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Abstract: Citrate is a key intermediate of the tricarboxylic acid cycle and acts as an allosteric signal to
regulate the production of cellular ATP. An elevated cytosolic citrate concentration inhibits growth in
several types of human cancer cells; however, the underlying mechanism by which citrate induces the
growth arrest of cancer cells remains unclear. The results of this study showed that treatment of human
pharyngeal squamous carcinoma (PSC) cells with a growth-suppressive concentration of citrate caused
cell cycle arrest at the G2/M phase. A coimmunoprecipitation study demonstrated that citrate-induced
cell cycle arrest in the G2/M phase was associated with stabilizing the formation of cyclin B1–phospho
(p)-cyclin-dependent kinase 1 (CDK1) (Thr 161) complexes. The citrate-induced increased levels of
cyclin B1 and G2/M phase arrest were suppressed by the caspase-3 inhibitor Ac-DEVD-CMK and
caspase-3 cleavage of mutant p21 (D112N). Ectopic expression of the constitutively active form of
protein kinase B (Akt1) could overcome the induction of p21 cleavage, cyclin B1–p-CDK1 (Thr 161)
complexes, and G2/M phase arrest by citrate. p85α–phosphatase and tensin homolog deleted from
chromosome 10 (PTEN) complex-mediated inactivation of Akt was required for citrate-induced
G2/M phase cell cycle arrest because PTEN short hairpin RNA or a PTEN inhibitor (SF1670) blocked
the suppression of Akt Ser 473 phosphorylation and the induction of cyclin B1–p-CDK1 (Thr 161)
complexes and G2/M phase arrest by citrate. In conclusion, citrate induces G2/M phase arrest in
PSC cells by inducing the formation of p85α–PTEN complexes to attenuate Akt-mediated signaling,
thereby causing the formation of cyclin B1–p-CDK1 (Thr 161) complexes.

Keywords: Akt; citrate; cyclin B1; CDK1; p85α; PTEN; G2/M

1. Introduction

Reprogramming of cellular metabolism from respiration toward aerobic glycolysis is recognized
to supply the nucleotides, proteins, and lipids needed for rapid cell division, continuous growth,
invasion, metastasis, and resistance to chemotherapeutic agents [1–3]. Although an elevated level
of the aerobic glycolysis-derived pyruvate is preferentially converted into lactic acid, some of the
pyruvate is transported to the mitochondrial matrix, where it is diverted into acetyl-coenzyme A
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(acetyl-CoA) [4]. Mitochondrial acetyl-CoA and oxaloacetate (OAA) undergo a condensation reaction
by citrate synthase to form citrate, which is then transported to the cytosol to convert acetyl-CoA by
ATP-citrate lyase (ACL). Cytosolic acetyl-CoA serves as a precursor for de novo lipogenesis and is
first carboxylated to malonyl-CoA by acetyl-CoA carboxylase (ACC) [4]. ACCs are occasionally found
to be overexpressed in cancer cells and are correlated with a poor clinical outcome [5–7]. However,
high levels of citrate are present in the cytosol that suppress phosphofructokinase, a key enzyme of
glycolysis, consequently inhibiting ATP production and the de novo synthesis of phospholipids [8].
Citrate can also inhibit the activity of pyruvate dehydrogenase, resulting in decreased synthesis of ATP
and lipids [9,10]. Deprivation of ATP by glycolytic inhibition can induce apoptosis and inhibit cell
growth in drug-resistant cancer cells [11,12], indicating that depletion of the cellular ATP supply may
be an effective way to overcome chemoresistance in cancer therapy.

Serine/threonine kinase protein kinase B (PKB/Akt)-mediated signaling is critical for proliferation,
survival, metabolism, and metastasis of cancer cells [13] and is triggered by class IA phosphatidylinositol
3–kinase (PI3K) induction of the generation of phosphatidylinositol-3,4,5-trisphosphate (PIP3) [14].
Although the p85α regulatory subunit is crucial in mediating the activation of PI3K, p110α-free
p85α homodimers have the ability to bind and positively regulate the lipid phosphatase activity of
phosphatase and tensin homolog deleted from chromosome 10 (PTEN) to modulate Akt-mediated
signaling [15]. Akt activity is negatively regulated by PTEN through dephosphorylating the 3-position
of PIP3 to phosphatidylinositol-4,5-bisphosphate [16,17]. Increased activity and dysregulation of
Akt is associated with chemoresistance in various human cancer cells [18]. Inactivation of Akt by
chemotherapeutic drugs or the PI3K inhibitor LY294002 induces cell cycle arrest in the G2/M phase [19].
The mechanistic ability of Akt signaling to control the survival of cancer cells has been documented to
increase the stability of p21 via phosphorylation on p21 [20]. In the presence of p21, overexpression
decreases the induction of G2/M phase arrest and apoptosis by paclitaxel in p53-null human sarcoma
cells [21]. Active Akt exerts its action on the regulation of glucose uptake through the inhibition of
Bax conformation change [22]. Previous studies have indicated that Akt enhances the efflux of citrate
from the mitochondria to the cytosol in the form of acetyl-CoA by phosphorylating and activating
ACL [23–25]. Additionally, Akt has been shown to be involved in the stimulation of aerobic glycolysis
in cancer cells [26], motivating us to explore whether citrate attenuates Akt activity to suppress cancer
cell growth.

