
Article
Tracking online low-rank a
pproximations of higher-
order incomplete streaming tensors
Highlights
d Online low-rank approximations are modeled under Tucker

and CP formats

d Two tensor trackers were proposed with provable

convergence guarantee

d Randomized techniques were exploited to facilitate the

tracking process

d The proposed algorithms were shown to be among the

fastest tensor decompositions
Thanh et al., 2023, Patterns 4, 100759
June 9, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.patter.2023.100759
Authors

Le Trung Thanh, Karim Abed-Meraim,

Nguyen Linh Trung, Adel Hafiane

Correspondence
linhtrung@vnu.edu.vn

In brief

This article introduces two provable

adaptive algorithms for tracking online

low-rank approximations of streaming

tensors under the Tucker and CPmodels.

Both algorithms converge quickly, have

lowmemory storage, and perform well on

synthetic and real data.
ll

mailto:linhtrung@vnu.edu.�vn
https://doi.org/10.1016/j.patter.2023.100759
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2023.100759&domain=pdf

OPEN ACCESS

ll
Article

Tracking online low-rank approximations
of higher-order incomplete streaming tensors
Le Trung Thanh,1,2 Karim Abed-Meraim,1,3 Nguyen Linh Trung,2,4,* and Adel Hafiane1
1PRISME Laboratory, University of Orléans, INSA CVL, 12 Rue de Blois, 45100 Orléans, France
2AVITECH Institute, VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay 10000, Hanoi, Vietnam
3Academic Institute of France, 1 Rue Descartes, 75005 Paris, France
4Lead contact
*Correspondence: linhtrung@vnu.edu.vn

https://doi.org/10.1016/j.patter.2023.100759
THE BIGGER PICTURE Low-rank approximation methods are a class of mathematical techniques
commonly used to help process large datasets, especially in signal processing andmachine learning appli-
cations. These methods allow multidimensional data to be represented by a set of low-dimensional com-
ponents and can be powerful tools for discovering valuable information or deriving new insights from com-
plex data. Applying thesemethods to streaming data, which are being continuously generated andmust be
analyzed in real time, remains challenging due to the increasing size and complexity of these datasets over
time. These challenges are particularly acute for datasets with missing values. This paper proposes a novel
adaptive method for tracking online low-rank approximations of multidimensional streaming data, resulting
in two efficient tensor trackers that accurately estimate the underlying components of noisy, incomplete,
and high-dimensional observations. The effectiveness of the proposed approach is demonstrated in
various experiments, including the analysis of EEG data and video sequences.

Development/pre-production
SUMMARY
In this paper, we propose two new provable algorithms for tracking online low-rank approximations of high-
order streaming tensors with missing data. The first algorithm, dubbed adaptive Tucker decomposition
(ATD), minimizes a weighted recursive least-squares cost function to obtain the tensor factors and the
core tensor in an efficient way, thanks to an alternating minimization framework and a randomized sketching
technique. Under the canonical polyadic (CP) model, the second algorithm, called ACP, is developed as a
variant of ATD when the core tensor is imposed to be identity. Both algorithms are low-complexity tensor
trackers that have fast convergence and low memory storage requirements. A unified convergence analysis
is presented for ATD and ACP to justify their performance. Experiments indicate that the two proposed algo-
rithms are capable of streaming tensor decomposition with competitive performance with respect to estima-
tion accuracy and runtime on both synthetic and real data.
INTRODUCTION

The era of ‘‘big data,’’ which deals with massive datasets, has

brought new analysis techniques for discovering new valuable

information hidden in data.1 Among these techniques is multilin-

ear low-rank approximation (LRA) of matrices and tensors, which

has recently attracted considerable attention from engineers and

researchers in the signal processing and machine learning com-

munities.2 A tensor is a multidimensional array and provides a
This is an open access article under the CC BY-N
natural representation of high-dimensional data. Low-rank

approximation of tensors (t-LRA) can be considered as a multi-

way extension of LRA of matrices (which are two-way) to higher

dimensions.3 Generally, t-LRA is referred to as tensor decompo-

sition that factorizes a tensor into a sequence of basic compo-

nents.3 As a result, t-LRA provides a useful tool for dealing

with several large-scale multidimensional problems in modern

data analysis that would otherwise be intractable by classical

methods.
Patterns 4, 100759, June 9, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:linhtrung@vnu.edu.vn
https://doi.org/10.1016/j.patter.2023.100759
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2023.100759&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

