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Two polysaccharide fractions from Pogostemon cablin (Blanco) Benth. (P. cablin)
(designated as PCB-1 and PCB2-1) were isolated by water extraction and purified by
Sepharose chromatography. The chemical properties of the polysaccharides were
characterised, and their antioxidant activities were evaluated. The sugar content of the
crude polysaccharide (PCB), PCB-1, and PCB2-1 was 58.74, 90.23 and 88.61%,
respectively. The molecular weights of PCB-1 and PCB2-1 were determined to be
97.8 and 12.8 kDa, respectively. Monosaccharide composition analysis showed that
all the three polysaccharides consisted of mannose, rhamnose, galacturonic acid,
galactose, glucose, and arabinose, but with varying molar ratios. The polysaccharides
exhibited significantly high antioxidant activities in vitro based on the scavenging activity
against hydroxyl radicals, metal ion-chelating and ferric-reducing abilities. In vivo
experiments in an oxidatively damaged mice model showed that PCB-1 increased the
levels of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione
peroxidase, and inhibitedmalondialdehyde formation in the serum and liver. These findings
suggest that PCB-1 has significant potential as an antioxidant in functional foods.
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INTRODUCTION

Antioxidant activity is necessary for the body to defend against and resist the progression of various
diseases, including aging linked to excessive reactive oxygen species (ROS) production (Huang et al.,
2021). An excessive amounts of ROS can be produced by environmental stimuli to cause oxidative
damage to DNA, protein, and lipids (Ke et al., 2009). Under normal conditions, the antioxidant
defence systems can quickly remove excess ROS; however, these protective systems may not be
effective under pathological conditions. Thus, the importance of identifying and understanding the
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role of dietary antioxidants in defending against cumulative
oxidative stress and the underlying mechanism is increasingly
being recognised.

Polysaccharides, as essential functional components of most
plants, typically exhibit highly specific chemical structures and
biological activities, such as immunity-enhancing, anti-aging,
blood sugar-reducing, blood lipid-reducing, anti-tumour, anti-
viral, anti-bacterial, and anti-coagulation effects (Li. et al., 2021b;
Chumroenphat, 2021). Moreover, previous studies have
demonstrated that polysaccharides have low toxicities and no
side effects when used for a disease treatment (Basak and
Gokhale, 2022). Most polysaccharides can relieve oxidative
stress damage (Liu et al., 2021; Wang et al., 2021). In
particular, polysaccharides have been shown to influence
oxidative damage in mice via their antioxidant activities by
acting on sirtuin 1 (SIRT1), a key member of the family of
silent transcriptional regulators. SIRT1 can deacetylate a
variety of proteins and plays an important role in resisting
oxidative damage. Moreover, it is also an upstream regulator
of peroxisome proliferator-activated receptor-gamma
coactivator-1α (PGC-1α) (Lee et al., 2018; Waldman et al.,
2018). SIRT1 can activate the expression of PGC-1α through
deacetylation, thereby reducing the damage by oxidative stress.
The uncoupling protein 2 (UCP2) is an inner-membrane
mitochondrial protein, which is an important regulator of
ROS formation, and PGC-1α can directly regulate the
expression of UCP2 (Huang et al., 2019).

“Guang-Huo-Xiang” is a traditional medicine derived from
the dry overground parts of Pogostemon cablin (Blanco) Benth (P.
cablin), which is mainly distributed in China, India, and
Indonesia (Su et al., 2017). P. cablin is well-known for its oil,
which is used as food additive or in the perfume and cosmetic
industries (Swamy and Sinniah, 2015). P. cablin has been
included on the list of medicinal and food homology in China
(Kim et al., 2015), but has recently attracted more attention
because of its varied biological functions, including antibacterial
(Wan et al., 2021), antiviral (Yu et al., 2019), anti-inflammatory
(Chen et al., 2021), antidepressant (Zhuo et al., 2020), and anti-
oxidative effects (Liu et al., 2017). However, previous
investigations on P. cablin have mainly focused on the
constituent mono- and sesquiterpenoids, triterpenoids,
steroids, flavonoids, alkaloids, and phenylpropanoid glycosides
(Zhao et al., 2005). To date, no specific studies on the structural
characterisation and biological activities of P. cablin
polysaccharides have been conducted, specifically in terms of
their antioxidant activity. Therefore, our study on the antioxidant
activity of P. cablin polysaccharides is of great significance for the
development and utilization of P. cablin.