Although research has increasingly described the potential effects of citrate on the inhibition of
cancer cell growth and sensitizing cancer cells to chemotherapeutic agents [27–31], the spectrum of
cellular signaling factors involved in growth inhibition by citrate is poorly understood. In this study,
we investigated the underlying mechanisms that involve the inhibition of Akt signaling by citrate
linked to the growth arrest of cancer cells.

2. Results

2.1. Citrate Induces G2/M-Phase Arrest in Human Cancer Cells by Stabilizing the Formation of Cyclin
B1–p-CDK1 (Thr 161) Complexes

We first examined the effect of citrate on the growth of human pharyngeal squamous carcinoma
(PSC) cells using the MTT assay and flow cytometric analysis of propidium iodide (PI) uptake.
As shown in Figure 1, citrate did affect PSC cell growth and viability in a dose- and time-dependent
manner. Treatment with citrate for 36 h resulted in a decrease in the growth and viability of PSC cells,
with half-maximal inhibitory concentration cell viability (IC50) values of 10 mM. Thus, we used a
citrate concentration of 10 mM for all subsequent experiments.
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Figure 1. Citrate inhibits the growth of human pharyngeal squamous carcinoma (PSC) cells. (A,B) 
Cytotoxic and growth-inhibitory effects of citrate on PSC cells. The cells were treated with vehicle or 
the indicated concentrations of citrate for the indicated periods of time. Cell viability and proliferation 
were determined by flow cytometric analysis of propidium iodide (PI) uptake and MTT assay, 
respectively. The values are presented as the means ± standard error of three independent 
experiments. *p < 0.05: significantly different from vehicle (−)-treated cells. 

To investigate whether the reduction in PSC cell growth was due to cell cycle arrest triggered by 
citrate, its effect on cell cycle progression was examined by flow cytometry of PI-stained cells. With 
citrate treatment, more cells accumulated in the G2/M phase than in vehicle-treated cells. A significant 
increase in the number of sub-G1-phase populations was also observed in citrate-treated cells (Figure 
2A). It has been shown that cyclin-dependent kinase 1 (CDK1) is activated by binding to cyclin B1 
and phosphorylated at its residue on threonine (Thr) 161, which can then drive G2/M phase cell cycle 
progression [32–34]. To examine whether citrate affected the CDK1 activity of treated cells, the level 
of CDK1 and related proteins regulating the S-G2/M phase transition was analyzed. After exposure 
to citrate, cells showed an increase in the level of cyclin B1 (Figure 2B) and an increase in the level of 
Thr 161-phosphorylated CDK1 (Figure 3). Coimmunoprecipitation was performed in citrate-treated 
cell extracts using antibodies specific for CDK1 and cyclin B1 to characterize the effect of citrate on 
the interaction between CDK1 and cyclin B1. Western blot analysis of the coimmunoprecipitates 
using an antibody against CDK1 revealed that phospho (p)-CDK1 (Thr 161) formed a complex with 
cyclin B1 in citrate-treated cells. Reciprocally, cyclin B1–p-pCDK1 (Thr 161) complexes were 
immunoprecipitated by an antibody against cyclin B1. In contrast, control immunoglobulin G (IgG) 
antibodies did not immunoprecipitate any specific protein that interacted with cyclin B1 or CDK1 
protein (Figure 3), confirming the specificity of the cyclin B1–p-CDK1 (Thr 161) complexes in citrate-
treated cells. 

Figure 1. Citrate inhibits the growth of human pharyngeal squamous carcinoma (PSC) cells.
(A,B) Cytotoxic and growth-inhibitory effects of citrate on PSC cells. The cells were treated with
vehicle or the indicated concentrations of citrate for the indicated periods of time. Cell viability and
proliferation were determined by flow cytometric analysis of propidium iodide (PI) uptake and MTT
assay, respectively. The values are presented as the means ± standard error of three independent
experiments. * p < 0.05: significantly different from vehicle (−)-treated cells.

To investigate whether the reduction in PSC cell growth was due to cell cycle arrest triggered
by citrate, its effect on cell cycle progression was examined by flow cytometry of PI-stained cells.
With citrate treatment, more cells accumulated in the G2/M phase than in vehicle-treated cells.
A significant increase in the number of sub-G1-phase populations was also observed in citrate-treated
cells (Figure 2A). It has been shown that cyclin-dependent kinase 1 (CDK1) is activated by binding to
cyclin B1 and phosphorylated at its residue on threonine (Thr) 161, which can then drive G2/M phase
cell cycle progression [32–34]. To examine whether citrate affected the CDK1 activity of treated cells, the
level of CDK1 and related proteins regulating the S-G2/M phase transition was analyzed. After exposure
to citrate, cells showed an increase in the level of cyclin B1 (Figure 2B) and an increase in the level of
Thr 161-phosphorylated CDK1 (Figure 3). Coimmunoprecipitation was performed in citrate-treated
cell extracts using antibodies specific for CDK1 and cyclin B1 to characterize the effect of citrate on the
interaction between CDK1 and cyclin B1. Western blot analysis of the coimmunoprecipitates using an
antibody against CDK1 revealed that phospho (p)-CDK1 (Thr 161) formed a complex with cyclin B1 in
citrate-treated cells. Reciprocally, cyclin B1–p-pCDK1 (Thr 161) complexes were immunoprecipitated
by an antibody against cyclin B1. In contrast, control immunoglobulin G (IgG) antibodies did not
immunoprecipitate any specific protein that interacted with cyclin B1 or CDK1 protein (Figure 3),
confirming the specificity of the cyclin B1–p-CDK1 (Thr 161) complexes in citrate-treated cells.
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Figure 2. Citrate induces G2/M phase arrest of human PSC cells. (A,B) After treatment of the cells with 
vehicle (−) or citrate (10 mM) for 36 h, the levels of the indicated proteins in the cell lysates and cell cycle 
phase were determined using Western blot analysis with specific antibodies and flow cytometric 
analysis of PI-stained cells, respectively. The values are presented as the means ± standard error of three 
independent experiments. β-Actin was used as an internal control for sample loading. 