ll
OPEN ACCESS Article
Two widely used approaches for t-LRA are Tucker decompo-

sition4 and canonical polyadic (CP) decomposition5 (there exist

some other names for the CP decomposition in the literature,

such as PARAFAC [parallel factors], CPD [canonical polyadic

decomposition], and CANDECOMP or CAND [canonical decom-

position]). Under the CP format, a tensor can be represented as a

sum of rank 1 tensors; each rank 1 tensor is formulated as the

outer product of vectors. Under the Tucker format, a tensor is

factorized into a sequence of factor matrices acting on a

reduced-size core tensor. ‘‘Workhorse’’ algorithms are based

on the method of alternating least squares (ALS). Readers are

referred to the work of Kolda and Bader3 for a good review.

The characteristics of big data are often associated with the

following three ‘‘Vs’’: volume, velocity, and veracity.1 Velocity

and veracity are the focus of this paper. Velocity requires (near)

real-time processing of data streams, while veracity demands

robust algorithms to better deal with missing, noisy, and incon-

sistent data. In online applications, data acquisition is often a

time-varying process in which data are serially collected or

changing with time. In addition, missing data are ubiquitous

and more and more common in high-dimensional problems in

which collecting all attributes of the data is too expensive or

even impossible. However, well-known t-LRA algorithms either

face high complexity or operate in batch mode and, thus, may

not be suitable for such problems. This has led to defining a

variant of t-LRA, namely online (adaptive) t-LRA.

In the literature, there are several studies related to the prob-

lem of tracking online t-LRA in the missing data context; the ten-

sors are said to be both streaming and incomplete. Under the CP

format, the very first adaptive tensor algorithms were proposed

by Nion and Sidiropoulos6 more than 10 years ago. Since then,

several adaptive CP decomposition methods have been intro-

duced. We refer the reader to Thanh et al.7 for a good survey.

Of these methods, Mardani et al. proposed TeCPSGD,8 which

is a first-order algorithm and uses the method of stochastic

gradient descent (SGD) to track the CP decomposition of third-

order streaming tensors with missing data. Leveraging the

framework of alternating minimization, TeCPSGD can estimate

directly all factors except the one corresponding to the dimen-

sion growing over time in an efficient way. Because of SGD,

TeCPSGD is a low-complexity tensor tracker but with a slow

convergence rate. Therefore, it is not really suitable for fast

time-varying scenarios in which a class of methods with a fast

rate of convergence is preferable. Kasai9 developed OLSTEC,

which is an efficient second-order algorithm and exploits the

recursive least-squares technique. OLSTEC provides competi-

tive performance in terms of estimation accuracy, but its

computational complexity is much higher than that of

TeCPSGD. In parallel, Minh-Chinh et al. proposed to first track

the low-dimensional tensor subspace and then derive the

loading factors from its Khatri-Rao structure.10 Its performance,

however, is sensitive to initialization (see Figure 6 for an

illustration).

All the adaptive CP decomposition algorithms above are spe-

cifically designed for factorizing third-order streaming tensors

(i.e., the temporal tensor slices, a.k.a. data observations, are

matrices), which could limit their applications in practice where

the underlying tensor is of higher order (i.e., greater than or equal

to 4). One possible way is to reshape the underlying higher-order
2 Patterns 4, 100759, June 9, 2023
streaming tensor into a third-order one and then apply the

above-mentioned algorithms for tracking. However, the high-

dimensional structure of the original tensor might not be fully

preserved in its reshaped variant, resulting in low estimation

accuracy. Dealing with Nth-order streaming tensors (N> 3) is

non-trivial due to several issues. Some mathematical tools,

transformations, and operations applied for third-order stream-

ing tensors are not straightforward for higher-order ones, such

as the low-rank regularization, the tensor subspace/dictionary

(used inMardani et al.8 and Kasai9), and the bi-iteration SVD pro-

cedure (used in Nion6 and Sidiropoulos and Minh-Chinh et al.10).