In the current study, we purified the polysaccharide fractions
from P. cablin and the antioxidant activity of these
polysaccharides was measured in vitro. In addition, the effect
of one of the extracted polysaccharides on antioxidant enzymes
was evaluated in vivo using the mice model with stimulated
oxidative damage. Therefore, this study aimed to extract P.
cablin polysaccharide and fractionate it systematically by using
gel chromatography, and to further explore their antioxidation
potential in vitro and in vivo.

MATERIALS AND METHODS

Extraction and Purification of
Polysaccharides
The P. cablin powder was obtained from a local shop (Changchun,
Jilin Province, China), and its taxonomical characteristics were
identified by Professor Shumin Wang. Samples were extracted at
100°C in a water bath at a ratio of 1: 20 (w/v) three times for 3, 2,
and 2 h. The supernatants were added to four volumes of 80%
ethanol for 24 h and the retentates were dissolved in distilled water.
The proteins were then removed using Sevage solution
(chloroform: n-butyl alcohol, 4:1, v/v) (Zhu et al., 2019). The
dialysis liquid was collected and lyophilised to obtain the crude
polysaccharide (PCB). PCB was dissolved in deionised water at a
concentration of 1 mg/ml and centrifuged (11,000 × g, 10min).
The supernatants were loaded onto a Sepharose CL-6B
chromatography column (2.5 × 90 cm) and eluted with NaCl
solution (0.9%) at a flow rate of 0.5 ml/min. Two fractions were
obtained (designated as PCB-1 and PCB-2). A Sephadex G-75
column with a column size of 2.5 × 90 cm was applied to further
purify PCB-2, which was eluted with distilled water at a flow rate of
0.5 ml/min. The eluting peak was collected (designated as PCB2-1).
The experimental procedure is shown in Figure 1.

Molecular Weight Determination
The average Mw of PCB-1 and PCB2-1 were evaluated using
high-performance gel permeation chromatography (HPGPC)
(Xu et al., 2016). The samples (10 mg) were dissolved with
ultrapure water (1.0 ml) and filtered through a 0.45 μm
membrane filter. Analysis was performed with an Ultimate
3,000 system (Thermo Fisher Scientific, United States) coupled
to a TSK-G3000 PWXL column (7.8 mm i. d. × 30.0 cm) and
tested by a refractive index detector (RID-10A) at 40°C. The
column was eluted with ultrapure water at a flow rate of 0.5 ml/
min, and the filtrate solution (20 μL) was injected for high
performance liquid chromatography (HPLC) analysis.

Chemical Analysis
The polysaccharide content was measured by the phenol-sulfuric
acid method with glucose as a standard (Du et al., 2016). Uronic
acid was determined using the previously reported method with
galacturonic acid as the standard (Blumenkrantz and Asboe-
Hansen, 1973). Protein content was measured by Bradford assay
at 595 nm using bovine serum albumin as a standard (Sedmak
and Grossberg, 1977).

Monosaccharide Composition Analysis
The monosaccharide composition was analysed using the
previous method with some modifications (Li et al., 2018).
Briefly, the samples (2.0 mg) were hydrolysed in 0.5 ml of 1 M
hydrochloric acid (dissolved in methanol) at 80°C for 16 h, then
further hydrolysed with 0.5 ml of 2 M trifluoroacetic acid at 120°C
for 1 h. After the excess acid was removed by evaporation, the
dried product was mixed with aqueous sodium hydroxide (0.3 M,
0.5 ml). The mixtures were derived with 0.5 ml of 1-phenyl-3-
methyl-5-pyrazolone (PMP) and 0.5 ml of 0.3 M sodium
hydroxide. The obtained product was neutralised with 50 μL of
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hydrochloric acid (0.3 M), and excess PMP reagents were
removed using 1 ml of chloroform, repeated thrice.

