field whose spatial correlation lengths correspond to
the characteristic sizes of the heterogeneities at microscale. This deterministic boundary value problem
is solved using a classical numerical method (FEM) whose computational cost is high and potentially
prohibitive in 3D, what can be avoided by computational homogenization methods, but it is required
to completely simulate the multiscale “experimental” measurements.

10.1. Validation on an In Silico Specimen in Compression Test in 2D Plane Stress Linear Elasticity

For this first numerical validation example, a 2D plane stress assumption is considered.
Macroscopic domain of observation Ωmacro

exp is a 2D square domain and it exactly corresponds to
the cross-section of macroscopic domain Ωmacro and such that Ωmacro

obs = Ωmacro
exp since the test specimen

is in silico. The dimensions of 2D macroscopic domain of observation Ωmacro
exp are 1×1 cm2 in a fixed

Cartesian frame (O, x1, x2) of R2. It is possible to introduce a set of Q = 16 non-overlapping 2D square
mesoscopic domains of observation Ωmeso

exp,1, . . . , Ωmeso
exp,Q ⊂ Ωmacro

exp for which the mesoscale dimensions

are 1×1 mm2 (see Figure 1 for a schematic representation of domains of observation Ωmacro
exp and

Ωmeso
exp,1, . . . , Ωmeso

exp,Q). Consequently, observation domain Ωmeso
obs , for which the dimensions are also
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1×1 mm2, is defined as the 2D square cross-section of mesoscopic domain Ωmeso. Deterministic
surface force field f macro is uniformly distributed on the top boundary of macroscopic domain
Ωmacro and applied along the (downward vertical) −x2 direction with an intensity of 5 kN such
that ‖ f macro‖ = 5 kN/cm2 = 5×107 N/m2, while the bottom boundary of macroscopic domain Ωmacro

is clamped.

10.1.1. Parameterization of the Macroscopic and Mesoscopic Models

At macroscale, the solution of deterministic boundary value problem (2)–(6) with 2D plane
stress assumption depends only on 6 components {Smacro(a)}ijkh of deterministic compliance tensor
Smacro(a) with i, j, k, h ∈ {1, 2}. Consequently, the solution at macroscale depends only on the
components of a 2D fourth-order compliance tensor Smacro

2D (a) that is defined by {Smacro
2D (a)}ijkh =

{Smacro(a)}ijkh for all i, j, k, h ∈ {1, 2}. Then, a 2D fourth-order elasticity tensor at macroscale can be
introduced and defined by Cmacro

2D (a) = (Smacro
2D (a))−1. Since within the framework of linear elasticity

theory, any isotropic material is completely characterized by a bulk modulus κ and a shear modulus µ

at macroscale, then we have the vector-valued parameter a = (κ, µ). In particular, we have chosen
the experimental value amacro

exp = (κmacro
exp , µmacro

exp ) with κmacro
exp = 13.901 GPa and µmacro

exp = 3.685 GPa,
corresponding to a Young’s modulus Emacro

exp = 10.158 GPa and and a Poisson’s ratio νmacro
exp = 0.3782.

At mesoscale, the solution of stochastic boundary value problem (7)–(10) with 2D plane stress
assumption depends only on 6 components {Smeso(b)}ijkh of random compliance tensor field Smeso(b)
with i, j, k, h ∈ {1, 2} or equivalently on every 21 components {Cmeso(b)}ijkh of random elasticity
tensor field Cmeso(b) with i, j, k, h ∈ {1, 2, 3}. It is the reason why we have chosen to construct the
prior stochastic model of the random compliance tensor field Smeso(b) as presented in Section 4 and
the stochastic boundary value problem (7)–(10) is solved in using (11) rather than (8). Furthermore,
its mean function Smeso is spatially constant and models an isotropic elastic medium that is completely
characterized by a mean bulk modulus κ and a mean shear modulus µ at mesoscale. Consequently,
the vector-valued hyperparameter b = (δ, `, h) involves only (i) a dispersion parameter δ, (ii) a spatial
correlation length ` that is such that `1 = `2 = ` in order to be consistent with the effective model at
macroscale for which the material is assumed to be isotropic and with `3 = +∞ in order to be consistent
with the 2D plane stress assumption, and (iii) a vector-valued hyperparameter h = (κ, µ) gathering the
mean bulk modulus κ and the mean shear modulus µ at mesoscale. In particular, we have chosen the
experimental value bmeso

exp = (δmeso
exp , `meso

exp , κmeso
exp , µmeso

exp
) with δmeso

exp = 0.40, `meso
exp = 125 µm, κmeso

exp =

13.75 GPa and µmeso
exp

= 3.587 GPa, corresponding to a mean Young’s modulus Emeso
exp = 9.900 GPa and a

mean Poisson’s ratio νmeso
exp = 0.380 GPa. For identification purposes and further computational savings,

we consider a reduced admissible set Bmeso
ad ⊂ Bmeso for the vector-valued hyperparameter b =

(δ, `, κ, µ) such that δ ∈ [0.25 , 0.50], ` ∈ [20 , 250] µm, κ ∈ [8.5 , 17] GPa, µ ∈ [2.15 , 4.50] GPa, instead

of the full admissible set Bmeso = ]0 , δsup[× ]0 ,+∞[× ]0 ,+∞[2 with δsup =
√
(n + 1)/(n + 5) =√

7/11 ≈ 0.7977 < 1 (with n = 6 in linear elasticity). This reduced admissible set Bmeso
ad is then

discretized into nV = 10 equidistant points in each dimension for which the three numerical indicators
J meso

δ (b), J meso
` (b) and J multi

h (amacro, b) defined in Section 6.4 are evaluated and compared. The
identified values bmeso

1 , . . . , bmeso
Q of hyperparameters b for each of the Q mesoscopic domains of

observation Ωmeso
exp,1, . . . , Ωmeso

exp,Q are then searched on this multidimensional grid of nV×nV×nV×nV
points in the hypercube Bmeso

ad .
Within the framework of linear elasticity under 2D plane stress assumption, both the deterministic

boundary value problem (2)–(6) and the stochastic boundary value problem (7)–(10) are solved by
discretizing the 2D macroscopic and mesoscopic domains of observation Ωmacro

obs and Ωmeso
obs in space

using the FEM. The finite element meshes of 2D square domains Ωmacro
obs and Ωmeso

obs are structured
meshes made up with 4-nodes linear quadrangular elements with Gauss-Legendre quadrature rule.
The stochastic boundary value problem (7)–(10) at mesoscale is solved using the Monte Carlo numerical
method. Mesh convergence analyses of the numerical solutions of the deterministic boundary value
problem (2)–(6) at macroscale and of the stochastic boundary value problem (7)–(10) at mesoscale
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have been performed in order to define accurate finite element approximations at both macroscopic
and mesoscopic scales. The finite element mesh of 2D macroscopic domain Ωmacro