Particularly in Mardani et al.8 and Kasai,9 the nuclear norm of a

matrix Z can be derived from minZ = UVu
1
2 ðk Uk2F + k Vk2FÞ,

thanks to Lemma 5.1 in Recht et al.11 This property is widely

used by several matrix factorization methods for low-rank regu-

larization.12 Accordingly, the sum of squared Frobenius norms of

two non-temporal factors of third-order streaming tensors

can be used as a regularization promoting the LRA of data

streams. However, this property does not generally hold for

higher-order tensors due to the presence of more than two fac-

tors and their multilinear connection. In Nion6 and Sidiropoulos

and Minh-Chinh et al.,10 the subspace-based algorithms track

the underlying low-dimensional tensor subspace matrix Ht =

U
ð1Þ
t 1U

ð2Þ
t 1/1U

ðN� 1Þ
t , where N is the tensor order, and then

estimate the tensor factors fUðnÞ
t gN� 1

n = 1 by exploiting its Khatri-

Rao structure. When N = 3, subspace tracking algorithms and

bi-iteration SVD are specifically applied to estimate Ht and

fUð1Þ
t ;U

ð2Þ
t g. However, when N> 3, it becomes more complicated

due to two main issues: (1) tracking the matrixHt, having a ‘‘hier-

archical’’ Khatri-Rao structure, over time is non-trivial, especially

in noisy and time-varying environments, and (2) even when Ht is

assumed to be estimated correctly at each time t, the estimation

of fUðnÞ
t gN� 1

n = 1 might cost a high computational complexity; e.g., if

bi-iteration SVD is used, we have to repeat bi-iteration SVD

recursively N � 1 times, which is very expensive for streaming

processing. These characteristics prevent us from extending

their methods for tracking higher-order streaming tensors effi-

ciently and effectively. Accordingly, designing adaptive methods

capable of directly tracking tensors of higher order is of great

importance, and it is our main concern in this study. Some adap-

tive methods have been developed for handling higher-order

streaming tensors in the literature. For example, Ahn et al.13

introduced another online CP algorithm called STF, which is

capable of dealing with higher-order streaming tensors. The au-

thors imposed a temporal regularization on the loading factors

and used the SGD method to update them over time. Zhang

and Hawkins14 developed a Bayesian-based streaming method

called BRST robust to outliers. To track and separate the low-

rank and sparsity components of the underlying tensor, a

Bayesian statistical model was applied. The computational

complexity of BRST is, however, very high, and thus, themethod

becomes inefficient when handling high-dimensional and fast-

arriving data streams. Lee and Shin15 proposed another robust

streaming CP algorithm called SOFIA, which has the potential

to handle real-world data streams with missing values and

sparse outliers. Specifically, SOFIA exploits a well-known time-

series forecasting model, namely, Holt-Winters, for detecting

ll
OPEN ACCESSArticle
outliers and temporal patterns and hence factorizing the under-

lying tensor. In our past work,16 we developed a robust adaptive

CP decomposition (RACP) with missing data and outliers.

Thanks to the recursive least-squares technique in adaptive

filtering and the alternating direction method of multipliers

(ADMM) method, RACP is capable of detecting sparse outliers

online and tracking successfully the underlying CP model of

data streams over time. In parallel, some adaptive CP decompo-

sition algorithms, such as Zhou et al.,17 Smith et al.,18 Thanh

et al.,19 Zeng and Ng,20 and Lyu et al.,21 are capable of handling

higher-order tensors. However, they do not handle incomplete

datasets.

Under the Tucker format, there are many adaptive methods

capable of factorizing streaming tensors in online settings.7

Particularly, several Tucker trackers were proposed to decom-

pose streaming tensors having one mode/dimension evolving

with time. Some of themwork under the assumption that tempo-

ral slices of the streaming tensor interact with the same core

tensor of fixed size, for example, RPTucker,22 BASS-Tucker,23

RT-NTD,24 BK-NTD,24 and D-TuckerO.25 Some others, on the

other hand, assume that the core tensor has one temporal

mode and that its temporal slices associate with data streams,

for example, STA,26 OTL,27 ORLTM,28 D-L1-Tucker,29 and

ROLTD,30 to name a few. Among them, a few Tucker trackers

can deal with data corruption. RPTucker22 is specifically de-

signed for dynamic tensor completion, but its ability is limited

to third-order tensors. ORLTM,28 D-L1-Tucker,29 and ROLTD30

are robust to sparse outliers. However, their design is not suit-

able for handling incomplete observations.

Some studies have been conducted to design efficient t-SVD

algorithms for higher-order tensors, for example.31–34 Most of

them were designed for batch computation and, thus, are not

suitable for dynamic models. Only TOUCAN31 has the ability to

track t-SVD over time. However, it is useful only for third-order

streaming tensors. In parallel, it is well known that block-term

decomposition (BTD) can be considered as a combination of

CP and Tucker decompositions.35 In the tensor literature, there

are two adaptive BTD algorithms that are able to factorize

streaming tensors, namely OnlineBTD36 and O-BTD-RLS.37

They are, however, sensitive to data corruption. With respect

to tensor-train decomposition, we proposed TT-FOA,38 which

is an adaptive tensor-train (TT) model for streaming tensors.