The PMP derivatives (20 μL) were analysed using the Agilent
RRLC 1200 SL system (Agilent Technologies, DE, Wilmington,
United States), coupled with a DIKMA Inertsil ODS-3 column
(4.6 × 150 mm, 5 μm, Dikma, Japan). The derivatives were eluted
with the mobile phase, composed of 82.0% phosphate-buffered
saline (0.1 M, pH 7.0) and 18.0% acetonitrile (v/v). Total HPLC
run at a flow rate of 1.0 ml/min, and the absorbance was
measured at 245 nm.

Fourier-Transform Infrared Spectroscopy
Analysis
FT-IR spectroscopy of the samples was performed according to a
previous study (Jiao et al., 2020). The IR spectra were acquired
using an FT-IR spectrometer at 25°C. Briefly, the sample (1.5 mg)
was measured with potassium bromide (150 mg) powder pellets
on a Bruker Vertex 7.0 FT-IR spectrometer (Germany). The scan
range was 4,000–400 cm−1.

In Vitro Antioxidant Activities
Hydroxyl Radical Scavenging Activities
The hydroxyl radical (•OH)-scavenging activities of PCB-1 and
PCB2-1 were measured following the method described by Jiao et al.

(Jiao et al., 2014). Briefly, 0.1 ml sample solution was added to 0.6 ml
of a reaction mixture [phosphate buffer (0.2 M, pH = 7.4),
deoxyribose (2.67 mM), and ethylene diamine tetraacetie acid
(EDTA, 0.13mM)], FeSO4 (0.2 ml, 0.4 mM), vitamin C (Vc, 0.05
ml, 12 mM), and H2O2 (0.05 ml, 20 mM). The working mixtures
were incubated together (37°C, 15min). Then, thiobarbituric acid
(TBA, 1ml, 1%) and trichloroacetic acid (1ml, 1%) were mixed
evenly and incubated together at 100°C for 15 min. The absorbance
of each mixture was measured at 532 nm using a UV
spectrophotometer. Distilled water was used as a control and Vc
as positive control for the determination of •OH. Radical scavenging
activity was calculated using the following equation:

Scavenging rate(%) � [A0 − (As − Ai)]/A0 × 100

where As is the absorbance of the sample, A0 is the absorbance of
the control group, and Ai is the absorbance of the mixture without
FeSO4.

Chelating Ability on Ferrous Ions
The chelating ability on ferrous ions was determined according to
a previous study (Ge et al., 2014). The polysaccharide sample
(1 ml) was mixed with methanol (3.7 ml) solution and
FeCl2·4H2O (2 mM, 0.1 ml), and then ferrozine (5 mM, 0.2 ml)
was added to the mixture and shaken well.

FIGURE 1 | Experimental procedure for extraction and purification of polysaccharides isolated from P. cablin.
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After incubation at room temperature for 10 min, the
absorbance was measured at 562 nm against a control.
Distilled water as the control and EDTA was used as positive
control for the determination of chelating ability on ferrous ions.
The scavenging of ferrous ions was calculated using the following
equation:

Scavenging rate(%) � (A0 − As)/A0 × 100

where A0 is the absorbance of the control group and As is the
absorbance of the sample.

Ferric-Reducing Antioxidant Power
The FRAP abilities of samples were determined according to the
minor method of Dammak et al. (2018) with slight modifications.
Firstly, various concentrations of sample (0.3 ml) was reacted
with 2.7 ml of freshly prepared FRAP reagent [5.0 ml of 10 mM
1,3,5- tri (2-pyridyl)-2,4,6-triazine (TPTZ) in HCl (40 mM),
5.0 ml of 20 mM FeCl3·6H2O, and 50 ml of 300 mM acetate
buffer, pH 6.3]. After being shaken well and incubated
together at 37°C for 10 min, the absorbance of the resulting
mixture was measured at 593 nm. A higher FRAP value
indicates stronger antioxidant capacity. Distilled water was
used as the control and EDTA was used as the positive
control for the determination of FRAP.