Figure 2. Citrate induces G2/M phase arrest of human PSC cells. (A,B) After treatment of the cells with
vehicle (−) or citrate (10 mM) for 36 h, the levels of the indicated proteins in the cell lysates and cell
cycle phase were determined using Western blot analysis with specific antibodies and flow cytometric
analysis of PI-stained cells, respectively. The values are presented as the means ± standard error of
three independent experiments. β-Actin was used as an internal control for sample loading.
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Figure 3. Induction of the formation of cyclin B1–phospho (p)-cyclin-dependent kinase 1 (CDK1) (Thr 
161) complexes by citrate in human PSC cells. Cells were treated with vehicle (−) or citrate (10 mM) 
for 36 h. The antibody used for coimmunoprecipitation is indicated at the top. The proteins from the 
immunoprecipitated complexes were detected using Western blotting with specific antibodies. 
Normal immunoglobulin G (IgG) was used as a control for antibody specificity. 

Elevating the stability of p21 is known to prevent the activation of cyclin B1–CDK1 and induction 
of G2/M arrest and apoptosis [21,35]. Caspase-3 activity has been shown to be required for the 
induction of p21 cleavage [36]. To investigate whether the caspase-3-mediated p21 cleavage is 
involved in citrate-induced G2/M arrest, we cotreated the cells with the caspase-3 inhibitor Ac-DEVD-
CMK. Citrate-induced p21 cleavage and G2/M accumulation were suppressed by Ac-DEVD-CMK 
(Figures 4A,B). Therefore, we investigated the effect of overexpression of wild-type p21 (wt p21) and 
caspase-3 cleavage-resistant p21 mutant (p21 (D112N)) on G2/M phase arrest. Ectopic expression of 
wt p21 or p21 (D112N) suppressed citrate-induced cyclin B1 expression and G2/M phase arrest 
(Figure 4C,D). The suppressive effect on the G2/M phase arrest of p21 (D112N) was much greater than 
that of wt p21 (Figure 4D), indicating that proteolytic cleavage of p21 by activated caspase 3 was 
functionally linked to the induction of G2/M. 

Figure 3. Induction of the formation of cyclin B1–phospho (p)-cyclin-dependent kinase 1 (CDK1) (Thr
161) complexes by citrate in human PSC cells. Cells were treated with vehicle (−) or citrate (10 mM)
for 36 h. The antibody used for coimmunoprecipitation is indicated at the top. The proteins from the
immunoprecipitated complexes were detected using Western blotting with specific antibodies. Normal
immunoglobulin G (IgG) was used as a control for antibody specificity.

Elevating the stability of p21 is known to prevent the activation of cyclin B1–CDK1 and
induction of G2/M arrest and apoptosis [21,35]. Caspase-3 activity has been shown to be required
for the induction of p21 cleavage [36]. To investigate whether the caspase-3-mediated p21
cleavage is involved in citrate-induced G2/M arrest, we cotreated the cells with the caspase-3
inhibitor Ac-DEVD-CMK. Citrate-induced p21 cleavage and G2/M accumulation were suppressed by
Ac-DEVD-CMK (Figure 4A,B). Therefore, we investigated the effect of overexpression of wild-type p21
(wt p21) and caspase-3 cleavage-resistant p21 mutant (p21 (D112N)) on G2/M phase arrest. Ectopic
expression of wt p21 or p21 (D112N) suppressed citrate-induced cyclin B1 expression and G2/M phase
arrest (Figure 4C,D). The suppressive effect on the G2/M phase arrest of p21 (D112N) was much greater
than that of wt p21 (Figure 4D), indicating that proteolytic cleavage of p21 by activated caspase 3 was
functionally linked to the induction of G2/M.
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Figure 4. Citrate-induced caspase 3-mediated p21 cleavage is involved in the induction of G2/M phase 
cell cycle arrest. (A,B) Cells were treated with vehicle (−), citrate (10 mM), Ac-DEVD-CMK (10 μM), or 
citrate (10 mM) plus Ac-DEVD-CMK (10 μM) for 36 h. (C,D) At 12 h after transfection with an empty 
vector, HA-wt p21, or FLAG-p21 (D112N), the cells were treated with either vehicle (−) or citrate (10 
mM) for 36 h. The levels of indicated proteins in the cell lysates and cell cycle phase were determined 
using Western blot analysis with specific antibodies and flow cytometric analysis of PI-stained cells, 
respectively. β-Actin was used as an internal control for sample loading. The values are presented as the 
means ± standard error of three independent experiments. *p < 0.05: significantly different from empty 
vector-transfected citrate-treated cells or wt-p21-transfected citrate-treated cells. 