Although TT-FOA and its stochastic version are capable of

tracking the online low-rank TT representation of large-scale

and higher-order tensors, they are not designed to handle

missing data. ROBOT was recently proposed by Thanh et al.39

to overcome this drawback. Very recently, Yu et al.40 proposed,

for the first time, an online tensor completion based on a tensor-

ring format. Its convergence, however, has not yet been mathe-

matically proven.

In the multiaspect streaming perspective of tensor analysis,

Song et al. proposed an effective multiaspect streaming tensor

framework (MAST),41 used for dynamic tensor completion.

MAST can successfully track the multilinear LRA of incomplete

tensors with dynamic growth in more than one tensor mode. A

robust version of MAST for handling outliers, called outlier-

robust multiaspect streaming tensor completion and factoriza-

tion (OR-MSTC), was proposed in Najafi et al.42 Thanks to

ADMM, OR-MSTC can estimate the low-rank component from
measurements corrupted by outliers. A new inductive frame-

work, called SIITA, has been proposed to incorporate side infor-

mation into incremental tensor analysis.43 SIITA can be seen as a

counterpart of MAST for multiaspect streaming Tucker decom-

position. Although all these approaches provide good frame-

works for the problem of dynamic tensor completion, they either

are either useful for third-order tensors only or are of high

complexity and, hence, relatively inefficient in online applications

with data streams. In addition, convergence analysis of these al-

gorithms is not available.

This study considers the problem of tracking t-LRA of

higher-order incomplete tensors using randomized sketching

techniques. It is mainly motivated by the fact that randomized al-

gorithms reduce the computational complexity and memory

storage of their conventional counterparts.44 As a result, they

have recently attracted a great deal of attention and achieved

success in large-scale data analysis, in general, and in tensor

decomposition in particular. For example, Wang et al. applied

a sketching technique to develop a fast algorithm for orthogonal

tensor decomposition.45 Under mild conditions, the tensor

sketch can be obtained without accessing all the data.46 Batta-

glino et al. proposed a practical randomized CP decomposi-

tion,.47 Their work aimed to speed up the traditional ALS algo-

rithm via randomized least-squares regressions. With respect

to Tucker decomposition, Malik and Becker proposed two ran-

domized algorithms using TensorSketch for low-rank tensor

decomposition.48 Che and Wei designed an effective random-

ized algorithm for computing the LRA of tensors under the

sequentially truncated HOSVD (ST-HOSVD) model.49 Recently,

they provided an improved version of ST-HOSVD with a lower

computational complexity and analyzed its probabilistic error

bound.50 In parallel, two other randomized versions of HOSVD

and ST-HOSVD were introduced by Minster et al.51 However,

these algorithms perform only batch computation, so they are

not appropriate for online processing. We refer the reader to

Ahmadi-Asl et al.52 for a good survey on randomized algorithms

for tensor decomposition. This shortcoming motivates us to

develop a new efficient randomized algorithm for the problem

of tracking t-LRA.

Themain contributions of this paper are 2-fold. First, under the

Tucker format, we propose a novel adaptive Tucker decomposi-

tion (ATD) algorithm for tracking the online t-LRA of higher-order

incomplete streaming tensors. ATD is a low-complexity tensor

tracker, and its convergence is fast, thanks to alternating minimi-

zation and randomized sketching. It can handle incomplete ten-

sors derived from infinite data streams because it performs

Tucker decomposition with constant time and space complexity

that is independent of time index t. A convergence analysis is

then provided to establish performance guarantees. Second, un-

der the CP format, we derive a second algorithm, namely adap-

tive CP decomposition (ACP), for the problem of online t-LRA.

ACP is faster than ATD, as the cost of both computation and

memory storage is lower. ACP exhibits a competitive perfor-

mance in terms of estimation accuracy and running time. To

the best of our knowledge, ATD and ACP are the first of their

kind capable of dealing with streaming tensors of higher orders

with a ‘‘provable’’ convergence guarantee.