obs is a regular grid
containing 25×25 quadrangular elements with uniform element size hmacro = 0.4 mm = 4×10−4 m in
each spatial direction. It thus comprises 676 nodes and 625 elements, with 1300 unknown degrees of
freedom (dofs). The finite element mesh of 2D mesoscopic domain Ωmeso

obs is a regular grid containing
100×100 quadrangular elements with uniform element size hmeso = 10 µm = 10−5 m in each spatial
direction. It thus comprises 10,201 nodes and 10,000 elements, with 20,000 unknown dofs. The number
of Gauss integration points per spatial correlation length used for numerical quadrature over 2D
macroscopic domain of observation Ωmacro

obs and 2D mesoscopic domain of observation Ωmeso
obs is nG = 4

in each spatial direction.
Concerning the computational stochastic homogenization with 2D plane stress assumption,

we consider a 2D square domain ΩRVE of side length BRVE defined in a Cartesian frame (O, x1, x2) and
we use the homogenization method with static uniform boundary conditions (i.e., with homogeneous
stresses) which is appropriate for linear elasticity under 2D plane stress assumption. Note that only
the components {Seff(b)}ijkh with i, j, k, h ∈ {1, 2} can be calculated. We then obtain a 2D fourth-order
effective compliance tensor Seff

2D(b) that is such that {Seff
2D(b)}ijkh = {Seff(b)}ijkh for all i, j, k, h ∈

{1, 2}. Then, a 2D fourth-order effective elasticity tensor can be defined as Ceff
2D(b) = (Seff

2D(b))
−1.

A convergence analysis of the statistical estimator of its statistical fluctuations with respect to the
representative volume element size BRVE has been performed. A representative volume element
size BRVE = 20×` = 400 µm = 4×10−4 m has been found to be sufficient to reach negligible
statistical fluctuations for the construction of the multiscale numerical indicator J multi

h (amacro, b) that
is calculated by replacing Cmacro(a) and Ceff(b) with Cmacro

2D (a) and Ceff
2D(b), respectively, in (18).

As the mathematical expectations involved in each of the numerical indicatorsJ meso
δ (b), J meso

` (b)
and J multi

h (amacro, b) are evaluated using the Monte Carlo numerical method, statistical convergence
analyses of their statistical estimators with respect to the number of independent realizations Ns have
been carried out and a convergence has been reached for Ns = 500. Sensitivity analyses of each of
the three numerical indicators have been performed with respect to each of the hyperparameters
δ, `, h = (κ, µ), respectively, in the reduced admissible set Bmeso

ad = [0.25 , 0.50]× [20 , 250] µm×
[8.5 , 17] GPa×[2.15 , 4.50] GPa. Hence, it can be shown that each numerical indicator is sufficiently
sensitive to the variation of its dedicated hyperparameter and that the multi-objective optimization
problem (22) to be solved is well-posed.

Recall the multiscale statistical inverse problem has been formulated into two decoupled
optimization problems in a and b, respectively, to be solved sequentially (see Section 7), namely (i) a
macroscale single-objective optimization problem (21) for the inverse identification of the optimal value
amacro of parameter a in its admissible set Amacro, and (ii) a mesoscale multi-objective optimization
problem (22) for the statistical inverse identification of the global optimal value bopt of hyperparameter
b in its reduced admissible set Bmeso

ad .

10.1.2. Resolution of the Single-Objective Optimization Problem at Macroscale

In this paragraph, we present the results of the first single-objective optimization problem (21) at
macroscale which consists in minimizing the macroscopic numerical indicator J macro(a) constructed
in the macroscopic domain of observation Ωmacro

exp for identifying the optimal value amacro of a at
macroscale. The single-objective optimization problem (21) at macroscale has been solved using
the Nelder-Mead simplex algorithm. The identification results are reported in Table 1 and show
that the relative error between the identified optimal value amacro = (13.901, 3.685) in [GPa] and
the reference experimental value amacro

exp = (14.328, 3.670) in [GPa] used for the construction of the
numerically simulated “experimental” database remains small (less than 3% and 0.5% for κmacro and
µmacro, respectively), allowing to validate the proposed identification methodology in 2D plane stress
linear elasticity for the resolution of the single-objective optimization problem (21) at macroscale.
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Table 1. Comparison between the identified optimal value amacro and the reference experimental
value amacro

exp .

κ [GPa] µ [GPa]

amacro 13.901 3.685
amacro

exp 14.328 3.670
Relative error [%] 2.980 0.4009

10.1.3. Resolution of the Multi-Objective Optimization Problem at Mesoscale

In this paragraph, we present the results of the second multi-objective optimization problem (22)
at mesoscale which consists in simultaneously minimizing the three numerical indicators J meso

δ (b),
J meso
` (b) and J multi

h (amacro, b) constructed in each of the Q = 16 mesoscopic domains of observation
Ωmeso

exp,1, . . . , Ωmeso
exp,Q using the optimal parameter amacro = (13.901, 3.685) in [GPa] previously identified

at macroscale (see the previous paragraph) for identifying the global optimal value bopt of b at
mesoscale. The multi-objective optimization problem (22) at mesoscale has been solved using the
fixed-point iterative algorithm on the one hand and the genetic algorithm on the other hand for
comparison purposes. In order to analyze the numerical efficiency of these two resolution approaches,
instead of evaluating the computing time which strongly depends on the computer hardware used,
we choose in this work to compare the number of evaluations of the random solution of the stochastic
boundary value problem (7)–(10) at mesoscale (i.e., the number of calls to the deterministic numerical
model at mesoscale) required by each algorithm to achieve the desired convergence.