Determination of in Vivo Antioxidant
Capacity
Animals, Grouping, and Experimental Design
The antioxidant activities of PCB-1 in vivo were determined
according to a previously reported method (Zeng et al., 2018).
Male ICR mice (8 weeks old, 18–22 g; Yisi Experimental Animal
Technology Co., Ltd., Changchun, Jilin Province, China) were
maintained on a 12-h-dark/12-h-light cycle at approximately
22°C and 50–60% relative humidity with free access to food
and water. All animal studies have been approved by the
Animal Ethics Committee of Changchun University of
Chinese Medicine.

After adaptation to their environment for 1 week, 60 mice
were randomly divided into six groups (n = 10 per group): normal
control group (NCG), D-galactose (D-gal) model control group
(MCG), Vc positive control group (PCG), and dose-dependent
PCB-1 (50, 100, and 200 mg/kg body weight) treatment groups.
With the exception of the NCG group, the mice were
subcutaneously injected with 1.35 g/kg body weight D-gal. The
PCG group was orally administered 100 mg/kg body weight Vc;
the three treatment groups were orally administered 50, 100, and
200 mg/kg body weight PCB-1, respectively; and the NCG and
MCG groups were orally administered an equal dose of normal
saline (Ye et al., 2014). Subcutaneous injection and oral
administration were calculated as 0.1 ml/10 g. All mice were
treated for 42 consecutive days, once daily.

Biochemical Assay
The mice were weighed and killed by decapitation the following
morning of the last drug administration. Blood samples were

collected and centrifuged (4,000 × g, 10 min, 4°C) and the serum
was collected. The liver was removed, weighed, and immediately
stored in 0.1 g tissue/mL ice-cold isotonic physiological saline (Qi
et al., 2020). The samples were centrifuged as described above,
and the supernatant was collected and subjected to further
analysis.

The commercial reagent kits obtained fromNanjing Jiancheng
Bioengineering Institute (Jiangsu, China) were used to analyse the
activities of superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GSH-Px), and to determine
malondialdehyde (MDA) levels and the protein content. SOD,
CAT, and GSH-Px activities were determined using xanthine
oxidase-xanthine reaction system, yellow H2O2-ammonium
molybdate reaction system, and reduced glutathione (GSH)-
H2O2 reaction system methods, respectively. The levels of
MDA were measured using the TBA method and the ferric
reducing/antioxidant power reaction system.

Western Blot Analysis
Frozen mice liver (40 mg) were thawed, minced, and homogenised
on ice using an Ultraturrax homogeniser in RIPA lysis buffer
(500 μL). The RIPA tissue lysate (Thermo Fisher Scientific, Inc.,
Waltham, MA, United States) was used to extract total protein
from the liver tissues. Homogenates were centrifuged (10,000 × g,
20 min, 4°C) to obtain the supernatants. The protein
concentrations were analysed using BCA protein quantification
kit (Nanjing Jiancheng Bioengineering Institute, Jiangsu, China).
Protein lysates (40 μg) were separated by electrophoresis and then
transferred to a polyvinylidene fluoride (PVDF) membrane
(Millipore, Billerica, MA, United States) overnight at 4°C. The
PVDF membrane was then blocked with skimmed milk (5%) for
1 h at 25°C and shaken at 75 rpm, followed by incubation with
primary antibodies anti-β-actin (1:5,000, Abcam,
United Kingdom), anti-SIRT1 (1:3,000, ABclonal,
United States), anti-PGC-1α (1:2,000, Bioss, United States), and
anti-UCP2 (1:1,500, Bioss, United States) at 4°C overnight and then
with a secondary antibody (1:3,000, Servicebio, Wuhan, China) for
1 h at 25°C. The signals were visualised by chemiluminescence
using enhanced chemiluminescence reagents and X-ray films. The
strip images were scanned and the optical densities of the protein
bands were quantified using ImageJ software (Zhou et al., 2021).

