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Mounting evidence has revealed that many nontumor cells in the tumor microenvironment,
such as fibroblasts, endothelial cells, mesenchymal stem cells, and leukocytes, are
strongly involved in tumor progression. In hematological malignancies, tumor-
associated macrophages (TAMs) are considered to be an important component that
promotes tumor growth and can be polarized into different phenotypes with protumor or
antitumor roles. This Review emphasizes research related to the role and mechanisms of
TAMs in hematological malignancies. TAMs lead to poor prognosis by influencing tumor
progression at the molecular level, including nurturing cancer stem cells and laying the
foundation for metastasis. Although detailed molecular mechanisms have not been
clarified, TAMs may be a new therapeutic target in hematological disease treatment.
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INTRODUCTION

Macrophages are important cellular components of the innate immune system that originate from
bone marrow (BM) precursors. Plasticity and diversity are traits of the monocyte-macrophage
differentiation pathway. The level of macrophage activation in different locations and at different
times indicates the polarization of macrophages. Macrophages are usually polarized into the M1 or
M2 type, and these types have different functional characteristics and different abilities to induce T
helper cell (Th1 or Th2) responses (1, 2). M1 macrophages are found in settings dominated by Toll-
like receptor (TLR) and interferon signaling. M2 macrophages arise in immunity via Th2 responses.
Both of these macrophage types can indicate the current inflammation and trauma repair statuses.

Recent studies have shown that a group of cells derived from bone marrow called tumor-
associated macrophages (TAMs) is recruited to tumors and enhance tumor hypoxia and aerobic
glycolysis in solid tumors (3). In particular, some tumor-derived molecules, such as CSF-1 and IL-
10, stimulate a considerable proportion of TAMs to differentiate into M2 macrophages (4, 5).
Several studies have shown that most kinds of cancer linked to TAMs have poor progression and
prognosis (6). M1 type, triggered by GM-CSF, IFN-g, and LPS, could release pro-inflammatory
molecules, such as TNF-a, NO, CXCL9, CXCL10, CXCL11, IL-1, IL-6, IL-12, IL-23; Conversely, M2
phenotype can be activated by M-CSF, TGF-b, IL-4, IL-10, IL-13, which leads to the high secretion
of ant nflammatory molecules, such as CCL17, CCL18, CCL22, TGF-b, IL-10 (Figure 1) (7–10). In
hematological malignancies, like myeloma, lymphoma, leukemia, and other malignancies,
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macrophages invade tissues and acquire an activated phenotype
to participate in disease processes. The relationship between
TAMs and Hodgkin lymphoma (HL) has been studied
relatively more than the relationships between TAMs and
other hematological malignancies. A new study revealed that
the adverse overall survival impact of TAMs in classical Hodgkin
Frontiers in Oncology | www.frontiersin.org 2
lymphoma (cHL) is dependent on checkpoint expression,
especially on programmed death ligand 1 (PD-L1) and
indoleamine 2,3-dioxygenase (IDO-1) expression (11).
However, there are few reports on the relationship between
TAMs and leukemia. In leukemia, TAMs are referred to as
leukemia-associated macrophages (LAMs); they are referred to
FIGURE 1 | Tumor-associated macrophages could be alternatively activated related to tumor progression and metastasis. M2 TAMs, with a low antigen-presenting
capability, get involved in angiogenesis, tumor cell invasion, resistance to therapy, and release of anti-inflammatory molecules, such as CCL17/18/22, TGF-b, IL-10.
M1 TAMs could provoke a Th-1 response and secrete pro-inflammatory molecules, such as TNF-a, NO, CXCL9/10/11, IL-1/6/12/23. TNF, tumor necrosis factor;
NO, nitric oxide; CXCL, chemokine ligands with CX3-C motif; IL, interleukin; TGF, tumor growth factor.
FIGURE 2 | Schematic representations of mechanisms between TAMs and tumor cells in Hodgkin lymphoma and non-Hodgkin lymphoma (A), myeloma (B), and
leukemia (C). In the different tumor microenvironment, TAMs infiltrate different tumor tissue to promote tumor growth. (A) In Hodgkin lymphoma, TAMs can activate HL cell
proliferation through the STAT3 pathway and PI3K-Akt pathway. Besides, M1 macrophage polarization can be predominated by the NF-kB and STAT1 pathways in non-
Hodgkin lymphoma. (B) CCL2 induces MCPIP1 expression via the JAK2-STAT3 signaling pathway in the MM bone marrow microenvironment. TAMs can also secrete
proangiogenic cytokines like VEGF in MM microenvironment. (C) In the leukemia microenvironment, CSF-1R signaling paves the way for TAM recruitment. Gfi1 polarizes M1
phenotype macrophages into M2 macrophages to suppress the immune system and MOZ is a direct target of miR-223 promoting monocyte-to-macrophage development
and M1 polarization. STAT3, signal transducer and activator of transcription; EGF, epidermal growth factor; IDO-1, indoleamine 2,3-dioxygenase; CSF1R, colony-stimulating
factor receptor; CSF-1, colony-stimulating factor-1; GM-CSF, granulocyte macrophage-colony stimulating factor; TNF- a, tumor necrosis factor-a; NSE, neuron-specific
enolase; VEGF, vascular endothelial growth factor; COX-2, cyclooxygenase-2; MOZ, monocytic leukemia zinc-finger; Gfi1, growth factor independent 1; Arg-2, arginase-1;
PB, peripheral blood; TAM, tumor-associated macrophage.
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as acute leukemia-associated macrophages (AAMs) in acute
myeloid leukemia (AML) and nurse-like cells (NLCs) in
chronic myeloid leukemia (CML). The objective of our review
is to discuss the role of macrophages and their activated
phenotype in different hematological malignancies.
MACROPHAGES IN LYMPHOMA