2.2. Suppression of Akt-Mediated Signaling is Required for Citrate-Induced G2/M Phase Arrest 

To clarify whether G2/M phase arrest was induced because of the inhibition of Akt activity by 
citrate, we examined the effect of the ectopic expression of constitutively active (CA) or dominant-
negative (DN) Akt1 proteins on citrate-treated cells. Compared with control vector-transfected cells, 
forced ectopic expression of HA-CA Akt1 reduced the cyclin B1 level and resulted in a decrease in 
the number of G2/M-phase populations. HA-CA Akt1 expression could reduce citrate-induced p21 
cleavage, cyclin B1–p-CDK1 (Thr 161) complex formation, and G2/M phase arrest. Overexpression of 
phosphorylation-deficient HA-DN Akt1 regulated cell growth with significant G2/M phase arrest; 
induced p21 cleavage, cyclin B1 expression, CDK1 (Thr 161) phosphorylation, and cyclin B1–p-CDK1 
(Thr 161) complex formation; and enhanced cell cycle arrest in the G2/M phase triggered by citrate 
(Figure 5). These results suggest that an arrest of the cell cycle in the G2/M phase requires the 
suppression of Akt1-mediated signaling by citrate to promote the cleavage of p21, leading to the 
formation of cyclin B1–p-CDK1 (Thr 161) complexes. 

Figure 4. Citrate-induced caspase 3-mediated p21 cleavage is involved in the induction of G2/M phase
cell cycle arrest. (A,B) Cells were treated with vehicle (−), citrate (10 mM), Ac-DEVD-CMK (10 µM),
or citrate (10 mM) plus Ac-DEVD-CMK (10 µM) for 36 h. (C,D) At 12 h after transfection with an
empty vector, HA-wt p21, or FLAG-p21 (D112N), the cells were treated with either vehicle (−) or citrate
(10 mM) for 36 h. The levels of indicated proteins in the cell lysates and cell cycle phase were determined
using Western blot analysis with specific antibodies and flow cytometric analysis of PI-stained cells,
respectively. β-Actin was used as an internal control for sample loading. The values are presented as
the means ± standard error of three independent experiments. * p < 0.05: significantly different from
empty vector-transfected citrate-treated cells or wt-p21-transfected citrate-treated cells.

2.2. Suppression of Akt-Mediated Signaling is Required for Citrate-Induced G2/M Phase Arrest

To clarify whether G2/M phase arrest was induced because of the inhibition of Akt activity by citrate,
we examined the effect of the ectopic expression of constitutively active (CA) or dominant-negative
(DN) Akt1 proteins on citrate-treated cells. Compared with control vector-transfected cells, forced
ectopic expression of HA-CA Akt1 reduced the cyclin B1 level and resulted in a decrease in the
number of G2/M-phase populations. HA-CA Akt1 expression could reduce citrate-induced p21
cleavage, cyclin B1–p-CDK1 (Thr 161) complex formation, and G2/M phase arrest. Overexpression
of phosphorylation-deficient HA-DN Akt1 regulated cell growth with significant G2/M phase arrest;
induced p21 cleavage, cyclin B1 expression, CDK1 (Thr 161) phosphorylation, and cyclin B1–p-CDK1
(Thr 161) complex formation; and enhanced cell cycle arrest in the G2/M phase triggered by citrate
(Figure 5). These results suggest that an arrest of the cell cycle in the G2/M phase requires the
suppression of Akt1-mediated signaling by citrate to promote the cleavage of p21, leading to the
formation of cyclin B1–p-CDK1 (Thr 161) complexes.
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Figure 5. Inhibition of Akt activity by citrate confers the induction of cyclin B1–p-CDK1 (Thr 161) 
complexes and G2/M phase arrest. At 12 h after transfection with an empty vector, HA-CA Akt1, or 
HA-DN Akt1, the cells were treated with either vehicle () or citrate (10 mM) for 36 h. (A,B) The levels 
of the indicated proteins in the cell lysates and cell cycle phase were determined using Western blot 
analysis with specific antibodies and flow cytometric analysis of PI-stained cells, respectively. The 
values are presented as the means  standard error of three independent experiments. *p < 0.05: 
significantly different from empty vector-transfected vehicle-treated cells or empty vector-transfected 
citrate-treated cells. (C) The antibody used for coimmunoprecipitation is indicated at the top. The 
proteins from the immunoprecipitated complexes were detected using Western blotting with specific 
antibodies. Normal IgG was used as a control for antibody specificity. 

2.3. p85–PTEN Complex-Mediated Inhibition of Akt is Required for Citrate-Induced G2/M Phase Arrest 

Figure 5. Inhibition of Akt activity by citrate confers the induction of cyclin B1–p-CDK1 (Thr 161)
complexes and G2/M phase arrest. At 12 h after transfection with an empty vector, HA-CA Akt1, or
HA-DN Akt1, the cells were treated with either vehicle (−) or citrate (10 mM) for 36 h. (A,B) The
levels of the indicated proteins in the cell lysates and cell cycle phase were determined using Western
blot analysis with specific antibodies and flow cytometric analysis of PI-stained cells, respectively.
The values are presented as the means ± standard error of three independent experiments. * p < 0.05:
significantly different from empty vector-transfected vehicle-treated cells or empty vector-transfected
citrate-treated cells. (C) The antibody used for coimmunoprecipitation is indicated at the top. The
proteins from the immunoprecipitated complexes were detected using Western blotting with specific
antibodies. Normal IgG was used as a control for antibody specificity.