Data Analysis
All data are expressed as the mean ± standard deviation. The
statistical significance of the difference between groups was
evaluated using one-way analysis of variance followed by
Student’s t-test. Significance level was set at p < 0.05.

RESULTS AND DISCUSSION

Purification and Characterisation of
Polysaccharides
Using hot water extraction, alcohol precipitation, deproteinisation,
and dialysis, PCB was obtained from P. cablin, with a yield of
6.24%. The PCB was purified using a Sepharose CL-6B column,
and two fractions were obtained, designated as PCB-1 (yield of
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3.26%) and PCB-2 (yield of 2.23%). PCB-2 was further fractionated
by Sephadex G-75 gel permeation chromatography and the target
polysaccharide obtained was designated as PCB2-1 (yield of
1.96%). The elution curves of PCB-1 and PCB2-1 are shown in
Figures 2A,C. TheHPLC profiles of both PCB-1 and PCB2-1 had a
single and symmetrical sharp peak, indicating that they were
homogeneous polysaccharides (Figures 2B,D). The Mw of
PCB-1 was determined to be 97.8 kDa, whereas that of PCB2-1
was 12.8 kDa. The carbohydrate contents of PCB, PCB-1, and
PCB2-1 was 58.74, 90.23, and 88.61%, and the uronic acid content
was 7.65, 13.04, and 9.10%, respectively. Moreover, a negative
response to the Bradford reaction, proved that the protein had been
effectively removed from the samples (Zeng et al., 2019).

The monosaccharide composition is of great significance for
the characterisation of polysaccharides given the important
effects of monosaccharides on structure and biological activity
(Chen et al., 2019). HPLC analysis showed that PCB (Figure 3A),
PCB-1 (Figure 3B), and PCB2-1 (Figure 3C) were acidic
heteropolysaccharides. Although all these polysaccharides were
mainly composed of mannose (Man), galactose (Gal),

galacturonic acid (Gal A), rhamnose (Rha), glucose (Glc) and
arabinose (Ara); however, there were differences in the content of
specific monosaccharides and their ratios with molar ratios of
1.00:5.17:2.66:1.39:1.56:2.39, 1.00:3.63:4.31:1.73:0.97:2.93, and
1.00:2.51:3.48:3.20:2.70:1.22 for PCB, PCB-1, and PCB2-1,
respectively. Among PCB-1 and PCB2-1, the content of Gal A
was the highest, which was 29.58 and 24.66%, respectively.
Moreover, Chen et al. obtained two polysaccharides from P.
cablin by combination of water extraction and ion exchange
chromatography. Of note, Gal and Glc were the major
component in the two polysaccharides, and the content of Gal
A in the two polysaccharide was less than 10%, which was
different from this study (Chen et al., 2020b). The difference
in the composition of monosaccharides might be attributed to the
extraction and purification procedures (Li et al., 2019; Li et al.,
2021).

FT-IR Spectrum Analysis
As shown in Figure 4, the absorption bands in the range of
4000–400 cm−1 were recognised as characteristic peaks of

FIGURE 2 | Molecular weight (Mw) determination of polysaccharides isolated from P. cablin: (A) HPGPC analysis of PCB-1; (B) HPLC analysis of PCB-1; (C)
HPGPC analysis of PCB2-1; (D) HPLC analysis of PCB2-1.
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polysaccharides (Hashemifesharaki et al., 2020). The peaks at
3406.73 and 3381.16 cm−1 were typical peaks belonging to
O–H bond stretching vibrations present in PCB-1 and
PCB2-1, and the absorption bands at 2930.40 and
2935.32 cm−1 were attributed to C–H stretching vibrations
in PCB-1 and PCB2-1, including CH2 and CH3 groups. In
addition, the peaks at 1414.76 and 1384.83 cm−1 attributed to
the stretching vibration signals of C–H and C–Owere absent in
PCB-1 and PCB2-1. Moreover, the strong characteristic
absorption bands appearing at 895.29, and 887.09 cm−1

indicated the abundance of β-glycosidic linkages in PCB-1
and PCB2-1, and the signals at 833.56 and 845.41 cm−1

suggested the existence of an α-terminal epimer in these
polysaccharides (Hua et al., 2019). Thus, the glycosidic
bonds in these P. cablin polysaccharides could be identified
as α-type and β-type (Chen et al., 2019b).