The rest of this paper is structured as follows. The background

presents a brief review of tensor operators and the t-LRA
Patterns 4, 100759, June 9, 2023 3

Table 1. Notational conventions

Notation Conventions

x;x;X;X ;X scalar, vector, matrix, tensor, and set/

subset/support

xi1 ;i2 ;.;iN ði1; i2;.; iNÞ-th entry of X
x = vecðXÞ vectorization of X

X = diagðxÞ diagonal matrix X with x on the main

diagonal

trðXÞ trace of X

Xði; :Þ;Xð:; jÞ i-th row and j-th column of X

Xu;X�1;X# transpose, inverse, and pseudo-inverse

of X

XðnÞ mode-n unfolding of X
+;1; 5 ;; outer, Khatri-Rao, Kronecker, Hadamard

product

X?Y concatenation of X with Y
X3nU n-mode product of X and U

X QN
n = 13n U

ðnÞ X31U
ð1Þ32. 3NU

ðnÞ

⨀N
n = 1U

ðnÞ UðNÞ1UðN� 1Þ1. 1Uð1Þ

5N
n = 1U

ðnÞ UðNÞ 5 UðN� 1Þ 5 . 5Uð1Þ

k:kF Frobenius norm

P e operator for finding the nearest integer

randomsampleðn;kÞ operator for selecting k integers randomly

from [1, n]

rCP CP rank

rTD Tucker rank

ll
OPEN ACCESS Article
problem. The problem statement formulates the problem of

tracking t-LRA for incomplete and streaming tensors. Proposed

methods describes in detail the proposed method for tracking

t-LRA and its convergence analysis. The section on experimental

procedures describes extensive experiments to demonstrate the

effectiveness and efficiency of our algorithms in comparison with

state-of-the-art algorithms. The last section is the conclusion.

BACKGROUND

Notations and definitions
In this paper, we use the following notational conventions. Sca-

lars and vectors are denoted by lowercase letters (e.g., x) and

boldface lowercase letters (e.g., x), respectively. Boldface capi-

tal and bold calligraphic letters denote matrices (e.g., X) and ten-

sors (e.g.,X). For index notation, the ði1;i2;.;iNÞ-th entry ofX is

indicated by xi1 ;i2 ;.;iN . The symbols +,1, 5 , and; are used to

denote the outer, Khatri-Rao, Kronecker, and Hadamard prod-

ucts, respectively. The symbol denotes the operator for rounding

to the nearest integer. We use Xu, X� 1, and X# to represent the

transpose, inverse, and pseudo-inverse of X. Also, k :kF denotes

the Frobenius norm of a vector, matrix, and tensor. The operator

randomsampleðn; kÞ returns k integers sampled uniformly at

random from the range ½1;n�. In addition, we outline here some

algebraic operators on matrices and tensors that are frequently

used throughout this paper.

Considering an N-order tensorX ˛RI13I23/3IN , the mode-n fi-

bers of X are In-dimensional vectors derived from fixing all but

the in-th index. The mode-n unfolding of X , written as XðnÞ, is a
4 Patterns 4, 100759, June 9, 2023
matrix whose columns are the mode-n fibers of X . We also

use unfoldnðXÞ to denote the unfolding operation along the

n-th mode.

The n-mode product of X with a matrix U˛RJ3In , written as

X3nU, yields a new tensor, Y ˛RI13/3Iðn� 1Þ3J3Iðn+1Þ3/3IN , such

that YðnÞ = UXðnÞ. The product of X with N matrices fUðnÞgNn = 1

along all N modes is denoted by:

X
YN
n = 1

3 nU
ðnÞ = X 3 1U

ð1Þ 3 2/3 NU
ðNÞ: (Equation 1)

The concatenation of X with a tensor Y ˛RI13I23/3IN� 1 , writ-

ten as X?Y, yields a new tensor, Z ˛RI13I23/3IN+1, such that:

zi1 ;i2 ;.;iN =

�
xi1 ;i2 ;.;iN ; if iN % IN;
yi1 ;i2 ;.;iN� 1

; if iN = IN + 1:
(Equation 2)

The Khatri-Rao and Kronecker products of a sequence of

matrices in a reverse order are denoted by:

1
N

n = 1
UðnÞ = UðNÞ1UðN� 1Þ1/1Uð1Þ; (Equation 3)

5
N

n = 1
UðnÞ = UðNÞ5UðN� 1Þ5/5Uð1Þ: (Equation 4)

For clarity, the frequently used acronyms and notational con-

ventions are summarized in Table 1.