Macrophages can infiltrate malignant tumor tissues. Due to the
similarity between lymphomas and solid tumors, many
publications have clarified the existence of macrophages in
malignant lymphoma. Here, we summarize the mechanisms by
which TAMs are involved in angiogenesis, immunosuppression,
and activation of tumor cells of HL, T-cell lymphoma and B-cell
lymphoma and the clinical prognostic implications.

Macrophages in Hodgkin Lymphoma
cHL affects young people and is characterized by good prognosis
in most cases. There are a small number of neoplastic Hodgkin
and Reed-Sternberg (HRS) cells in the microenvironment of cHL
with an abundant inflammatory infiltrate of immune cells.

TAMs are linked to adverse prognostic outcomes in HL in a
checkpoint-dependent manner. In 1973, Coppleson LW
confirmed the existence of macrophages in HL; however, poor
prognosis with respect to TAMs was found later by Steidl C et al.
(12, 13). The researchers demonstrated that TAM density could
predict the treatment outcome by experimenting with paraffin-
embedded particles. They also indicated that M2 TAMs could
lead to tumor progression and immune escape. Roemer, M. G
et al. confirmed that in cHL, the prognostic impact of TAMs on
overall survival is checkpoint-dependent. Affected by the genetic/
genomic variation of chromosome 9p24.1, PD-1 interacts with
PD-L1 and PD-L2 on TAMs (14). IDO-1, which is a tryptophan-
catabolizing enzyme, is also expressed by macrophages.
Researchers confirmed that large amounts of PD-L1+ and
IDO-1+ TAMs lead to adverse survival in patients and that
biomarkers of the tumor microenvironment are checkpoint-
dependent (11). As Carey et al. reported PD-1+ CD4 T cell and
CD8+ T cell, together with PD-L1+ macrophages and HRS
cells played an important role in cHL microenvironment
(15). Tislelizumab, a humanized immunoglobulin G4
antiprogrammed cell death protein 1 antibody, binding to Fcg
receptor on macrophages, demonstrated a favorable safety
outcome for patients with relapsed/refractory cHL in a 3-year
follow-up phase II study (16). Werner, L. et al. also confirmed in
2020 that moderate quantities of macrophages were associated
with a better prognosis than very low or very high numbers using
MYC-positive macrophage detection (17).

Due to the severity of HL progression, accurate prognostic
models and clinically relevant biomarkers have become
increasingly important. Whiteside TL et al. showed that TAMs
were significantly related to primary treatment failure via gene
expression analysis. They also demonstrated that relapse after
auto-HSCT (P=0.008) and reduced progression-free survival
(P=0.03) were correlated with CD68+ macrophages in HL (18).
Frontiers in Oncology | www.frontiersin.org 3
Subsequently, an increasing number of studies have confirmed
the relationship between macrophages and HL. Although CD68
and CD163 are recognized to be specific surface molecules of
TAMs, some research has found that the prognostic significance
of CD68 is not sufficiently related to clinical outcomes in cHL
(19). A phase II clinical trial of CS1001 (PD-L1 inhibitor) of five
relapsed or refractory (R/R) cHL elucidated that multiplex
immunofluorescence staining was less intense for CD163 than
CD68 (20).However, scholars from Korea found that CD163 is a
better prognostic marker of macrophages in cHL (21). New
reports suggested that HL patients with the highest M2 TAM
count using CD163 as an M2 polarization marker had reduced
disease-free survival and overall survival (11). These findings
indicate that CD163 is better than CD68 as a prognostic marker
for TAMs in HL.