In Vitro Antioxidant Activities
Hydroxyl Radical Scavenging Activity
The •OH are considered highly reactive oxygen radicals, which
can stimulate the peroxidation reaction of nucleic acids, protein,
and lipids (Chen et al., 2020a). Hence, removal of •OH is crucial
for effective antioxidant activity to protect cells from damage (Qi
et al., 2006). As shown in the scavenging activities of the samples
in a dose-dependent manner increased in the concentration range
of 0.25–7.5 mg/ml in the order Vc > PCB-1 > PCB2-1. Moreover,
PCB-1 exhibited the strongest antioxidant activity at a
concentration of 7.5 mg/ml, with a scavenging rate of 81.29%,
whereas PCB2-1 had lower scavenging activity at the same
concentration (40.25%). Therefore, PCB-1 exhibits strong
capacity to supply hydrogen to combine with •OH, thereby
achieving a radical scavenging effect.

It has been widely reported that the antioxidant activity of
polysaccharides to scavenge •OH depends on the type, number,
and position of anomeric hydrogen, monosaccharide components,
and chemical structures (Chumroenphat, 2021). Thus, the stronger
ability of PCB-1 to inhibit the •OHmay be related to its higherMw
compared to that of PCB2-1. However, the in-depth
structure–activity relationship requires further study.

Metal Chelating Ability
Iron can stimulate lipid peroxidation through the Fenton reaction
(Fe2+ + H2O2 → Fe3+ + OH• + OH−), which accelerates lipid
peroxidation by breaking down hydrogen and driving the chain
reaction of lipid peroxidation (Sun et al., 2010). Thus, Fe2+ plays
an important role in antioxidation and is a significant co-oxidant
in cells. The chelating assay involves inhibition of the formation
of red-coloured ferrozine-Fe2+ complex to indicate antioxidant
activity (Liu et al., 2010). The chelating abilities of PCB-1, PCB2-
1, and EDTA are shown in Figure 5B. PCB-1 achieved maximum
chelating ability of 79.2% at 1.25 mg/ml, which was higher than
that of PCB2-1 at the same concentration. EDTA and both

FIGURE 3 | Monosaccharide composition analysis of polysaccharides
isolated from P. cablin: (A) Monosaccharide composition of PCB; (B)
Monosaccharide composition of PCB-1; (C)Monosaccharide composition of
PCB2-1. PMP-labeled and analysed by HPLC.

FIGURE 4 | FT-IR spectra of polysaccharides isolated from P. cablin: FT-
IR spectrum of PCB-1 and PCB2-1.
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polysaccharides displayed significant antioxidant capacity on
Fe2+ in a concentration-dependent manner. Yuan et al. found
that compounds with better metal chelating capacities always
include two or more of the following functional groups: -OH,
-SH, -COOH, -PO3H2, C=O, -NR2, -S-, and -O- (Yuan et al.,
2005). Therefore, these results reveal a marked capacity of PCB-1
and PCB2-1 for iron binding, suggesting that the chelating
activities may be due to the uronic acid content.

Ferric Reducing Ability
As a significant indicator of antioxidant activity, the FRAP assay is
commonly used to determine the antioxidant activity of
polysaccharides, as it is a simple, rapid, and sensitive test (Liu
et al., 2021). The antioxidant activity was evaluated by detecting
the increase in absorbance that leads to formation of the Fe3+–TPTZ
complex, which was detected by the change in absorbance at 593 nm
(Veenashri and Muralikrishna, 2011). At a concentration of
1.25 mg/ml, the FRAP value of PCB-1 and PCB2-1 was 4.52
and 1.16 mmol FeSO4/g, respectively, suggesting that PCB-1
exhibited higher reducing power. This difference may be related
to the differences in the main electron-donating sugar units, the
type and position of glycosidic linkages, conformations, and
degree of branching of the two polysaccharides (Chumroenphat,
2021).