Low-rank approximations of tensors
Consider an N-order tensor X ˛RI13I23/3IN ; the t-LRA of X can

be achieved by solving the following minimization:

argmin
Y

k X � Yk2F subject to Y = G
YN
n = 1

3 nU
ðnÞ;

(Equation 5)

where r = ½r1; r2;.; rN� is the desired lowmultilinear rank, G is the

core tensor of size r1 3 r2 3 /3 rN, and fUðnÞgNn = 1 with

UðnÞ ˛RIn3rn are called loading factors.53 The two most well-

known and widely used approaches for the t-LRA are based

on CP decomposition5 and Tucker decomposition.4

Tucker decomposition can be considered as a generalization

of SVD for tensors, where the loading factors are orthogonal.

Generally, this decomposition is not unique, in the sense that

we can rotate the columns of UðnÞ by an orthogonal matrix

QðnÞ ˛Rrn3rn while still retaining the Tucker representation. Fortu-

nately, the column space covering the factorUðnÞ is unique; thus,
we can estimate subspaces of the loading factors instead.2,3,54

CP decomposition allows us to represent the tensor X by a

sequence of factors having the same number of columns, i.e.:

X =
Xr
i = 1

aiu
ð1Þ
i +uð2Þ

i +/+uðNÞ
i ; (Equation 6)

where r is the tensor rank and u
ðnÞ
i is the i-th column of the n-th

factor UðnÞ ˛RIn3r . This decomposition is more complex than

Tucker decomposition in terms of representation and computa-

tion, but essentially unique under mild conditions.2,3 Note that

parameters faigri = 1 can be absorbed in the loading factors,

Figure 1. Incomplete streaming tensor

The gray boxes represent missing data. At each

time t, the underlying streaming tensor is obtained

by appending the new data (i.e., temporal tensor

slice) to the old observations along the time

dimension. Particularly, the dimension J(t) is

increasing with time, while the two dimensions I and

K are fixed.

ll
OPEN ACCESSArticle
and hence, the main interest of the CP decomposition is in

finding fUðnÞgNn = 1.
PROBLEM STATEMENT

In this study, we investigate the problem of tracking t-LRA of an

incomplete streaming tensor X ½t�˛RI13I23/3IðN+1Þ ½t�, fixing all but

the last dimension, IðN+1Þ½t� (see illustration in Figure 1 where

the gray boxes represent missing data). Specifically, the t-th

tensor slice X t ˛RI13I23/3IN of X ½t� is assumed to be generated

under the following model:

Pt;X t = Pt;ðYt + N tÞ; (Equation 7)

where Pt is a binary observation mask, N t is a Gaussian noise

tensor of the same size as X t, and Yt is the multilinear low-

rank component. The mask Pt shows whether the ði1; i2; .;

iNÞ-th entry of X t is missing, i.e., pi1 ;i2 ;.;iN = 1 if xi1 ;i2 ;.;iN is

observed and pi1 ;i2 ;.;iN = 0 otherwise. The low-rank component

Yt is given by:

Yt =

G
YN
n = 1

3 nU
ðnÞ
!
3 N+1u

u
t ; (Equation 8)

where r = ½r1; r2;.; rðN+1Þ� is the desired low multilinear rank, G˛
Rr13r23/3rðN+1Þ is the core tensor, U = fUðnÞgNn = 1 with UðnÞ ˛
RIn3rn contains the first N loading factors, and ut ˛RrðN+1Þ is the

weight vector. In online settings, the tensor coreG and loading fac-

tors fUðnÞg may be slowly time-varying, i.e., G = Gt and UðnÞ =

U
ðnÞ
t ;n = 1;2;.;N. The weight vector ut in Equation 8 is indeed

the t-th row of the last loading factor UðN+1Þ ˛RIðN+1Þ½t�3rðN+1Þ

ofX ½t�. The tensorX ½t� is derived by appending the new slice X t

to the previous X ½t � 1� along the time dimension X ½t� =
X ½t � 1�?X t; where IðN+1Þ½t� = IðN+1Þ½t � 1�+ 1, as shown in

Figure 1.

The problem of tracking t-LRA of the incomplete streaming

tensor X ½t� can be stated as follows:

Tracking t-LRA. At each time t, we observe a streaming tensor

slice X t under the model of Equation 7. We aim to estimate Gt

and U t , which will provide a goodmultilinear LRA forX ½t� in time.