The abovementioned findings indicate that it is likely that the
effect of TAMs on outcome in HL may be related to potential
changes in macrophage polarization. HRS cells can differentiated
TAMs towards M2 phenotype by secreting molecules such as TGF-
b and IL-13 (22). Ruella et al. cultured M2-like phenotype
macrophages from monocytes, together with HDLM-2 cells and
GM-CSF. The results showed that these M2 macrophages,
expressed CD163, CD206, PD-L1, inhibited the growth of human
CD19 chimeric antigen receptor (CAR) T cells, which suggests an
unsatisfactory therapeutic effect of CAR T cell. CD123 expresses on
macrophages in the microenvironment of HL, suggesting that
CD123-targeted therapies might impact on the tumor
microenvironment (23).It was previously shown that TAMs can
activate HL cell proliferation through the STAT3 pathway (24). The
STAT3 pathway also induces macrophage polarization toward the
M2 phenotype (25). The STAT3 pathway can be activated by
macrophage-derived factors such as epidermal growth factor
(EGF), IL-6, and IL-10 (26–29). In cHL patients, IL-10 is also
regarded as a marker of tumor burden and as an unfavorable host-
tumor factor (30, 31). IL-10 was reported to promote the poor
overall survival of cHL via genetic regulation of the tumor
microenvironment. Single-nucleotide polymorphisms (SNPs) in
IL-10 can be regarded as prognostic markers in adult cHL.
Furthermore, the percentage of macrophage activating factor
(MAF)-expressing cells can change, which suggests a role of
these cells in determining the host genetic background that
induces macrophage polarization and an indirect role in
microenvironment shaping (32). The PI3K-Akt pathway is also
involved in HL pathogenesis (33). PI3K inhibitor RP6530 decreases
the release of lactic acid by downregulates the metabolic regulator
pyruvate kinase muscle isozyme 2 (PKM2) (34). A first-in-human
phase I, open-label study of Tenalisib (RP6530) enrolled 35 patients
across 11 dose levels with R/R hematological malignancies
correlated well with clinical outcome and further phase I/II
studies are being undertaken to evaluate the efficacy (35). Later,
Locatelli et al. found that downregulating lactic acid released byHRS
favors M2 type macrophage. They also found that the blockade of
PI3K could lead M1-type macrophages to transition into the M2
type, which suggests a new therapeutic strategy to treat patients with
HL (36). However, how these mechanisms truly affect macrophage
polarization remains unclear.
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Macrophages in Non-Hodgkin Lymphoma
Macrophages in Diffuse Large B-Cell Lymphoma
Diffuse large B-cell lymphoma (DLBCL) accounts for 30-40% of
non-HL clinical cases (5). TAMs play an active role in the
progression of DLBCL. Some studies have confirmed that
TAMs and specifically M2-TAMs are linked to poor prognosis
in DLBCL and central nervous system DLBCL (37, 38). In in
vitro assessment of the progression of DLBCL, M2 TAMs were
found to affect the overexpression of legumain by disrupting the
extracellular matrix and promoting angiogenesis (39).

In DLBCL, the relationship between CD68+ TAMs and
overall survival varies. Some studies have shown that there is
no relationship between TAMs and prognosis, whereas others
have reported a significant influence (40, 41). Many studies have
shown that CD163+ TAMs and the CD163/CD68 ratio are
linked to clinical outcome (37, 42, 43). Specifically, it is
thought that different therapeutic options could exert different
influences on TAMs. 85% to 95% of de novo DLBCL patients
express PD-L1, correlated with macrophages and STAT3
expression (44). Pollari et al. collected tumor tissue from 74
primary testicular lymphoma patients, and examined
macrophage markers, T-cell markers, B-cell marker, and
checkpoint molecules, illustrating that PD-1- PD-L1 signaling
have a promising role in clinical outcome (45).

In DLBCL, TAMs have been demonstrated to produce cytokines
such as C5a, IL-6 and TNF-a to activate the Stat3 and NF-kB
pathways (46). A new study investigated the relationship between
neuron-specific enolase (NSE) levels and the prognosis of DLBCL.
The researchers found that the protein expression of, which
mediates nuclear p50 translocation with subsequent dysfunction
of classical nuclear factor-kB (NF-kB), thereby promoting M2
polarization and shifting the role of macrophages, was increased
in DLBCL (47). This mechanism is related to the IRF/STAT
signaling pathway of macrophage polarization. Polarization can
be skewed toward the M1 phenotype via STAT1 signaling and
toward the M2 phenotype via STAT6 signaling. Two adaptors,
MyD88 and TRIF, regulate signaling downstream of TLR4, which
ultimately activates NF-kB, a pivotal transcription factor influencing
M1 macrophage activation. M1 macrophage polarization is
predominated by the NF-kB and STAT1 pathways, which play a
proinflammatory role (48, 49). It is well known that the most
common therapy for DLBCL is CHOP (cyclophosphamide,
doxorubicin, vincristine, and prednisone) or the combination of
rituximab and CHOP (R-CHOP) chemotherapy (50, 51). R-CHOP
combined with granulocyte-macrophage colony-stimulating factor
(GM-CSF) prolongs the survival of elderly DLBCL patients (52, 53).
Zhang et al. first reported the antitumor, macrophage polarization-
related molecular mechanisms by which GM-CSF affects CHOP
and R-CHOP therapy in 2021 (54). The researchers found that GM-
CSF induced repolarization of M2 macrophages to increase M1
macrophages, providing ideas for how macrophages mediate the
AKt pathway, a well-characterized pathway in DLBCL.
Macrophages in Follicular Lymphoma
Follicular lymphoma is a common indolent B-cell lymphoma
characterized by a slow clinical course that is usually considered
Frontiers in Oncology | www.frontiersin.org 4
incurable. Research on macrophages in follicular lymphoma has
mostly focused on predicting overall survival. Kridel R et al.
found that two patient groups treated with different therapies
showed an opposite correlation between M2 TAM density and
prognosis (55).Some studies have suggested that the number of
CD68+ TAMs is related to the prognosis of follicular lymphoma
(56). Another study found that patients with an increased
number of CD68+ TAMs had longer survival (57). Although
the number of CD163+ macrophages can predict the prognosis
of patients with follicular lymphoma, their impact depends on
the treatment that the patients received from a study involved
395 samples treated with rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone, and randomized to
rituximab maintenance or observation (55). Furthermore, a
recent meta-analysis revealed that high CD68+ LAM numbers,
diffuse patterns of FOXP3+ regulatory T (Treg) cells and PD1+
cells, and high PD-L1 cell numbers are adverse factors leading to
early transformation of follicular lymphoma. A study on the
immune microenvironment of follicular cell lymphoma showed
that immune infiltrate diversity portends good clinical efficacy in
foll icular lymphoma, implying that a rich immune
microenvironment in follicular lymphoma is important (58).