The identification results obtained with the fixed-point iterative algorithm are summarized
in Table 2 for the set of Q = 16 mesoscopic domains of observation Ωmeso

exp,1, . . . , Ωmeso
exp,Q, namely

the set of Q identified values bmeso
1 , . . . , bmeso

Q and numbers of iterations n1, . . . , nQ required to
reach the desired convergence, with a convergence criterion on the residual norm between two
iterations that must be less than a prescribed tolerance set to 10−9, and the global optimal value
bopt computed by using the MLE method. On the one hand, there are greater variations between
the identified values `meso

1 , . . . , `meso
Q and δmeso

1 , . . . , δmeso
Q , reflecting the fact that the two associated

mesoscopic numerical indicators J meso
δ (b) and J meso

` (b) depend directly on the experimental field
measurements on each mesoscopic domain of observation. On the other hand, the lower variability
between the identified values κmeso

1 , . . . , κmeso
Q and µmeso

1
, . . . , µmeso

Q
can be explained by the fact

that the associated multiscale numerical indicator J multi
h (amacro, b) does not depend directly on the

experimental field measurements on each mesoscopic domain of observation but is rather conditioned
by the identified values `meso

1 , . . . , `meso
Q and δmeso

1 , . . . , δmeso
Q . Thus, the relative errors calculated on

these two hyperparameters are essentially due to the quality of the discretization of the reduced
admissible set Bmeso

ad . In particular, the fixed-point iterative algorithm has selected the same identified
value µmeso

1
= · · · = µmeso

Q
= 3.717 GPa (among the nV = 10 test points in [2.15 , 4.50] GPa) for the

Q = 16 mesoscopic domains of observation Ωmeso
exp,1, . . . , Ωmeso

exp,Q. Clearly, a finer grid (with nV > 10)
might yield different values for the identified hyperparameter µmeso selected by the optimization
algorithm. It is the reason why a prior probabilistic model for the identified hyperparameters has
been introduced. The number of evaluations of the stochastic computational model needed by the
fixed-point iterative algorithm is given by nFP

tot = 3 nV Ns ∑16
q=1 nq, where the superscript FP refers to

“Fixed-Point” and nV is the number of evaluations of a numerical indicator to search for the minimum
with respect to the associated hyperparameter. Figure 3 shows the probability density functions
pD, pL, pK and pM of random variables D, L, K and M, respectively, which are defined in Section 9
with the two components H1 = K and H2 = M of random vector H = (K, M). As suggested by
the identification results shown in Table 2 and as already mentioned in Section 9, a more advanced
prior stochastic model for D would have been preferable to obtain a unimodal probability density
function pD with support ]0 , δsup[ and which would be concentrated around the reference experimental
value δmeso

exp = 0.4. Besides, although all the independent realizations µmeso
1

, . . . , µmeso
Q

of M given in
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Table 2 are equal to the same identified value 3.717 GPa, the probability density function pM does not
correspond to the Dirac measure on R at point 3.717 GPa but to a gamma distribution with a very
small dispersion around this value, since for the prior probabilistic model of H = (K, M) considered
here, K and M cannot be deterministic variables (see Section 9). We finally obtain the global optimal
value bopt = (0.391, 135.328, 12.273, 3.717) in ([−], [µm], [GPa], [GPa]) with relative errors less than 3%,
9%, 11% and 4% for δopt, `opt, κopt and µopt, respectively, with respect to the reference experimental
value bmeso

exp = (0.40, 125, 13.75, 3.587) in ([−], [µm], [GPa], [GPa]) used to construct the numerically
simulated “experimental” database, allowing to validate the proposed identification methodology
in 2D plane stress linear elasticity for the resolution of the multi-objective optimization problem (22)
at mesoscale.

Table 2. Fixed-point iterative algorithm: comparison between the global optimal value bopt obtained
from the Q = 16 identified values bmeso

1 , . . . , bmeso
Q for each of the Q mesoscopic domains of observation

Ωmeso
exp,1, . . . , Ωmeso

exp,Q, and the reference experimental value bmeso
exp .

δ ` [µm] κ [GPa] µ [GPa] nq

bmeso
1 0.306 147.778 13.222 3.717 3

bmeso
2 0.500 224.444 11.333 3.717 4

bmeso
3 0.417 122.222 12.278 3.717 3

bmeso
4 0.417 122.222 12.278 3.717 3

bmeso
5 0.444 147.778 12.278 3.717 3

bmeso
6 0.417 122.222 12.278 3.717 4

bmeso
7 0.361 147.778 12.278 3.717 4

bmeso
8 0.361 147.778 12.278 3.717 4

bmeso
9 0.444 147.778 12.278 3.717 3

bmeso
10 0.333 147.778 12.278 3.717 4

bmeso
11 0.333 122.222 12.278 3.717 4

bmeso
12 0.389 96.667 12.278 3.717 3

bmeso
13 0.389 147.778 12.278 3.717 4

bmeso
14 0.389 122.222 12.278 3.717 3

bmeso
15 0.389 147.778 12.278 3.717 4

bmeso
16 0.361 122.222 12.278 3.717 4

bopt 0.391 135.328 12.273 3.717 -
bmeso

exp 0.400 125.000 13.750 3.587 -
Relative error [%] 2.344 8.262 10.740 3.611 -

nFP
tot 855,000
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Figure 3. Fixed-point iterative algorithm: probability density functions pD, pL, pK and pM of random
variables D, L, K and M, respectively. (a) pD(δ); (b) pL(`); (c) pK(κ); (d) pM(µ).

Figure 4 shows the evolution of the global optimal values δopt, `opt, κopt µopt estimated by the
MLE method as a function of the number Q of independent realizations bmeso

1 , . . . , bmeso
Q of random

vector B = (D, L, K, M). Although the number Q remains low (less than or equal to 16), we observe
that each of the global optimal values tends to converge towards an objective value when Q increases,
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which demonstrates that the use of the MLE method with the prior probabilistic model of B proposed
in this work allows a robust identification of the vector-valued hyperparameter b = (δ, `, κ, µ).
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Figure 4. Fixed-point iterative algorithm: evolutions of the identified global optimal values δopt,
`opt, κopt and µopt with respect to the number Q of mesoscopic domains of observation considered.
(a) δopt(Q); (b) `opt(Q); (c) κopt(Q); (d) µopt(Q).

In terms of computational efficiency, we can see in Table 2 that the numbers of iterations n1, . . . , nQ
required to achieve the desired convergence are relatively low (less than or equal to 4) for each of
the Q = 16 mesoscopic domains of observation Ωmeso

exp,1, . . . , Ωmeso
exp,Q, leading to a number of calls to the

deterministic numerical model at mesoscale of 855,000. Table 3 contains the global optimal values bopt

and the corresponding relative errors (with respect to the reference experimental value bmeso
exp ) obtained

for different values Ns ∈ {5, 50, 500} of the number of independent realizations generated for the
statistical estimation of the mathematical expectations involved in the different numerical indicators.
It can be seen that a strong decrease in the value of Ns allows a considerable gain in computing time
while maintaining similar results for the identified global optimal values, which can be explained
by the use of the MLE method which makes the resolution of the statistical inverse identification
problem more robust with respect to the convergence of the statistical estimators used in the numerical
indicators of the multi-objective optimization problem (22).

Table 3. Fixed-point iterative algorithm: comparison between the global optimal value bopt and the
reference experimental value bmeso

exp for different values of the number Ns of independent realizations
generated for the statistical estimation of the mathematical expectations involved in the different
numerical indicators.