2.3. p85α–PTEN Complex-Mediated Inhibition of Akt is Required for Citrate-Induced G2/M Phase Arrest

We next examined the levels of p85α, p-p85α (Tyr 508), p110α, PTEN, and p-PTEN (Ser 380/Thr
382/385). As shown in Figure 6A,C, citrate suppressed the phosphorylation of p85α (Tyr 508) and PTEN
(Ser 380/Thr 382/385) and reduced the membrane formation of p-p85α (Tyr 508)–p110α complexes, but
it did increase the PTEN level. However, citrate treatment did not affect the levels of p85α and p110α
(Figure 6A). p85α has been shown to play an important role in stabilizing PTEN by interacting with its
dephosphorylated active form at the plasma membrane [37,38]. To examine whether suppressed Akt
(Ser 473) phosphorylation is associated with an induction in the formation of p85α–PTEN complexes
by citrate, we transfected cells with a PTEN shRNA-expressing plasmid or treated cells with a PTEN
inhibitor (SF1670) followed by citrate. The specificity of shRNA for the target PTEN was confirmed
by immunoblot analysis (Figure 6A). Knockdown of PTEN in cells enhanced the phosphorylation of
Akt (Ser 473) and reduced the level of cyclin B1. Cells expressing PTEN shRNA in the presence of
citrate exhibited rescue effects on the suppression of Akt (Ser 473) phosphorylation and the formation
of cyclin B1–p-CDK1 (Thr 161) complexes and G2/M phase arrest, but PTEN shRNA did not overcome
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the attenuation of membrane-associated p-p85α (Tyr 508)–p110α complexes by citrate. (Figure 6A–C).
The treatment of cells with the PTEN inhibitor (SF1670) alone resulted in an increased level of the
phosphorylated form of Akt (Ser 473) and a decreased level of cyclin B1 (Figure 6A). The cotreatment of
SF1670 along with citrate restored cyclin B1, Ser 473 phosphorylated Akt, cyclin B1–p-CDK1 (Thr 161)
complex formation, and G2/M phase to normal levels, similar to the results of treatment with a vehicle
control. However, cells treated with SF1670 failed to affect the induction of p85α–PTEN complexes
and reduction of p-p85α (Tyr 508)–p110α complexes at the plasma membrane by citrate (Figure 6A–C).
These observations indicate that the enhanced complex formation of p85α–PTEN through suppression
of p-p85α (Tyr 508)–p110α complex formation is required for citrate-induced Akt inactivation, cyclin
B1–p-CDK1 (Thr 161) complex formation, and G2/M phase arrest.
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Figure 6. Suppression of p-p85α (Tyr 508)–p110 complex formation by citrate is required for induction
of the formation of p85α–phosphatase and tensin homolog deleted from chromosome 10 (PTEN)
complexes and G2/M phase arrest. At 12 h after transfection with an empty vector or PTEN shRNA,
or at 6 h after pretreatment with SF1670 (2 µM), cells were treated with either vehicle (−) or citrate
(10 mM) for 36 h. (A,B) The levels of the indicated proteins in the cell lysates and cell cycle phase
were determined using Western blot analysis with specific antibodies and flow cytometric analysis of
PI-stained cells, respectively. β-Actin was used as an internal control for sample loading. The values
are presented as the means ± standard error of three independent experiments. * p < 0.05: significantly
different from empty vector-transfected citrate-treated cells. (C) Coimmunoprecipitation of CDK1
and cyclin B1 was performed using the total extracts prepared from the cells treated as described
above. Coimmunoprecipitation of p85α and PTEN was performed using the membrane fractions
prepared from the cells treated as described above. The antibodies used for coimmunoprecipitation are
indicated at the top of the figure. The proteins present in the immunoprecipitated complexes were
analyzed by Western blot analysis using specific antibodies. Normal IgG was used as a control for
antibody specificity.

3. Discussion

Constitutive glycolytic metabolism in cells is correlated with the ability to modulate the expression
of antiapoptotic, oncogenic, and tumor-suppressive genes, thereby promoting the development of
cancer cells. Targeting the regulators that control the glycolytic pathway is a suggested mechanism for
therapeutic cancer strategies [1,39]. In the present work, overexpression of DN Akt1 resulting in the
formation of cyclin B1–p-CDK1 (Thr 161) complexes conferred G2/M phase arrest. The silencing of
PTEN or treatment with the PTEN inhibitor (SF1670) caused an increased level of phosphorylated Akt
(Ser 473) and decreased level of cyclin B1. The coimmunoprecipitation assay of membrane fractions
of vehicle-treated cells using an antibody specific for p85α or PTEN revealed that p-p85α (Tyr 508)
formed a complex with p110α in the plasma membrane but did not interact with PTEN. In the presence
of citrate, membrane-associated p85α–PTEN complexes were detected by p85α or PTEN antibody;
however, a small amount of p110α could be immunoprecipitated by the anti-p85α antibody. p85α
has been shown to bind preferentially to p110α to stabilize p110α and regulate PI3K activity [15].
p110α-free p85α can bind unphosphorylated PTEN and positively regulate its phosphatase activity [15].
Considering these findings and the observed decrease in p-p85α (Tyr 508)–p110α complex formation
causing the association of p85α with unphosphorylated PTEN at the plasma membrane after treatment
with citrate, it is logical to suggest that the stabilization of p-p85α (Tyr 508)–p110 complexes at the
plasma membrane has physiological relevance related to the promotion of Akt activation to allow the
progression of the cancer cell proliferation cycle in aerobic glycolytic metabolism.