Colony-stimulating factor-1 (CSF-1) and its receptor CSF-1R
have been thoroughly studied in follicular lymphoma, and the
results have indicated that macrophages can be a new therapeutic
target because CSF-1 is one of the most important recruitment
factors for macrophage polarization. Regarding solid tumors,
glioma has been reported to be cured by treatment targeting the
CSF-1R/CSF-1 axis. A recent study demonstrated that CSF-1R
inhibition by PLX3397 has a higher impact on M2 macrophages
than on M1 macrophages and leads to their repolarization
toward an M1-like phenotype (59).

Macrophages in Marginal Zone B-Cell Lymphoma
Splenic marginal zone lymphoma (SMZL) is also an incurable
indolent small B-cell lymphoma usually occurring in elderly
people (average age of 65 years old) (60). Escape from immune
control is the main change leading to exacerbation of the disease,
characterized by abundant T-cells in the periphery but low
numbers in the stroma, which surrounds large amounts of
tumor cells (61). Chen and Mellman et al. suggested that
SMZL is characterized by an inflamed phenotype, with the
presence of intratumoral infiltration of T-cells into the tumor
microenvironment in addition to myeloid-derived suppressor
cells (MDSCs) and tissue-associated macrophages, which is
closely related to poor overall survival (61). SMZL with an
inflamed phenotype features the expression of PD-L1 as a
mechanisms for immune escape; PD-L1 is colocalized with
CD163, a marker of alternatively activated macrophages (62).

Macrophages in Peripheral T-Cell Lymphoma
Peripheral T-cell lymphoma (PTCL) is an aggressive form of
lymphoma in Asia that usually leads to poor overall survival (63).
Early research found that in acute T-cell leukemia/lymphoma,
CD68+ TAM infiltration exists; however, this feature is not
related to poor prognosis and angiogenesis. In contrast, the
number of CD163+ TAMs was found to be associated with for
July 2022 | Volume 12 | Article 933666
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the prognosis of T-cell lymphoma (64, 65). Iqbal J et al. analyzed
the influence of CD68 expression on the promotion of
macrophage differentiation by GATA-binding protein 3
(GATA3). GATA3 and T-box family transcription factor (T-
bet) are Th1 and Th2 cell differentiation markers, respectively,
and T-bet-positive PTCL has a better prognosis than GATA3-
positive PTCL (66, 67).

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous
group of T-cell lymphomas located in the skin in which
macrophages behave as M2 macrophages (68, 69). In a study
of CTCLs, a high number of CD163+ M2 TAMs was linked to a
poor clinical prognosis and was correlated with the level of
soluble IL-2 (65). IL-10 is reported to be higher than average in
CTCLs. IL-10 has been confirmed to increase the expression of
PD-L1 to induce anti-inflammatory regulation. Xuesong W et al.
proved that IL-10 is not only a biomarker but also a key cytokine
in macrophage polarization that leads to tumor growth and can
inhibit effective cutaneous T-cell lymphoma therapy (70). A
retrospective study of 205 patients published in 2020 showed
that an increased level of IL-10 is an independent factor that
indicates poor overall survival, a low complete response rate and
a higher early relapse rate (71).
MACROPHAGES IN MYELOMA

Multiple myeloma (MM) is a B-cell hematological tumor
characterized by a large number of malignant plasma cells
in the bone marrow. MM cells are highly dependent on
the bone marrow microenvironment and can create an
immunosuppressive microenvironment conducive to tumor
growth by secreting cytokines or directly contacting
surrounding immune cells. Macrophages are abundant in the
bone marrow of patients with MM and can promote the growth,
proliferation and drug resistance of tumor cells and participate in
the formation of an immunosuppressive microenvironment.

TAMs can negatively influence MM growth and progression,
leading to a poor outcome. Angiogenesis is a major feature of
MM and features stimulation of angiogenic factors by plasma
cell, inducing the transformation of monoclonal gammopathy of
undermined significance (MGUS) into MM (72). TAMs can
secrete proangiogenic cytokines like VEGF and TNF-a and
express proangiogenic enzymes such as cyclooxygenase-2
(COX-2) (73, 74). There has been some research progress
related to microRNAs involved in the bone marrow
microenvironment. Exosome-derived miR-let-7c promotes
angiogenesis by polarizing M2 macrophages in the MM
microenvironment (70). Macrophages also regulate tumor
growth by controlling cell metabolism. One hypothesis is that
M2 macrophages can inhibit PGK1 phosphorylation by secreting
IL-6 to disrupt the connection between macrophages and tumor
cells (75).