δ ` [µm] κ [GPa] µ [GPa] nFP
tot

bmeso
exp 0.400 125.000 13.750 3.587 -

bopt (Ns = 500) 0.391 135.328 12.273 3.717 855,000
Relative error [%] 2.344 8.262 10.740 3.611 -

bopt (Ns = 50) 0.387 134.859 12.217 3.717 87,000
Relative error [%] 3.212 7.887 11.153 3.611 -

bopt (Ns = 5) 0.396 140.220 12.335 3.717 9000
Relative error [%] 1.042 12.176 10.293 3.611 -

The identification results obtained with the genetic algorithm are summarized in Table 4 for the set
of Q = 16 mesoscopic domains of observation Ωmeso

exp,1, . . . , Ωmeso
exp,Q, namely the set of Q identified values

bmeso
1 , . . . , bmeso

Q and numbers of generations n1, . . . , nQ required to reach the desired convergence,
and the global optimal value bopt computed by using the MLE method. The initial population used
to start the genetic algorithm contains nI = 40 individuals. Figure 5 shows an example of different
2D cross-sections of the Pareto front for the first mesoscopic domain of observation Ωmeso

exp,1. The best
comprise optimal solution corresponds to the point marked with a green circle on the different 2D
cross-sections of the Pareto front, because according to the explanations given in Section 8, it is chosen
among all the noninferior (Pareto optimal) solutions generated and selected in the optimal Pareto set
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(represented by red stars in Figure 5) as the one that minimizes the distance at the origin of the Pareto
front in the multidimensional space (of dimension 3) of the multi-objective cost function J meso(b).
For reasons of limitation in terms of calculation cost, the number Ns of independent realizations used
for the statistical estimation of the mathematical expectations involved in the numerical indicators
J meso

δ (b), J meso
` (b) and J multi

h (amacro, b) is reduced to Ns = 50. Although the statistical convergence
of the three numerical indicators is not achieved, the results of Table 3 show that, thanks to the
probabilistic modeling of the hyperparameters and the maximum likelihood estimation, the results of
the statistical inverse identification method are not significantly affected by a decrease in the value
of Ns and are therefore robust with respect to the statistical fluctuations of the different numerical
indicators. The number of evaluations of the stochastic computational model needed by the genetic
algorithm is given by nGA

tot = 3 nI Ns ∑16
q=1 nq, where the superscript GA refers to “Genetic Algorithm”.

Figure 6 shows the probability density functions pD, pL, pK and pM of random variables D, L, K
and M, respectively. We finally deduce the global optimal value bopt = (0.372, 128.401, 11.656, 3.306)
in ([−], [µm], [GPa], [GPa]) with relative errors less than 8%, 3%, 16% and 8% for δopt, `opt, κopt and
µopt, respectively, with respect to the reference experimental value bmeso

exp = (0.40, 125, 13.75, 3.587) in
([−], [µm], [GPa], [GPa]), which are acceptable (reasonably good) and similar to the errors obtained by
the fixed-point iterative algorithm. There are still some fluctuations in the values κmeso

1 , . . . , κmeso
Q and

µmeso
1

, . . . , µmeso
Q

identified on each of the Q = 16 mesoscopic domains of observation Ωmeso
exp,1, . . . , Ωmeso

exp,Q,
which was not the case for the fixed-point iterative algorithm. This underlies the numerical resolution
of the Pareto front, which depends on the number nV of values in each dimension of the parameter
search space. In terms of computational efficiency, we can see that the number nGA

tot = 19,176,000 of
evaluations of the stochastic computational model (resulting from the number of individuals nI = 40
in the initial population and the number of population generations n1, . . . , nQ) is much higher than
that nFP

tot = 87,000 required by the fixed-point iterative algorithm with Ns = 50 (see Table 3). Finally,
the fixed-point iterative algorithm allows significant computational savings (in terms of computational
cost) compared to the genetic algorithm.
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Figure 5. Different 2D cross-sections of the Pareto front with the noninferior (Pareto optimal) solutions
represented by red stars ? and the best compromise optimal solution surrounded by a green circle# for
the mesoscopic domain of observation Ωmeso
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Table 4. Genetic algorithm: comparison between the global optimal value bopt obtained from the
Q = 16 identified values bmeso

1 , . . . , bmeso
Q for each of the Q mesoscopic domains of observation

Ωmeso
exp,1, . . . , Ωmeso

exp,Q, and the reference experimental value bmeso
exp .

δ ` [µm] κ [GPa] µ [GPa] nq

bmeso
1 0.361 122.222 16.056 2.411 193

bmeso
2 0.333 147.778 9.444 2.933 202

bmeso
3 0.417 198.889 13.222 3.194 189

bmeso
4 0.333 147.778 13.222 3.456 197

bmeso
5 0.444 147.778 11.333 4.239 207

bmeso
6 0.417 173.333 12.278 2.933 201

bmeso
7 0.278 147.778 10.389 3.717 192

bmeso
8 0.278 147.778 12.278 3.194 199

bmeso
9 0.389 96.667 14.167 3.978 210

bmeso
10 0.333 96.667 11.333 2.933 205

bmeso
11 0.278 96.667 15.111 2.933 203

bmeso
12 0.417 122.222 12.278 4.239 198

bmeso
13 0.472 122.222 14.167 3.456 194

bmeso
14 0.389 96.667 12.278 2.672 208

bmeso
15 0.361 122.222 14.167 3.456 190

bmeso
16 0.444 173.333 9.444 3.978 208

bopt 0.372 128.401 11.656 3.306 -
bmeso

exp 0.400 125.000 13.750 3.587 -
Relative error [%] 7.118 2.721 15.228 7.844 -

nGA
tot 19,176,000
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Figure 6. Genetic algorithm: probability density functions pD, pL, pK and pM of random variables D,
L, K and M, respectively. (a) pD(δ); (b) pL(`); (c) pK(κ); (d) pM(µ).

10.2. Validation on an In Silico Specimen in Compression Test in 3D Linear Elasticity

In this section, we present a second validation example in 3D linear elasticity. We assume there are
Q = 3 test specimens on which are applied exactly the same external loads at macroscale. Recall that
for the validation, the “experimental” tests are actually performed in silico. Macroscopic domain of
observation Ωmacro

exp is exactly the same 3D cubic domain for each test specimen and corresponds to
3D experimental field measurements on the full volume of each test specimen. As for the previous
2D validation example, since the experimental field measurements are actually performed in silico,
we also have Ωmacro

obs = Ωmacro
exp . The dimensions of each 3D macroscopic domain of observation Ωmacro

exp
are 2×2×2 mm3. For each test specimen, the mesoscale dimensions of 3D mesoscopic domain of
observation Ωmeso

exp are 0.5×0.5×0.5 mm3 (see Figure 7). Deterministic surface force field f macro is
uniformly distributed on the top boundary of macroscopic domain Ωmacro

exp and applied along the
(downward vertical) −x3 direction with an intensity of 2 kN such that ‖ f macro‖ = 50 kN/cm2 =

5×108 N/m2, while the bottom boundary of macroscopic domain Ωmacro
exp is clamped.
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Figure 7. Illustration of the test specimen occupying the 3D cubic macroscopic domain of observation
Ωmacro

exp = Ωmacro (in green) which contains a 3D cubic mesoscopic domain of observation Ωmeso
exp =

Ωmeso (in red) for the numerical validation in 3D linear elasticity.