Applying batch methods toX ½t� is possible, but these turn out

to be inefficient for online (adaptive) settings. Our goal is to

develop efficient one-pass algorithms, in both computational

complexity and memory storage, for tracking the online t-LRA

of X ½t� from past estimations at each time t. In particular, in an

adaptive scheme, we propose to minimize the following expo-

nentially weighted cost function:
fGt;U tg = argmin
G;U

"
ftðG;UÞ =

1

t

Xt

k = 1

lt� k lðG;U;Pk ;X kÞ
#
;

(Equation 9)

where the loss function lð ,Þ with respect to the k-th slice Xk is

given by:

lðG;U;Pk ;X kÞ =D min
uk ˛R

rðN+1Þ
k Pk;

X k � G

YN
n = 1

3 nU
ðnÞ 3 N+1u

u
k

!
k2F ; (Equation 10)

and l ˛ ð0;1� is the forgetting parameter. Here, all observations

(i.e., tensor slices) in the time interval ½1; t� are taken into consid-

eration in the estimation of the underlying low-rank component at

each time t. The loss lð:Þ presents the residual for each observa-

tion, which measures the difference between the observed value

and the estimated value of the tensor slice. As there are many

choices of low-rank estimation for a given data stream X k , lð:Þ
in Equation 10 is defined as the minimum loss over all possible

choices, and hence, it results in the best low-rank tensor approx-

imation to X k . On the arrival of a new data X t at each time t,

thanks to Equation 10,we can obtain a good estimation of the co-

efficient vector ut, which is necessary to establish the first-order

surrogate of the cost function ftð:Þ, to be detailed later under pro-

posed methods. l is used to discount the effect of past observa-

tions exponentially and to ensure that observations in the distant

past are substantially downweighted in the cost function relative

to the latest ones. Accordingly, when l< 1, this can facilitate the

tracking ability of estimators, especially in time-varying and non-

stationary environments. The effective window length for l< 1 is

ð1 � lÞ� 1 when t is large. When l = 1, Equation 9 boils down to

its counterpart of Equation 5 in batch setting.

In the next two sections, we describe the two proposed algo-

rithms for solving Equation 9 under CP and Tucker decomposi-

tions. We make the following four assumptions for the conve-

nience of deploying our algorithms as well as analyzing their

performance:
(A1) Observed tensor slices fX tgtR 1 are independent and

identically distributed from a data-generating distribu-

tion, which is the underlying distribution of the dataset,

having a compact set V. This assumption is very com-

mon for convergence analysis in online settings, in gen-

eral, and adaptive tensor decomposition in particular,
Patterns 4, 100759, June 9, 2023 5

ll
OPEN ACCESS Article

6

e.g., Mardani et al.,8 Kasai,9 Mairal et al.,55 and Thanh

et al.56,57 (A1) is a strong assumption in our analysis,

but it can be relaxed as follows: observed tensor

slices fX tgtR 1 are Frobenius-norm bounded, i.e.,

k X tkF <M<N. Low-rank components fYtgtR 1 of the

observed tensor slices fX tgtR 1 are assumed to be

deterministic and bounded. Noise tensors fN tgtR 1

are i.i.d. from a distribution having a compact support.

(A2) Tensor slices fX tgtR 1 follow the data model (Equa-

tion 7), where the true underlying loading factors

fUðnÞ
t gtR 1 are bounded, i.e., k U

ðnÞ
t kF % k<N. It pre-

vents arbitrarily large values in U
ðnÞ
t and ill-conditioned

computation. Furthermore, we assume that U
ðnÞ
t is full-

column rank for every n and t. This constraint is useful

to establish nice propositions in convergence analysis

(e.g., boundedness of solutions and Lipschitz continuity

of the objective function) as well as to improve the well-

posedness of the tensor tracking problem. When (A1)

holds, (A2) naturally holds.

(A3) Observation mask tensors fPtgtR 1 are independent of

fX tgtR 1, and their entries obey the uniform distribution.

With respect to the imputation of missing values and re-

covery of low-rank components, the uniform random-

ness allows the sequence of binary masks fPtgtR 1 to

admit stable recovery, which is defined as follows: Defi-

nition 1 (stable recovery58). We say that the sequence of

binary masks fPtgtR 1 admits stable recovery if it sat-

isfies the following property: assume two sequences,

fA tgtR 1, fBtgtR 1, where At and Bt share the same

size as Pt and the rank and the maximum value of At

and Bt are bounded for every t. For any ε> 0, there

exists d> 0, depending only on ε, such that if

limsupt/N k Pt;ðAt � BtÞk F % d, then limsupt/N

k At � Btk F % ε, where k :k F is the averaged Frobe-

nius norm defined as k Ak
F
= k AkF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1I2.IN