Elevated microvessel density has been linked to CD163-
positive TAMs and CD68/CD163 double-positive M2 TAMs.
Andersen et al. suggested that in MM patients, CD163 expression
was higher in bone marrow than in blood samples, and high
Frontiers in Oncology | www.frontiersin.org 5
CD163 expression correlated with a poor prognosis and a higher
International Staging System (ISS) stage. Moreover, an increased
number of CD163+ TAMs has also been found to be a powerful
predictor of poor prognosis in MM in the era of novel drugs.
CD163 and inducible NO synthase (iNOS) expression have been
combined with ISS stage as new prognostic factors. Furthermore,
increased expression of CD206, a soluble M2 macrophage
marker, indicates reduced overall survival (76–79). Sanyal et al.
found a novel cell surface marker for M2 macrophages MS4A4A
which includes CD20 (MS4A1), FcRb (MS4A2) and Htm4
(MS4A3), suggesting immunotherapeutic potential in the
treatment of MM (80).

CCL2 is a critical molecule that recruits monocytes and
induces inflammation (81). The inactivation of CCL2-CCR2
was found to reduce tumor growth in solid neoplasms. The
chemokine CCL2 was found to promote macrophage infiltration
in the MM bone marrow microenvironment and to encourage
proliferation (82). De Beule and colleagues revealed that
AZD1480, a Janus kinase 2 (JAK2) inhibitor, was correlated
with protumor effects via the STAT3 pathway in 5T33MM cells
(78, 83). A recent study found that increased CCL2 induces
MCPIP1 expression via the JAK2-STAT3 signaling pathway,
which promotes tumor growth (79, 84). Trabectedin, a drug that
kills monocytes and macrophages, triggers antiangiogenic
activity by suppressing CCL2 and VEGF production. Due to
this effect, the potential of trabectedin as a targeted agent in anti-
MM therapeutic strategies has been proposed (85). CSF1R
blockade significantly inhibits myeloma-associated macrophage
polarization to the M2 type, implying that CSF1R-blocking
antibodies could be a new tool for MM therapy (86).
MACROPHAGES IN LEUKEMIA

Since lymphoma is similar to solid tumors, research in
lymphoma is relatively common. However, leukemia is unique.
There are significant pathological differences between leukemia
and solid tumors, and thus, studies of macrophage properties
and actions in leukemia are lacking. Compared to solid tumors,
hematological malignancies have a unique immunological
microenvironment. Leukemia originates from leukemic stem
cells (LSCs), and these LSCs maintain the hematopoietic
microenvironment and hematopoietic stem cell (HSC) survival
and function, which supports LSC proliferation through complex
signals. Leukemia is propagated by LSCs, which cannot be totally
eradicated and persist, ultimately leading to recurrence (87).
TAMs, existing in the microenvironment of different types of
leukemia are called LAMs.

Macrophages in Acute
Lymphocytic Leukemia
Acute T-cell leukemia is characterized by infection with human
T-cell leukemia virus. Komohara et al. showed that CD163+ M2
macrophages are closely associated with the progression of T-cell
acute lymphocytic leukemia (T-ALL) (88). Recently, researchers
reported that an inhibitor of the M-CSF receptor may suppress
July 2022 | Volume 12 | Article 933666
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the stimulation of macrophages, which can be used as a
therapeutic strategy (89). A JAK2/FLT3 inhibitor, pacritinib,
was found to block CSF-1R to improve the microenvironment
(89). Further research found that CSF-1R signaling paves the way
for TAM recruitment and obstructs TAM proliferation in a T-
ALL mouse model (90). The CXCR4/CXCL12 axis was found to
inhibit TAM polarization toward the M1 phenotype. Some
preclinical studies have demonstrated that the CXCR4
inhibitor plerixafor improves the clinical scores of T-ALL (91).

In B-cell acute lymphocytic leukemia (B-ALL), there are few
studies about macrophages. MDSCs and Treg cells have become
the focus of B-ALL research in recent years given their mutual
relationship. MDSCs have emerged as a great contributor to
tumor angiogenesis, drug resistance, and the promotion of tumor
metastases (92). Recent studies have shown that MDSCs can
continue to differentiate into TAMs in the tumor environment
and can be divided into an M1 subgroup, which inhibits tumor
growth, and an M2 subgroup, which promotes tumor growth.
MDSCs consist of two types: monocytic MDSCs (MO-MDSCs)
and polymorphonuclear MDSCs (PMN-MDSCs) (93). A recent
study found that PMN-MDSCs and Treg cells play important
roles in maintaining the immune-suppressive state of B-ALL,
which means that they may be independent predictors of B-ALL
progression. However, the relationship between peripheral Treg
cells and MDSCs has not been fully recognized (94). Lineage
reprogramming could be a promising future treatment in B-ALL
therapy, and such a strategy was shown to eliminate the
leukemogenicity of Ph-positive B-ALL cells and turn them into
macrophage-like cells in vitro (91).