10.2.1. Parameterization of the Macroscopic and Mesoscopic Models

Within the framework of linear elasticity theory, any material that is isotropic at macroscale
can be completely characterized by a bulk modulus κ and a shear modulus µ. Consequently, we
have chosen the parameterization a = (κ, µ). In particular, we have chosen the experimental value
amacro

exp = (κmacro
exp , µmacro

exp ) with κmacro
exp = 138.783 GPa and µmacro

exp = 64.355 GPa, corresponding to a
Young’s modulus Emacro

exp = 167.218 GPa and a Poisson’s ratio νmacro
exp = 0.2992.

At mesoscale, we have chosen to construct the prior stochastic model of the random elasticity
tensor field Cmeso as presented in Section 4 and the stochastic boundary value problem (7)–(10) is solved
in using (8) rather than (11). Furthermore, its mean function Cmeso is spatially constant and models
an isotropic elastic medium that is completely characterized by a mean bulk modulus κ and a mean
shear modulus µ at mesoscale. Consequently, the vector-valued hyperparameter b = (δ, `, h) involves
only (i) a dispersion parameter δ, (ii) a spatial correlation length ` that is such that `1 = `2 = `3 = `

in order to be consistent with the effective model at macroscale for which the material is assumed to
be isotropic, and (iii) a vector-valued hyperparameter h = (κ, µ) gathering the mean bulk modulus
κ and the mean shear modulus µ at mesoscale. In particular, we have chosen the experimental
value bmeso

exp = (δmeso
exp , `meso

exp , κmeso
exp , µmeso

exp
) with δmeso

exp = 0.32, `meso
exp = 80 µm, κmeso

exp = 145 GPa and

µmeso
exp

= 67.3 GPa, corresponding to a mean Young’s modulus Emeso
exp = 174.85 GPa and a mean

Poisson’s ratio νmeso
exp = 0.2990 GPa. As already mentioned in Section 10.1.1, we can restrict the

admissible set Bmeso = ]0 , δsup[× ]0 ,+∞[× ]0 ,+∞[2 (with δsup =
√

7/11 ≈ 0.7977 < 1) of the
vector-valued hyperparameter b = (δ, `, κ, µ) to a reduced admissible set Bmeso

ad ⊂ Bmeso such that
δ ∈ [0.20 , 0.45], ` ∈ [50 , 120] µm, κ ∈ [87.5 , 200] GPa and µ ∈ [40.5 , 95.0] GPa. This reduced admissible
set Bmeso

ad is then discretized into nV = 10 equidistant points in each dimension for which the three
numerical indicators J meso

δ (b), J meso
` (b) and J multi

h (amacro, b) defined in Section 6.4 are evaluated
and compared. The identified values bmeso

1 , bmeso
2 , bmeso

3 of hyperparameters b for each of the 3 in
silico test specimens are then searched on this multidimensional grid of nV×nV×nV×nV points in the
hypercube Bmeso

ad .
The classical displacement-based FEM is used for the spatial discretization of (i) the deterministic

boundary value problems defined by (2)–(6) in replacing Cmacro by Q = 3 independent realizations
of the random apparent elasticity tensor field Cmeso on Ωmacro instead of Ωmeso to simulate both
the “experimental” macroscopic displacement field umacro

exp in Ωmacro
exp = Ωmacro and the mesoscopic

displacement field umeso
exp in Ωmeso

exp = Ωmeso, (ii) the deterministic boundary value problem defined
by (2)–(6) to calculate the macroscopic displacement field umacro in domain Ωmacro

obs = Ωmacro, and
(iii) the stochastic boundary value problems defined by (7)–(10) to calculate the random mesoscopic
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displacement fields Umeso in using experimental data obtained by solving (i) that are the experimental
displacement fields umeso

exp measured on the boundary of domain Ωmeso
exp = Ωmeso

obs for each realization
of Cmeso. The stochastic solver used for solving the stochastic boundary value problem (7)–(10) at
mesoscale is the Monte Carlo numerical method. As 3D macroscopic and mesoscopic domains Ωmacro

and Ωmeso are cubic domains, we consider for each of them a spatial discretization with a structured
mesh made up with 8-nodes linear hexahedral elements with Gauss-Legendre quadrature rule. The
finite element mesh of 3D macroscopic domain Ωmacro is made with the same spatial discretization
as the one used for the 2D validation example at macroscale, that is a structured mesh of 25× 25
× 25 = 15,625 hexahedral elements with uniform element size hmacro = 80 µm = 8×10−5 m in
each spatial direction. The finite element mesh of 3D mesoscopic domain Ωmeso is made with the
same spatial discretization as the one used for the 2D validation example at mesoscale and whose
element size depends on the smallest spatial correlation length considered, that is a structured mesh of
20×20×20 = 8000 hexahedral elements with uniform element size hmeso = `/(nG/2) = (50 µm)/2 =

25 µm = 2.5×10−5 m in each spatial direction, with nG = 4 Gauss integration points per spatial
correlation length.

Concerning the computational stochastic homogenization, as for the 2D validation example, the
size BRVE of representative volume element ΩRVE is defined as a function of the spatial correlation
length ` such that BRVE = 20×` = 20×50 µm = 1 mm = 10−3 m.

Recall that the multiscale statistical inverse problem has been formulated into two decoupled
optimization problems in a and b, respectively, to be solved sequentially (see Section 7), namely (i) a
macroscale single-objective optimization problem (21) for the inverse identification of the optimal value
amacro of parameter a in its admissible set Amacro, and (ii) a mesoscale multi-objective optimization
problem (22) for the statistical inverse identification of the global optimal value bopt of hyperparameter
b in its reduced admissible set Bmeso

ad .