In Vivo Antioxidation Effects
D-gal was used to establish an oxidative damage mouse model to
determine the in vivo antioxidant activity of PCB-1. D-gal can
prompt the accumulation of ROS, or indirectly decrease free
radical production by the formation of advanced glycation end-
products in vivo (Song et al., 1999; Hsieh et al., 2009). SOD, CAT,
and GSH-Px, which are regarded as the major antioxidant
enzymes, were used as biomarkers to indicate ROS production
and inhibition of the formation of ROS during oxidative stress
(Inal et al., 2001). When compared with those of the NCG group,

significant decreases in SOD, GSH-Px, and CAT activities were
observed in the MCG group, whereas the levels of MDA
significantly increased in the serum and liver of MCG mice.
The effects of PCB-1 and Vc on the activities of SOD, GSH-Px,
CAT, and MDA levels in the serum and livers of oxidatively
damaged mice are presented in Table 1 and Table 2. In both the
serum and liver, treatment of PCB-1 at 100 or 200 mg/kg body
weight and Vc significantly increased the capacities of antioxidant
enzymes as compared to those of the MCG group. MDA is the
main marker of endogenous lipid peroxidation. Thus, MDA
levels can represent the degree of lipid peroxidation (Bagchi
et al., 1995). The levels of MDA in the PCB-1 and Vc
treatment groups decreased notably in both the serum and
liver compared with those of the MCG group. These results
further confirm that the inhibitory effect of PCB-1 on antioxidant
activities might be, at least in part, due to enhancement in the
activities of SOD, CAT, and GSH-Px and a decrease in MDA
levels.

Western Blot Assay
SIRT1 is a deacetylase that regulates processes such as
oxidative stress, apoptosis, and neuronal protection (Haigis
and Sinclair, 2010). SIRT1-mediated protein deacetylation
subsequently activates downstream targets, including PGC-
1α and FOXO1 (Huang et al., 2019). PGC-1α has been reported
to inhibit apoptosis, reduce ROS accumulation, and protect
cells from oxidative stress by activating transcription factors
(Ye et al., 2014). Accumulating evidence further implicates
UCP2 in protecting against oxidative stress (Anedda et al.,
2008). As shown in Figure 6, the MCG group showed a
substantial decrease of SIRT1, PGC-1α, and UCP2
expression levels in the liver compared with those of the
NCG group (p < 0.01), indicating that activation of these
proteins could be potentially protective against oxidative
stress. Treatment of oxidatively damaged mice with Vc and

FIGURE 5 | Antioxidant activities of the polysaccharides from P. cablin: (A) Hydroxyl radical scavenging activity of PCB-1 and PCB2-1 (B) Fe2+ chelating activity of
PCB-1 and PCB2-1. Each value represents the mean ± SD (n = 3).

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9336697

Zhao et al. Studies on Polysaccharides

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


PCB-1 resulted in a significant increase in SIRT1, PGC-1α, and
UCP2 expression levels compared with those of the MCG
group, indicating that PCB-1 could help to resist oxidative
stress damage (p < 0.01). These results further support the

beneficial roles of SIRT1, PGC-1α, and UCP2 in the regulation
of oxidative stress. In conclusion, the results suggest that the
antioxidant effects of PCB-1 could be mediated via the SIRT1/
PGC-1α/UCP2 signalling pathway.

TABLE 1 | Effects of PCB-1 on activities of SOD, CAT, GSH-Px and levels of MDA in serum of D-gal induces oxidative damage mice.