Macrophages in Acute Myeloid Leukemia
A German scholar named the macrophages in AML as AML-
associated macrophages (AAMs). In AML, which factors induce
macrophage polarization remains unclear. Al-Matary YS et al.
proved that LAMs exert an important influence on the overall
survival and drug resistance of AML patients. Their results suggest
that leukemic cells and the microenvironment can induce the
proliferation and infiltration of monocytes and macrophages
and promote their differentiation into AAMs. The main reason
for relapse in AML is LSCs, which can be supported by AAMs
via extracellular matrix remodeling, angiogenesis, and
lymphangiogenesis (95). AAMs highly express Gfi1, which
polarizes M1 phenotype macrophages into M2 macrophages to
suppress the immune system (96). In addition, a growth factor-
independent transcriptional repressor was found to reprogram
LAMs toward the antitumor state. The leukemia hematopoietic
microenvironment is complex and includes fibroblasts,
macrophages and other components. Variations in the
hematopoietic microenvironment in leukemia have not been
reported. There is mounting evidence that illustrates that the
AML microenvironment can re-educate monocytes and
macrophages to transition into the M2 phenotype. Mussai et al.
provided the first reports showing that arginase II secreted from
primary AML blasts reeducates healthy donor-derived monocytes
toward an M2-like phenotype, as demonstrated by upregulation of
CD206 (97).
Frontiers in Oncology | www.frontiersin.org 6
The AML microenvironment has t i ssue-spec ific
heterogeneity. In the MLL-AF9 AML mouse model, splenic
LAMs more often exist in the M2 phenotype, while bone
marrow LAMs more often exist in the M1 phenotype. AML
creates an immunosuppressive microenvironment. By
demonstrating an arginase-dependent ability of AML, Mussai
et al. polarized surrounding monocytes into a suppressive M2
type macrophage. The researchers also found that repolarization
of LAMs through targeting of the SAPK/JNK pathway and IRF7-
SAPK/JNK pathway by interferon regulatory factor 7 (IRF7) can
prolong the survival of AML mice, providing regarded a new
immunotherapy strategy against leukemia (96, 98). Keech et al.
showed a high degree of leukemia burden in MLL-AF9 AML
mice and that nonmalignant and AML bone marrow
macrophages display a decrease in M1 macrophage markers
(99). It has also been found that monocytic leukemia zinc-finger
(MOZ) is a direct target of miR-223 promoting monocyte-to-
macrophage development and M1 polarization (100). A
recent study showed that peritoneal resident macrophages in
mice with AML induced by MLL-AF9 show an M2-like
phenotype (101). These results strongly suggest that the
leukemia microenvironment may enhance the immunotherapy
effect in AML by affecting the apoptosis and killing ability of
macrophages. Switching M1 to M2 is through lasting exposure to
polarizing molecules or direct cell-to-cell contact between
macrophages and cancer cells (102). Smirnova, T. further
proved that in the presence of GM-CSF, inhibiting CSF1R
could repolarization macrophage, thus improving the efficiency
of AML therapy, which indicated a promising therapeutic
method to modulate macrophage phenotype (103).

Macrophages in Chronic
Lymphocytic Leukemia
Chronic lymphocytic leukemia (CLL) is characterized by the
accumulation of CD5+ B cells in blood, secondary lymphoid
organs and bone marrow. Burger JA et al. found that nurse-like
cells (NLCs) derived from blood could protect CLL B-cells from
apoptosis through stromal cell-derived factor-1 (104). In fact, NLCs
are CLL-specific TAMs characterized by expression of the markers
CD68 and CD163 (105). It is unknown why NLCs increase the
survival rate and drug-induced apoptosis of CLL cells. Boissard et al.
reported that LFA-3 appeared to have an adverse influence on
prognosis in an exploratory cohort of 60 CLL patients receiving
frontline immunochemotherapy (105). IFN-g was found to
reprogram NLCs into the M1 state (106). The JAK2/FLT3
inhibitor pacritinib restrains the CSF-1R signaling pathway, thus
preventing the generation and survival of NLCs (107). Edwards V
DK et al. showed that significant synergy was observed when
combining CSF1R inhibitors with two current CLL therapies that
block the signaling pathway of the tumor cell-intrinsic B-cell
receptor (108). The proinflammatory switch of NLCs plays an
important role in modulating the CLL microenvironment.
Trabectedin also induced an antileukemia effect in a CLL mouse
model by depleting TAMs via the CCL2-CCR2 signaling axis (109).
The CSF1 receptor also participates in antineoplastic activation by
interfering with leukemic cell and NLC interactions (107).
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Macrophages in Chronic
Myeloid Leukemia
Previous studies have shown that M2-type macrophages are the
predominant infiltrate in the bone marrow microenvironment of
CML patients, with their functions being dominant, and the
number of positive cells increases gradually with the progression
of the disease (110). By CSF1/CSF-1/M-CSF pathway, autophagy
can be induced through the differentiation from human
monocytes to macrophages. Researchers found that P2RY6
agonist activated CSF-1 treated monocytes differentiation to
promote autophagy induction in some CMML patients (111).
Researchers found high accumulation of CD68+, CD163+ and
CD206+ macrophages in bone marrow biopsy samples.
Macrophages have been reported to increase the cytotoxicity of
natural killer (NK) cells against solid tumor cells. In CML bone
marrow aspirates, there are higher proportions of macrophages
and NK cells. Choo et al. found that mycoplasma-infected CML
cells were protected from NK cytotoxicity by macrophages, which
was related to macrophage-mediated maintenance of NK cells
(112). Besides, the polarization of the M2-like macrophages was
found to be associated with K562‐derived exosomes in CML (113).
This can be a new sight into leukemia-derived exosomes in the
development of leukemic niches.
TAM-TARGETED THERAPEUTIC
STRATEGIES

TAMs may be a therapeutic target because they are involved in
cancer progression and characterized by unique transcriptional
profiles (Figure 2) (114). It has been reported that M1-like
TAMs have an antitumor effect, while M2-like TAMs have a
protumor effect (115). Therefore, induction of TAM polarization
from the M2 to M1 phenotype could be a therapeutic strategy to
treat hematological malignancies. The different signaling
pathways in TAM polarization mainly include five pathways:
the JAK/STAT signaling pathway, Notch signaling pathway,
PI3K/Akt signaling pathway, TLR/NF-kB signaling pathway
and hypoxia-dependent signaling pathway. In addition, some
natural compounds also downregulate M2 polarization (116).
Our summary of the pathways shifting macrophage polarization
is shown in Table 1.