10.2.2. Resolution of the Single-Objective Optimization Problem at Macroscale

In this paragraph, we present the results of the first single-objective optimization problem (21) at
macroscale which consists in minimizing the macroscopic numerical indicator J macro(a) constructed
in each of the Q = 3 in silico test specimens for identifying the optimal value amacro of a at macroscale.
The single-objective optimization problem (21) at macroscale has been solved using the Nelder-Mead
simplex algorithm. The identification results are reported in Table 5 and show that the relative
error between the identified optimal value amacro = (138.783, 64.355) in [GPa] and the reference
experimental value amacro

exp = (138.758, 64.377) in [GPa] used for the construction of the numerically
simulated “experimental” database remains very small (less than 0.02% and 0.04% for κmacro and µmacro,
respectively), allowing to validate the proposed identification methodology in 3D linear elasticity for
the resolution of the single-objective optimization problem (21) at macroscale.

Table 5. Comparison between the identified optimal value amacro and the reference experimental
value amacro

exp .

κ [GPa] µ [GPa]

amacro 138.783 64.355
amacro

exp 138.758 64.377
Relative error [%] 0.018 0.034

10.2.3. Resolution of the Multi-Objective Optimization Problem at Mesoscale

In this paragraph, we present the results of the second multi-objective optimization problem (22)
at mesoscale which consists in simultaneously minimizing the three numerical indicators J meso

δ (b),
J meso
` (b) and J multi

h (amacro, b) constructed in each of the Q = 3 in silico tests specimens using the
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optimal parameter amacro = (138.783, 64.355) in [GPa] previously identified at macroscale (see the
previous paragraph) for identifying the global optimal value bopt of b at mesoscale.

In contrast, unlike the 2D validation example, the multi-objective optimization problem (22)
has been solved only with the fixed-point iterative algorithm using the same convergence criterion
on the residual norm between two iterations that must be less than a tolerance set to 10−9 and by
searching for the solution of the multi-objective optimization problem (22) in a multidimensional grid of
nV×nV×nV×nV points in the reduced admissible set Bmeso

ad ⊂ R4. The genetic algorithm has not been
used because the resulting computational cost was too high with the available computational resources.
The number of independent realizations for the statistical estimation of the mathematical expectations
involved in the different numerical indicators is set to Ns = 500. The number of evaluations of
the stochastic computational model needed by the fixed-point iterative algorithm is given by nFP

tot =

3 nV Ns ∑3
q=1 nq.

Table 6 reports the identification results obtained with the fixed-point iterative algorithm for
the set of Q = 3 in silico tests specimens, namely the set of identified values bmeso

1 , bmeso
2 , bmeso

3 and
numbers of iterations n1, n2, n3 required to reach the desired convergence (with a tolerance set to 10−9),
and the global optimal value bopt computed by using the MLE method. As for the 2D validation
example, there are more significant variations between the identified values `meso

1 , `meso
2 , `meso

3 and
δmeso

1 , δmeso
2 , δmeso

3 , again reflecting the fact that the two associated mesoscopic numerical indicators
J meso

δ (b) and J meso
` (b) depend directly on the experimental field measurements on each in silico test

specimen. The identified values κmeso
1 , κmeso

2 , κmeso
3 and µmeso

1
, µmeso

2
, µmeso

3
being almost identical for

each in silico test specimen, we directly identify the global optimal values κopt and µopt without using
the MLE method for the random variables K and M. Figure 8 shows the probability density functions
pD and pL defined in Section 9 and associated to random variables D and L, respectively. We finally
obtain the global optimal value bopt = (0.330, 91.236, 150.000, 64.722) in ([−], [µm], [GPa], [GPa]) with
relative errors less than 4% for δopt, `opt, κopt and µopt with respect to the reference experimental value
bmeso

exp = (0.32, 80, 145, 67.3) in ([−], [µm], [GPa], [GPa]) used to construct the numerically simulated
“experimental” database, allowing to validate the proposed identification methodology in 3D linear
elasticity for the resolution of the multi-objective optimization problem (22) at mesoscale.
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Figure 8. Fixed-point iterative algorithm: probability density functions pD and pL of random variables
D and L, respectively. (a) pD(δ); (b) pL(`).

In terms of computational efficiency, we can see in Table 6 that the numbers of iterations n1, n2, n3

required to achieve the desired convergence are relatively low (less than or equal to 4) for each of the 3
in silico test specimens yielding a number of calls to the deterministic numerical model at mesoscale
of 150,000.
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Table 6. Fixed-point iterative algorithm: comparison between the global optimal value bopt obtained
from the 3 identified values bmeso

1 , bmeso
2 , bmeso

3 for each of the 3 in silico test specimens and the reference
experimental value bmeso

exp .

δ ` [µm] κ [GPa] µ [GPa] nq

bmeso
1 0.311 65.556 150.000 64.722 3

bmeso
2 0.367 88.889 150.000 64.722 4

bmeso
3 0.311 81.111 150.000 64.722 3

bopt 0.330 77.271 150.000 64.722 -
bmeso

exp 0.320 80.000 145.000 67.300 -
Relative error [%] 3.009 3.411 3.448 3.831 -

nFP
tot 150,000

Finally, the results obtained for the identification of the parameters of the deterministic model at
macroscale and of the hyperparameters of the prior stochastic model at mesoscale for both validation
examples in 2D plane stress and 3D linear elasticity, for which the reference experimental values are
known a priori, demonstrate the efficiency, accuracy and robustness of the improved identification
methodology, thereby allowing to apply it in the next section to a real biological material (beef femur
cortical bone) with real experimental field measurements. Lastly, let us mention that the fixed-point
iterative algorithm introduced in the present work to solve the multi-objective optimization problem
allows a considerable gain in terms of computational cost compared to the genetic algorithm used
in Reference [140].

11. Numerical Application of the Multiscale Identification Method to Real Beef Cortical Bone in
Plane Stress Linear Elasticity

In this section, we present a numerical application of the proposed multiscale identification
methodology within the framework of 3D linear elasticity with 2D plane stress assumption by
using a real experimental database made up of 2D multiscale optical measurements of displacement
fields (obtained by DIC method) for only a single test specimen of cortical bone coming from a beef
femur. The multiscale experimental test configuration corresponds to the one described in Section 3
and already considered in the 2D and 3D numerical validation examples presented in Section 10.
Technical details concerning the experimental protocol (specimen preparation, measuring bench,
optical image acquisition system and DIC method) for obtaining the multiscale field measurements
(performed simultaneously at both macroscale and mesoscale) can be found in Reference [145]. The
unique test specimen at macroscale is a cubic shaped sample with dimensions 1×1×1 cm3 prepared
from bovine cortical bone. Even though such a biological tissue is often considered and modeled as a
deterministic homogeneous medium with a transversely isotropic linear elastic behavior at macroscale
(>10 mm), its microstructure at mesoscale (from 500 µm to 5 mm) contains randomly arranged osteons
with some resorption cavities (lacuna), that are the principal types of inclusions/inhomogeneities,
embedded in a matrix constituted by circumferential interstitial lamella surrounding Haversian canals.
As a consequence, it is an anisotropic (heterogeneous) composite material with a complex hierarchical
structure, which can be considered and modeled as a random linear elastic medium at mesoscale, and is
therefore well adapted to the experimental application of the multiscale identification methodology
developed in the present work. The single specimen is clamped on its lower face and loaded under
vertical uniaxial compression onto its upper face with a maximal resultant force of 9 kN so as to
preserve a linear elastic material behavior. In order to reduce the measurement noises (induced by
the speckled pattern technique, the lighting of the observed 2D face, the optical image acquisition
system, etc.), a Gaussian spatial filter classically used in image processing has been applied to smooth
the experimental displacement fields umacro