Phosphorylation of Tyr 508 has been implicated in modulating p85α-mediated conformational
change and plasma membrane localization of p110α to act on the lipid kinase activity of PI3K upon
platelet-derived growth factor (PDGF) receptor stimulation [40–42]. Monomeric p110α is catalytically
inactive, requiring a direct interaction with p85α to convert to the active form [43,44]. The ability
of p85α to interact with p110α has been proposed to translocate PI3K to the plasma membrane and
stimulate PI3K-mediated Akt activation [14]. Active PI3K phosphorylates PIP2, converting it to PIP3 in
an ATP-dependent manner [14,45]. Elevated cytosolic citrate inhibits ATP synthesis via suppressing
the activities of pyruvate dehydrogenase and the key glycolytic enzyme phosphofructokinase [8–10].
Treatment with citrate did decrease the levels of p-p85α (Tyr 508) and p-Akt (Ser 473). PTEN (Ser
380/Thr 382/385) phosphorylation did not show any change, while PTEN expression was found to be
increased in cells with citrate. p-p85α (Tyr 508)–p110α complexes were decreased from the plasma
membrane, whereas p85α–PTEN complexes were present in the plasma membrane of citrate-treated
cells. Dephosphorylated PTEN represents an active form and requires interaction with p85α at the
plasma membrane for the induction of phosphatase activity [15]. Stabilization of PTEN is controlled by
p85α interaction, which promotes ubiquitination by E3 ligase WWP2 activity involving ATP-dependent
formation [38,46]. The inactivation of PTEN by shRNA or SF1670 had a clear suppressor effect on
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citrate-induced inhibition of Akt activity and induction of cyclin B1 expression, cyclin B1–p-CDK1
(Thr 161) complexes, and G2/M phase arrest, but there was no effect on the levels of p-p85α (Tyr
508) and p-p85α (Tyr 508)–p110α complexes. The induction of p21 cleavage, cyclin B1 expression,
CDK1 Thr161 phosphorylation, cyclin B1–p-CDK1 (Thr 161) complex formation, and G2/M phase
arrest by citrate was reversed by CA Akt1 overexpression. Constitutive Akt inactivation by DN Akt1
ectopic expression could promote p21 cleavage, cyclin B1 expression, CDK1 Thr161 phosphorylation,
and cyclin B1–p-CDK1 (Thr 161) complex formation and induce cell cycle arrest during S phase in
response to vehicle treatment. These observations confirm and extend previous studies [14,15,26,38] to
clearly indicate that plasma membrane-associated p-p85α (Tyr 508)–p110α complexes are key upstream
regulators of Akt and PTEN that mediate the formation of cyclin B1–p-CDK1 (Thr 161) complexes and
regulate G2/M phase progression in cancer cells toward the anaerobic glycolytic process. An inhibitory
effect of p21 on the cyclin B1–CDK1 activation has been shown to promote dephosphorylation of
CDK1 by Cdc25 [35]. Ectopic expression of p21 can block the phosphorylation of CDK1 (Thr161) by
CDK-activating kinase [47]. The observed caspase-3 activation-mediated cyclin B1 expression and
G2/M arrest induction of citrate was attenuated by ectopic expression of wt p21 or p21 (D112N). Based
on these observations, we propose a working model whereby citrate can induce cell cycle arrest in the
G2/M phase (Figure 7). Citrate suppressing the phosphorylation of p85α (Tyr 508) via the inhibition
of ATP synthesis interferes with the interaction of p85α with p110 in the plasma membrane, thereby
attenuating the regulatory effect of PI3K-mediated Akt activity on the control of cell cycle G2/M
phase progression.
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Figure 7. A molecular model for the induction of G2/M phase arrest in human PSC cells by citrate. Under
the conditions of high cellular citrate uptake, citrate suppresses the activities of pyruvate dehydrogenase
and phosphofructokinase, thus inhibiting the production of ATP, attenuating the phosphorylation of
p85α (Tyr 508), and interfering with the interaction of p85α with p110α in plasma membrane. Decreased
intracellular ATP levels are accompanied by inhibition of the proteasome-mediated degradation of PTEN,
which can result in increased levels of PTEN. The resulting p110α-free p85α and unphosphorylated
PTEN preferentially form p85α–PTEN complexes in the plasma membrane. Thus, p85α can positively
regulate PTEN, resulting in decreased Akt activity and inducing caspase-3-mediated p21 cleavage,
cyclin B1–p-CDK1 (Thr 161) complex formation, and an accumulation of cells in G2/M phase.
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The phosphorylation profiles of p85α, rather than phosphorylation of Tyr 508, determine the
regulatory function of p85α in heterodimer formation between p85α and p110α and the lipid kinase
activity of PI3K. That the phosphorylation of Ser 608, a residue located in an area of the p85α iSH2
domain, confers stable membrane association of p110α to p85α, which determines stabilization of
p110α and activity of PI3K lipid kinase, indicates that the phosphorylation of p85α Ser 608 can direct
the functional status of PI3K [48–50]. Investigation on the underlying mechanisms that involve the
suppression of plasma membrane-associated p-p85α (Tyr 508)–p110α complexes by citrate do not rule
out the possible involvement of the deregulation of Ser 608 phosphorylation in the process. In the
present study, we could not assess the phosphorylation status of Ser 608 in citrate-treated cells because
of the lack of an available phospho-specific antibody against p85α Ser 608. However, our findings
provide a mechanistic explanation for the recently reported role of an increased PTEN level in the
suppression of tumor growth [51].