TAM-targeted therapy towards the conjugation of antibodies
and ligands to the therapeutic molecule carrier. The role and
prognostic markers of TAMs, which can be also recognized as
crucial receptors in hematological macrophages, is shown in
Table 2. CD163 receptor on the surface of macrophage can
recognize the complex of hemoglobin (Hb) and plasma
haptoglobin (Hp). Conjugating the anti-cancer drug
dichloroacetic acid (DCA) to the Hb-Hp complex targets the
delivery of DCA into cancerous monocytes and scavenges cancer
cells (117, 118). Wang et al. suggested that CD71 is a invariably
marker and highly expressed in different subtypes of leukemia
cells based on which they designed a biomimetic carrier for
precision delivery of AsIII, As@Fn nanomedicine, to bind to HL-
Frontiers in Oncology | www.frontiersin.org 7
60 AML leukemia cells characterized by CD71 (119). This
finding gives us a new perspective into ferritin-based targeted
therapy connected to hemoglobin targeted therapy delivered to
TAMs. More anti-tumor drugs and clinical research are expected
to extend our therapeutic scope.

The relationship between overexpression of CD47, a
glycoprotein highly expressed in myeloid and lymphoid
malignancies, and poor prognosis is under investigated (120).
CD47 induces immune escape by binding to the receptor SIRPa
to inhibit macrophage phagocytosis and improve T-cell
cytotoxicity (121). Advani et al. confirmed that the Hu5F9-G4
antibody has a synergistic effect with rituximab in 22R/R DLBCL
and follicular lymphoma patients, indicating that blocking the
CD47 immune checkpoint, a so-called “don’t eat me” signal,
could exert antitumor effects (122). A recent study demonstrated
that the addition of rituximab to CHOP chemotherapy improved
the overall outcome of DLBCL patients (123). In vitro
experiments illustrated that novel fully human anti-CD47
monoclonal antibodies increased macrophage-mediated
phagocytosis and improved the prognosis of AML models
(124). CC-90002 is an anti-CD47 antibody to block CD47-
SIRPa interaction and enhance macrophage-mediated killing
ability. However, a phase 1 study of anti-CD47 monoclonal
antibody CC-90002 in patients with R/R AML and high-risk
MDS still suggested insufficient evidence in clinical activity as
expected in spite of well preclinical effect (125).

Trabectedin together with Zoledronic acid are two drugs used
to kill tumor cell and TAMs. Trabectedin targets DNA
transcription, leading to DNA double strand breaks and cell
cycle blockade, which demonstrates a potent anti-tumor effect
against Hodgkin Reed Sternberg cells. Tumors of trabectedin-
treated mice had fewer TAMs, reducing secretion of CCL5, M-
CSF, IL-6, IL-13 in HRS cells (126). Zoledronic acid is a potential
therapy to change tumor microenvironment, affecting the
secretion of CCL5 and IL-6. In prostate cancer, zoledronic acid
repolarizes M2 macrophages to M1 type, exhibiting antitumor
effect (127).

Lenalidomide has been proven to influence the tumor
microenvironment by improving T-cell and NK-cell function
(128). In mouse MM models, lenalidomide was proven to
promote M2 macrophage depletion and affected the Th1/Th2
balance (129). The effect of adding ASCT to triplet therapy
(lenalidomide, bortezomib, and dexamethasone [RVD]) in
patients with multiple myeloma was associated with longer
progression-free survival than RVD alone in a phase 3 clinical
trial (NCT01208662) (130). Martino et al. reported a
retrospective multicenter analysis of 600 RRMM patients
treated with the combination of lenal idomide and
dexamethasone (KRd) with a 79.9% overall response rate after
a median of 11 KRd cycles (131). Pyridoxine, a specific treatment
in AML, induces monocyte-macrophage death and apoptosis in
THP-1 cells to play an antitumor role (132).