exp = (umacro
exp,1 , umacro

exp,2 ) and umeso
exp = (umeso

exp,1, umeso
exp,2) measured

at macroscale and at mesoscale, respectively. The images of experimental displacement fields at
macroscale and at mesoscale have been filtered with a 2D Gaussian smoothing kernel with standard
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deviation 3.5. This value has been chosen as a qualitative compromise allowing to regularize/smooth
the experimental kinematic fields without removing the spatial fluctuations that are of the same
order of magnitude as the lower bound of the search interval for the spatial correlation length `.
Such a spatial filter is also necessary to prevent the optimization algorithms from converging to
a zero spatial correlation length. Figures 9 and 10 represent the two components of macroscopic
experimental displacement field umacro

exp over the 2D macroscopic domain Ωmacro
exp and the ones of

mesoscopic experimental displacement field umeso
exp over the 2D mesoscopic domain Ωmeso

exp , respectively,
before and after application of the Gaussian spatial filter.

(a) (b) (c) (d)
Figure 9. Components umacro

exp,1 and umacro
exp,2 of macroscopic experimental displacement field umacro

exp over
the 2D macroscopic domain Ωmacro

exp before and after application of the Gaussian spatial filter. (a) umacro
exp,1

unfiltered; (b) umacro
exp,1 filtered; (c) umacro

exp,2 unfiltered; (d) umacro
exp,2 filtered.

(a) (b) (c) (d)
Figure 10. Components umeso

exp,1 and umeso
exp,2 of macroscopic experimental displacement field umeso

exp over
the 2D mesoscopic domain Ωmeso

exp before and after application of the Gaussian spatial filter. (a) umeso
exp,1

unfiltered; (b) umeso
exp,1 filtered; (c) umeso

exp,2 unfiltered; (d) umeso
exp,2 filtered.

11.1. Parameterization of the Macroscopic and Mesoscopic Models

In accordance with the experimental configuration and associated multiscale measurements,
2D plane stresses are assumed and consequently, the deterministic and stochastic computational
models at macroscale and mesoscale are the same as those used for the 2D validation example
presented in Section 10.1. Thus, the modeling at macroscale and at mesoscale for the prior stochastic
model, the hyperparameters and the parameterization are also exactly the same as in Section 10.1,
namely defining Smeso in SFE+ and introducing vector-valued parameter a = (κ, µ) and vector-valued
hyperparameter b = (δ, `, κ, µ). Optimal values of the latter are assumed to be in the reduced
admissible set Bmeso

ad ⊂ Bmeso constructed from information available in the literature such that
δ ∈ [0.30 , 0.65], ` ∈ [50 , 100] µm, κ ∈ [9.5 , 11] GPa and µ ∈ [3.5 , 5.0] GPa, instead of the full

admissible space Bmeso = ]0 , δsup[×]0 ,+∞[×]0 ,+∞[2 with δsup =
√
(n + 1)/(n + 5) =

√
7/11 ≈

0.7977 < 1 (with n = 6 in linear elasticity). As in the 2D validation example, this reduced admissible
set Bmeso

ad is discretized into nV = 10 points evenly spaced in each dimension for which the three
numerical indicators J meso

δ (b), J meso
` (b) and J multi

h (amacro, b) defined in Section 6.4 are evaluated
and compared.

As for Section 10.1, both the deterministic boundary value problem (2)–(6) set on the macroscopic
domain Ωmacro and the stochastic boundary value problem (7)–(10) set on the mesoscopic domain
Ωmeso with 2D plane stress assumption are solved by discretizing the 2D domains of observation
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Ωmacro
obs and Ωmeso

obs in space using the FEM. As 2D macroscopic and mesoscopic domains of observation
Ωmacro

obs and Ωmeso
obs are square domains, we consider for both a spatial discretization with a structured

mesh made up with 4-nodes linear quadrangular elements with Gauss-Legendre quadrature rule, in
order to be consistent with the regular grids used for the acquisition and discretization of experimental
data. The 2D macroscopic domain Ωmacro

obs with macroscale dimensions 1×1 cm2 is discretized with a
structured mesh of 9×9 = 81 quadrangular elements with uniform element size hmacro = 1.111 mm =

1.111×10−3 m in each spatial direction. The 2D mesoscopic domain Ωmeso
obs with mesoscale dimensions

1×1 mm2 is discretized with a structured mesh of 99×99 = 9801 quadrangular elements with uniform
element size hmeso = 10.10 µm = 1.010×10−5 m in each spatial direction. As for the 2D validation
example, the size BRVE of representative volume element ΩRVE is defined with respect to the spatial
correlation length ` such that BRVE = 20×`. The stochastic boundary value problem (7)–(10) at
mesoscale is solved using the Monte Carlo numerical method and statistical convergence analyses
have been systematically performed to set the number of independent realizations for the statistical
estimation of the mathematical expectations involved in the different numerical indicators to the value
Ns = 500.

11.2. Numerical Results of the Multiscale Statistical Inverse Identification

11.2.1. Resolution of the Single-Objective Optimization Problem at Macroscale

In this paragraph, we present the results of the first single-objective optimization problem (21) at
macroscale which consists in minimizing the macroscopic numerical indicator J macro(a) constructed
in the macroscopic domain of observation Ωmacro

obs for identifying the optimal value amacro of a at
macroscale. The single-objective optimization problem (21) at macroscale has been solved using the
Nelder-Mead simplex algorithm. Table 7 gives the identified optimal value amacro = (11.335, 4.781)
in [GPa], corresponding to a macroscopic transverse bulk modulus κmacro = 11.335 GPa and a
macroscopic transverse shear modulus µmacro = 4.781 GPa, or equivalently to a macroscopic transverse
Young’s modulus Emacro = 12.575 GPa and a macroscopic transverse Poisson’s ratio νmacro = 0.3151,
which are in coherence with the values already published and available in the literature for this type of
biological material.