Group SOD (U/ml) CAT (U/ml) GSH-Px (U/ml) MDA (nmol/ml)

Normal control group 527.11 ± 13.24* 222.84 ± 15.14* 721.14 ± 25.74* 16.89 ± 0.71*
Model control group 360.02 ± 9.74# 136.72 ± 10.02# 409.87 ± 15.92# 36.10 ± 1.02#

Positive control group 506.29 ± 18.74* 201.49 ± 11.24** 699.72 ± 21.67** 20.17 ± 1.89*
PCB-1 (50 mg/kg) 370.22 ± 11.87* 140.02 ± 8.79* 467.84 ± 32.66** 35.17 ± 1.19*
PCB-1 (100 mg/kg) 437.65 ± 21.14* 180.07 ± 9.11* 593.69 ± 29.11* 27.29 ± 2.01*
PCB-1 (200 mg/kg) 498.95 ± 22.06 204.79 ± 7.55** 714.01 ± 49.76* 19.72 ± 1.04*

All values were expressed as mean ± SD (n = 10 per group). #p < 0.05, ##p < 0.01 compared with normal control group; *p < 0.05, **p < 0.01 compared with model control group.

TABLE 2 | Effects of PCB-1 on activities of SOD, CAT, GSH-Px and levels of MDA in liver of D-gal induces oxidative damage mice.

Group SOD (U/mg pro) CAT (U/mg pro) GSH-Px (U/mg pro) MDA (nmol/mg pro)

Normal control group 212.09 ± 8.01* 42.39 ± 3.71* 1789.11 ± 87.92* 2.12 ± 0.19*
Model control group 130.77 ± 10.92# 25.09 ± 4.87# 908.45 ± 35.11# 3.94 ± 0.19#

Positive control group 198.35 ± 18.42** 39.75 ± 2.17* 1697.00 ± 42.04 2.48 ± 0.18**
PCB-1 (50 mg/kg) 155.67 ± 12.78** 29.92 ± 1.78* 1074.27 ± 59.87** 3.58 ± 0.17**
PCB-1 (100 mg/kg) 178.09 ± 7.54** 32.01 ± 1.24* 1501.32 ± 39.11* 3.09 ± 0.21**
PCB-1 (200 mg/kg) 201.25 ± 13.86** 38.69 ± 1.94* 1717.87 ± 42.48* 2.37 ± 0.20**

All values were expressed as mean ± SD (n = 10 per group). #p < 0.05, ##p < 0.01 compared with normal control group; *p < 0.05, **p < 0.01 compared with model control group.

FIGURE 6 | Representative picture of western blot bands and quantification of data showing the effects of PCB-1 alleviated oxidative stress in the liver of mice: (A)
UCP2, PGC-1α and SIRT1 expression in all experimental groups as evaluated by Western blotting; (B–D) Respective histograms of UCP2, PGC-1α and SIRT1 protein
expression using Image software. The gray value of the bands was normalised to β-actin (n = 3). All bar graph data are presented as mean ± SD. #p < 0.05, ##p < 0.01
compared with normal control group; *p < 0.05, **p < 0.01 compared with model control group.
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CONCLUSION

In this study, the polysaccharides were extracted by water
extraction and ethanol precipitation from P. cablin, and two
polysaccharides were obtained from the crude polysaccharide
(PCB): PCB-1 (97.8 kDa) and PCB2-1 (12.8 kDa). The yields of
PCB, PCB-1, and PCB2-1 were 6.24, 3.26, and 1.96%, respectively.
Monosaccharide composition analysis of six monosaccharides
(Man, Rha, GalA, Glc, Gal, and Ara) in PCB-1 and PCB2-1, with
higher contents of acidic monosaccharides (GalA, Gal, and Ara),
indicated that P. cablin polysaccharides are mainly acidic sugars.
FT-IR spectrum analysis showed that P. cablin polysaccharides
contained both α- and β-configuration sugars. PCB-1 had better
antioxidant activity than PCB2-1 in vitro and could effectively
resist the oxidation of free radicals. PCB-1 could also effectively
resist the D-gal induced oxidative damage effects in vivo.
Therefore, this study supplies a scientific basis for further
development and utilization of P. cablin polysaccharides in
functional foods or medicinal industry, although the specific
antioxidant mechanism needs to be further elaborated.
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