TAK-981 is the first-in-class small-molecular inhibitor of
SUMOylation in clinical trials. Small ubiquitin-like modifier
(SUMO) is a ubiquitin-like protein superfamily, promoting
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inflammatory responses and expressing IFN-1.By blocking
SUMOylation, TAK-981 allowing NK cell activation and M1
polarization to enhance antibody-dependent cellular cytotoxicity
(ADCC) and antibody-dependent cellular phagocytosis (ADCP) via
upregulating IFN-1. Nakamura Et al. showed a preclinical research
that TAK-981 and rituximab in xenograft models of human B cell
lymphoma have antitumor effect (133). Assouline et al. further
proved in a phase 1b/2, open-label, dose-escalation and expansion
study that TAK-981 plus rituximab resulted in promising clinical
activity (ORR 29%) in the R/R NHL (134). Combination of TAK-
981 with anti-CD38 antibody daratumumab also resulted in
protective clinical antitumor immune response (135). TAK-981
increased phagocytic activity of macrophages and natural killer cell
Frontiers in Oncology | www.frontiersin.org 8
cytotoxicity via IFN-1 signaling, which could be a promising
treatment for patients with hematological malignancies (136).
CONCLUSION

Macrophages have attracted wide attention in solid tumor
research, and their role in hematologic malignancies should
also remain a focus. TAMs are referred to as LAMs, AAMs or
NLCs in hematologic malignancies. Distinct microenvironments
induce different molecular mechanisms of TAMs. The
microenvironments of hematologic malignancy can induce the
activation of macrophages into type M2 macrophages, which
TABLE 1 | Pathways shifting macrophage polarization in hematological malignancies.

Disease Mechanism of Action Results

HL PI3K-Akt pathway Leading M1 type macrophage to M2 type
DLBCL GM-CSF synergistic enhancement effect Enhancing M1 polarization from M2
DLBL NSE protein mediates nuclear p50 translocation via IRF/STAT signaling pathway Promoting M2 polarization and migration ability of macrophage
PTCL GATA3-dependent mechanism M2 macrophage differentiation
FL CSF-1R inhibition by PLX3397 repolarization towards an M1-like phenotype
MM Inactivation of CCL2-CCR2 Macrophage bone marrow homing, proliferation, and polarization
MM STAT3 pathway A Janus kinase (JAK)2 inhibitor was correlated to the pro-tumor effect
MM Exosome-derived miR-let-7c promotes angiogenesis Polarizing M2 macrophages in MM microenvironment
MM CSF1R blockade Inhibits myeloma-associated macrophage polarizing to M2 type
T-ALL CXCR4/CXCL12 axis Inhibiting TAM polarization towards M1 phenotype
AML Demonstrating an arginase-dependent ability of AML Suppressive M2-like phenotype in vitro
AML Expressing Gfi1 Polarizing M1 phenotype macrophage into M2
AML MOZ Forms an Autoregulatory Feedback Loop with miR-223 Promoting monocyte-to-macrophage development and M1 polarization
AML Inhibiting CSF1R, in the presence of GM-CSF Reprogramed MF orientation and promoted myeloblast apoptosis
CLL IFN-g Reprogramming tool to polarize NLCs to M1 state
CLL CSF-1R signaling inhibition LAMs polarization blocking
TABLE 2 | The role and prognostic markers of TAMs in hematological malignancies.

Disease Reference Marker Number of Patients Survival Correlation

cHL Karihtala et al. (11) PD-L1, IDO-1 130 High proportions of PD-L1 and IDO-1 TAMs are associated with unfavorable outcomes
Carey et al. (15) PD-L1 180 Increased PD-L1 expression had superior PFS
Kayal et al. (19) CD68 100 CD68 TAM marker does not have prognostic value
Suh et al. (21) CD68, CD163 144 CD163 is a better prognostic marker of macrophages than CD68

DLBCL Marchesi et al. (37) CD68/CD163 61 High CD68/CD163 M2 TAM is
correlated to unfavorable prognostic factors

Wang et al. (42) CD163 355 LMR was negatively correlated with CD163 M2 TAM
Cencini et al. (43) CD68/CD163 37 CD68+/CD163+ TAM have a prognostic role for IPI ≥ 2 DLBCL patients receiving R-CHOP
McCord et al. (44) PD-L1 777 PD-L1 did not identify high-risk in de novo DLBCL
Pollari et al. (45) PD-L1/CD68 74 High PD-L1/CD68 macrophages predict favorable survival

FL Kridel et al. (55) CD163 186 CD163 TAM predict outcome dependent on treatment received
Kelley et al. (56) CD68 94 CD68 TAMs is related to the prognosis
Bjoürck et al. (57) CD68 57 Patients with an increased number of CD68 TAMs had longer survival
Kridel et al. (55) CD163 395 CD163 macrophages can predict the prognosis depending on the treatment

SMZL Vincent-Fabert et al. (62) PD-L1 54 Exhibiting inflammation with the expression of PD-L1
PTCL Sugaya et al. (65) CD163 28 CD163 M2 TAMs was linked to a poor clinical prognosis

Iqbal et al. (66) CD68 372 CD68 TAM differentiation by GATA3 related to worse prognosis
ATLL Saito et al. (64) CD204 58 CD204 TAMs were closely associated with lymphoma cell proliferation
MM Andersen et al. (76) CD163 131 Soluble CD163 was found to be a prognostic marker

Suyanı et al. (77) CD163 68 High MVD was found to be associated with increased CD163 TAM
Chen et al. (78) iNOS, CD163 240 iNOS and CD163 TAMs as independent prognostic factors
Wang et al. (79) CD163 198 High CD163 TAM correlate with poor prognosis
PFS, progression-free survival; LMR, lymphocyte-to-monocyte ratio; MVD, microvessel density.
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play an important role in angiogenesis, immunosuppression, and
the activation of tumor cells. Strategies to reprogram the
polarization of macrophages are new therapeutic options in
hematologic malignancies.
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