Table 7. Identified optimal value amacro of parameter a = (κ, µ).

κ [GPa] µ [GPa]

amacro 11.335 4.781

11.2.2. Resolution of the Multi-Objective Optimization Problem at Mesoscale

In this paragraph, we present the results of the second multi-objective optimization problem (22)
at mesoscale which consists in simultaneously minimizing the three numerical indicators J meso

δ (b),
J meso
` (b) and J multi

h (amacro, b) constructed in the mesoscopic domain of observation Ωmeso
obs using

the optimal parameter amacro = (11.335, 4.781) in [GPa] previously identified at macroscale (see the
last paragraph) for identifying the global optimal value bopt of b at mesoscale. The multi-objective
optimization problem (22) has been solved only by using the fixed-point iterative algorithm (with a
convergence criterion on the residual norm between two iterations that must be less than a tolerance
set to 10−9) and by searching for the solution of the multi-objective optimization problem (22) in
a multidimensional grid of nV×nV×nV×nV points in the reduced admissible set Bmeso

ad ⊂ R4.
The number of evaluations of the stochastic computational model needed by the fixed-point iterative
algorithm is given by nFP

tot = 3 nV Ns nFP, where nFP is the number of iterations required to reach the
desired convergence for the considered mesoscopic domain of observation Ωmeso

obs .
Table 8 gives the identified optimal value bmeso = (0.533, 61.111, 10.500, 4.667) in

([−], [µm], [GPa], [GPa]) obtained with the fixed-point iterative algorithm, corresponding to a
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dispersion parameter δmeso = 0.533, a spatial correlation length `meso = 61.111 µm, a mesoscopic
mean transverse bulk modulus κmeso = 10.500 GPa and a mesoscopic mean transverse shear
modulus µmeso = 4.667 GPa, or equivalently to a mesoscopic mean transverse Young’s modulus
Emeso = 12.194 GPa and a mesoscopic mean transverse Poisson’s ratio νmeso = 0.3064. The number
of iterations nFP required to achieve the desired convergence with the fixed-point iterative algorithm
over the mesoscopic subdomain Ωmeso is nFP = 5, leading to a number of evaluations of the stochastic
computational model equal to nFP

tot = 7500. The identification results obtained at mesoscale are also in
agreement with the information provided in the literature for this type of biological material. Indeed,
from a physical standpoint, the identified spatial correlation length `meso = 61.111 µm turns out to be
of the same order of magnitude as the distance between two adjacent lamellae of an osteon in bovine
(beef femur) cortical bone. Moreover, such a value of spatial correlation length is in accordance with
the assumption of scale separation between macroscale and mesoscale.

Table 8. Fixed-point iterative algorithm: identified optimal value bmeso of hyperparameter b =

(δ, `, κ, µ) for the mesoscopic domain of observation Ωmeso
obs .

δ ` [µm] κ [GPa] µ [GPa] nFP

bmeso 0.533 61.111 10.500 4.667 5

nFP
tot 7500

12. Conclusions

In the present work, we have revisited the multiscale identification methodology recently
proposed in Reference [140] for the mechanical characterization of the apparent elastic properties of a
complex microstructure made up of a heterogeneous anisotropic material that can be considered as a
random linear elastic medium within the framework of 3D linear elasticity theory. Such a multiscale
identification has been performed by solving a challenging multiscale statistical inverse problem
(requiring multiscale experimental field measurements) formulated as a multi-objective optimization
problem. This latter can be decomposed into a first single-objective optimization problem defined
at macroscale and a second multi-objective optimization problem defined at mesoscale, to be solved
sequentially and involving cost functions (numerical indicators) sufficiently sensitive to the variation of
the parameters and hyperparameters to be identified. These numerical indicators allow for quantifying
and minimizing the distance between some relevant quantities of interest resulting from the multiscale
experimental field measurements at macroscale and mesoscale on the one hand, and their counterparts
obtained through forward numerical simulations of a deterministic computational model at macroscale
and of a stochastic computational model at mesoscale corresponding to the experimental configuration
on the other hand. We consider an ad hoc prior stochastic model introduced in Reference [144] for the
numerical modeling and simulation of the random elasticity field, which is parameterized by a small
number of hyperparameters. We also employ a stochastic computational homogenization method
for the transfer of statistical information from mesoscale to macroscale. The multiscale identification
methodology leads to the identification of the optimal values of (i) the parameters involved in the
deterministic model of the effective (deterministic and homogeneous) elasticity tensor at macroscale
and (ii) the hyperparameters involved in the prior stochastic model of the apparent (random and
heterogeneous) elasticity tensor field at mesoscale

In the present paper, we have proposed two main improvements of the multiscale statistical
inverse identification methodology of the prior stochastic model. First, we have introduced
an additional single-objective cost function (numerical indicator) at mesoscale dedicated to the
identification of the spatial correlation length(s) involved in the prior stochastic model, allowing the
newly formulated multi-objective optimization to be solved with a better computational efficiency by
using a (computationally cheap) fixed-point iterative algorithm instead the (costly) global optimization
algorithm (genetic algorithm) used in Reference [140]. The identification results obtained with the
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fixed-point iterative algorithm are promising and comparable to that obtained with the genetic
algorithm in terms of accuracy. Second, an ad hoc probabilistic modeling of the hyperparameters
involved in the prior stochastic model and identified on different mesoscopic domains of observation
has been proposed in order to improve both the robustness and the precision of the statistical inverse
identification method of the prior stochastic model. Finally, the improved identification methodology
has been first validated on in silico materials within the framework of 2D plane stress and 3D linear
elasticity with numerically simulated multiscale experimental data, and then successfully applied
to real heterogeneous biological material within the framework of 2D plane stress linear elasticity
with real multiscale experimental measurements of 2D displacement fields obtained from a static
uniaxial compression test performed on a single specimen made of bovine cortical bone and monitored
by 2D digital image correlation at both macroscale and mesoscale. In line with this work, several
perspectives could be addressed: (i) the multi-objective optimization problem could be solved by
using machine learning based on artificial neural networks with a numerical database generated from
the stochastic computational model to train an artificial neural network in an (offline) preliminary
phase and to use the trained neural network to perform the statistical inverse identification in a
computationally cheap (online) computing phase for further reducing the computational cost; (ii) the
proposed methodology could be applied to real multiscale experimental measurements of full 3D
displacement fields obtained for example by X-ray computed microtomography and digital volume
correlation, and also to other types of random heterogeneous materials; (iii) the proposed methodology
could be improved by identifying a posterior stochastic model of the non-Gaussian random elasticity
(or compliance) field in high stochastic dimension at the mesoscale of an anisotropic heterogeneous
linear elastic microstructure using the identified prior stochastic model.
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