4. Materials and Methods

4.1. Cell Culture

The human pharyngeal squamous carcinoma FaDu and Detroit 562 cell lines were obtained as
previously described [52,53]. FaDu and Detroit 562 cell lines were cultured in minimum essential
medium (MEM) supplemented with 5% fetal bovine serum (FBS). The cell lines were grown in 10-cm
tissue culture dishes at 37 ◦C in a humidified incubator containing 5% CO2.

4.2. Chemicals, Reagents, and Plasmids

Citrate, dithiothreitol, ethylene glycol tetraactic acid (EGTA), leupeptin, MgCl2, 3-(4,5-dimethylthiazol
-2-yl)-2,5-diphenyltetrazolium bromide (MTT), N-(9,10-dihydro-9,10-dioxo-2-phenanthrenyl)-2,2-
dimethyl-propanamide, N-(9,10-dioxo-9,10-dihydro-phenanthren-2-yl)-2,2-dimethylpropionamide
(SF1670), NaF, Na3VO4, paraformaldehyde, pepstatin A, phenylmethylsulfonyl fluoride, Tris-HCl,
propidium iodide (PI), and Triton X-100 were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Citrate was dissolved in and diluted with ethanol and stored at −20 ◦C as a 100-mM stock. Ethanol
and potassium phosphate were purchased from Merck (Darmstadt, Germany). Lipofectamine
2000 was purchased from Thermo Fisher Scientific (New York, NY, USA). DMEM, FBS, glutamine,
MEM, penicillin-streptomycin, and trypsin-EDTA were obtained from Gibco BRL (Grand Island, NY,
USA). Protein A-agarose beads were purchased from Amersham Biosciences (Piscataway, NJ, USA).
The inhibitor of caspase 3 (Ac-DEVD-CMK) was purchased from Calbiochem (San Diego, CA, USA)
and dissolved in DMSO. pHA-wt p21, pFLAG-p21 (D112N), pHA-CA Akt1, pHA-DN Akt 1, and
pPTEN shRNA vectors were obtained from Addgene (Cambridge, MA, USA).

4.3. Antibodies

Antibody against p-CDK1 (Thr 161) was purchased from Abcam (Cambridge, MA, USA).
Anti-p85α, anti-Akt, and p-Akt (Ser 473) antibodies were purchased from BD PharMingen. Antibodies
against p21, CDK1, CDK2, cyclin A, cyclin B1, cyclin D, cyclin E, and p110α were purchased from
Santa Cruz Biotechnology. Anti-pan-cadherin, anti-PTEN, and anti-PTEN (Ser 380/Thr 382/385)
antibodies were obtained from Thermo Fisher Scientific (New York, NY, USA). Antibodies against
β-actin, hemagglutinin (HA)-epitope tag, and FLAG-epitope tag were obtained from Sigma-Aldrich.
Peroxidase-conjugated anti-mouse IgG, anti-goat IgG, and anti-rabbit IgG secondary antibodies were
purchased from Jackson ImmunoResearch Laboratory (West Grove, PA, USA).

4.4. Cell Viability Assay

The cells were seeded at 3 × 104 cells/well in 24-well tissue culture plates. The cells were grown
overnight to ~60% confluence and treated with either ethanol as the vehicle control or citrate for the
indicated periods. For a vehicle control, ethanol was diluted in culture medium to the same final
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concentration of DMSO (0.1%; v/v) as in the medium with citrate. At the end of the incubation, the
treated cells were harvested and stained with PI solution (10 µg/mL in phosphate-buffered saline; PBS).
The samples were analyzed on a FACSCount flow cytometer (BD Biosciences, Franklin Lakes, NJ,
USA). Cell Quest software (BD Biosciences, Franklin Lakes, NJ, USA) was used to analyze the results.
PI-negative populations were defined as viable cells.

4.5. Cell Proliferation Assay

The cells were seeded at a density of 3 × 104 cells per well into 24-well plates. After 16 h of
incubation, the cells were grown to ~60% confluence and treated with either vehicle or citrate at 37 ◦C
for the indicated periods before being harvested. Cell proliferation was determined by the MTT
method. The treated cells were washed once with PBS and incubated with 0.5 mg/mL of MTT for
5 h. The resulting formazan precipitate was dissolved in 150 µL of DMSO, and the optical density
(OD) of formazan was determined using an ELISA reader (Thermo Labsystems, Multiskan Spectrum,
Waltham, MA, USA) at 570 nm.

4.6. Measurement of the Cell Cycle by Flow Cytometry

Cells (1 × 105) were trypsinized, washed twice with PBS, and fixed in 80% ethanol. Fixed cells
were washed with PBS, incubated with 100 µg/mL of RNase for 30 min at 37 ◦C, stained with PI
(50 µg/mL), and analyzed on a FACSCount flow cytometer. The percentage of cells that had undergone
apoptosis was assessed as the ratio of the area of fluorescence that was smaller than the G0–G1 peak to
the total area of fluorescence.

4.7. Western Blot Analysis

Treated or transfected cells were lysed in lysis buffer (50 mM Tris-HCl (pH 8.0), 120 mM NaCl,
1 µg/mL of aprotinin, 100 mM Na3VO4, 50 mM NaF, and 0.5% NP-40). The protein concentration
was determined by the Bradford method (Bio-Rad, Hercules, CA, USA). Proteins were separated by
electrophoresis on a 10% SDS-PAGE gel and then transferred to a polyvinylidene difluoride membrane
(Immobilon-P; Millipore, Bedford, MA, USA). The membranes were blocked overnight with PBS
containing 3% skim milk and then incubated with primary antibodies against Akt, p-Akt (Ser 473), cyclin
A, cyclin B, cyclin D, cyclin E, CDK1, p-CDK1 (Thr161), CDK2, PTEN, PTEN (Ser 380/Thr 382/385), and
p21. The proteins were visualized by staining the membrane with horseradish peroxidase-conjugated
goat anti-mouse, goat anti-rabbit, or donkey anti-goat antibodies and the Western blotting luminol
reagent. To confirm equal protein loading, β-actin was measured. Densitometric measurements of the
band in Western blot analysis were performed using the computed densitometry and ImageQuant 5.2
software (Molecular Dynamics, Sunnyvale, CA, USA).

4.8. Plasmid Transfection

Cells (at 70% confluency in a 6- or 12-well plate) were transfected with expression plasmids for
HA-CA Akt1, HA-DN Akt1, HA-wt p21, FLAG-p21 (D112N), PTEN shRNA or empty vector using
Lipofectamine 2000.

4.9. Subcellular Fractionation

Subcellular fractionation was performed according to the protocol of Taha et al. [54]. The treated
cells were washed twice with ice-cold PBS and scraped into a detergent-free lysis buffer (10 mM Tris/HCl
(pH 7.4), 10 mM NaCl, 0.5 mM MgCl2, and EDTA-free protease inhibitor cocktail). The suspension
of cells was homogenized using a prechilled 7-mL Dounce homogenizer and then centrifuged at
1200× g for 5 min at 4 ◦C. The supernatant was collected and then centrifuged for 5 min at 1200× g at
4 ◦C. The resulting supernatant was further subjected to a 16,000× g centrifugation step for 10 min at
4 ◦C to isolate the heavy membrane pellet. The heavy membrane pellet was reserved as the plasma
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membrane fraction and lysed in RIPA buffer (1% sodium deoxycholate, 0.1% SDS, 1% Triton X-100,
10 mM Tris-HCl (pH 8.0), and 0.14 M NaCl) for Western blot analysis of the coimmunoprecipitation
experiment. The purity of the plasma membrane fraction was confirmed by Western blotting using a
specific antibody against the plasma membrane marker cadherin.

4.10. Coimmunoprecipitation

Cells (5 × 105) were treated with 10 mM citrate for 36 h and then harvested and lysed in 0.6 mL of
cell lysis buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM Na2EDTA, 100 mM Na3VO4, 0.5% (v/v)
NP-40, 50 mM NaF, 25 mM leupeptin). Whole-cell extracts were incubated with anti-CDK1, anti-cyclin
B1, p85α, PTEN, or normal mouse IgG and normal rabbit IgG as a negative control at 4 ◦C for 2 h. After
incubation, protein A-agarose beads were added, and the mixture was incubated with gentle rocking at
4 ◦C for 2 h. The immunocomplexes were then analyzed by 10% SDS-PAGE and immunoblotted with
antibodies against cyclin B1, CDK1, p-CDK1 (Thr 161), p85α, PTEN, and p-PTEN (Ser 380/Thr 382/385).

4.11. Statistical Analysis of Data

Statistical calculations of the data were performed using unpaired Student’s t-test and ANOVA.
Statistical significance between the vehicle control and experimental groups was set at p < 0.05.

5. Conclusions

Taken together, citrate-elevated p85α interacts with PTEN at the plasma membrane to cause
Akt inactivation, leading to the formation of cyclin B1–p-CDK1 (Thr 161) complexes and subsequent
induction of G2/M phase arrest. This finding not only has potential implications for the current
understanding of the molecular mechanism of citrate inhibition of cancer cell growth but also provides
a theoretical basis for the further development of novel glycolytic inhibitors.
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ACC Acetyl-CoA carboxylase
ACL ATP-citrate lyase
CDK1 Cyclin-dependent kinase 1
OAA Oxaloacetate
PTEN Phosphatase and tensin homolog deleted from chromosome 10
PI3K Phosphatidylinositol 3-kinase
PIP2 Phosphatidylinositol-4,5-bisphosphate
PIP3 Phosphatidylinositol-3,4,5-trisphosphate
Akt Protein kinase B
PSC Human pharyngeal squamous carcinoma
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