p
.More-

over, the number of observed entries inX t is assumed to

be larger than the lower bound OðrL logðLÞÞ, where L =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1I2.IN

p
and r = maxðr1;r2;.;rNÞ, and every row ofX

ðnÞ
t

is observed at least r entries for all n. It is indicated in

Candes and Tao59 that no completion method can

recover missing data ofM˛Rn3n with rank r = Oð1Þ un-
less the number of observed entries in M satisfies mR

cn log n for some positive constant c> 0, and this lower

bound is the information theoretical limit. The con-

straints are fundamental conditions to prevent the

problem of completion/imputation from being underde-

termined where available observations may be insuffi-

cient to cover missing entries.

(A4) The low multilinear-rank model is either static or slowly

time-varying, i.e., the core tensor and loading factors

may vary slowly between two consecutive times t� 1

and t: GtxGt� 1 and U
ðnÞ
t xU

ðnÞ
t� 1. The tensor rank is

assumed to be known.
PROPOSED METHODS

In this section, we first propose a fast adaptive Tucker algorithm

called ATD for tracking the online t-LRA of incomplete streaming
Patterns 4, 100759, June 9, 2023
tensors. Then, a novel variant of ATD is presented based on the

CP format, namely ACP. Next, we provide a performance anal-

ysis in terms of complexity and convergence to demonstrate

their effectiveness and efficiency.

Proposed ATD algorithm
Leveraging past estimations of the loading factors and the core

tensor, we propose to minimize the surrogate gtðG;UÞ of ftðG;UÞ
instead, which is defined, for a given value of fukg1% k% t, by:

gtðG;UÞ =
1

t

Xt

k = 1

lt� k k Pk;

X k � G

YN
n = 1

3 nU
ðnÞ 3 N+1u

u
k

!
k2F :

(Equation 11)

The main motivation here stems from the following observa-

tions: first, it is easy to verify that gtðG;UÞ provides an upper

bound on ftðG;UÞ (i.e., ftðG;UÞ%gtðG;UÞ for all G and U,

and a fixed set of fukg1% k% t). Also, the error function

etðG;UÞ = gtðG;UÞ � ftðG;UÞ is L-smooth for some constant

L> 0, i.e., it is differentiable, and VetðG;UÞ is L-Lipschitz contin-

uous. As a result, gtðG;UÞ is a first-order surrogate function of

ftðG; UÞ,60 and hence, its theoretical convergence results

can be achieved without making any strong assumptions on

ftðG; UÞ. In particular, the sequence of surrogate values

fgtðGt;U tÞgNt = 1 is a quasi-martingale and converges almost

surely. Accordingly, under a simple assumption that the direc-

tional derivative of ft exists in any direction at any G and U,

fgtðGt;U tÞgNt = 1 and fftðGt;U tÞgNt = 1 converge to the same limit.

Indeed, the solution fGt;U tg derived from minimizing gtðG;UÞ
converges to a stationary point of ftðG;UÞwhen t approaches in-

finity. Furthermore, gtðG;UÞ can be effectively minimized with a

convergence rate of Oð1 =tÞ, and it is much simpler than mini-

mizing ftðG;UÞ.
To obtain a low-complexity estimator, we exploit the fact that

Equation 11 can be efficiently solved using the alternating mini-

mization framework, whose iteration step coincides with the

tensor slice’s acquisition in time. In particular, it can be divided

into three main stages: (1) estimate ut first, given the old estima-

tion ofGt� 1 andU t� 1; (2) update the loading factorU
ðnÞ
t , given ut,

Gt� 1, and the remaining factors; and (3) estimate the core tensor

Gt. The proposed ATD algorithm is summarized in Algorithm 1. In

the following, we will describe the key steps of our algorithm for

minimizing Equation 11.

Estimation of ut

Under the assumption that the loading factors and the core

tensor might be static or slowly time-varying (i.e., U txU t� 1

and GtxGt� 1), the weight vector ut can be derived from the

loss function lð:Þ in Equation 10 at time t by:

ut = argmin
u˛R

rðN+1Þ
k Pt;ðX t � Ht 3 N+1u

uÞk22; (Equation 12)

where Ht = Gt� 1

QN
n = 13nU

ðnÞ
t� 1. Equation 12 can be readily

converted into the standard form of:

ut = argmin
u˛R

rðN+1Þ
k Ptðxt � HtuÞk22; (Equation 13)

where Pt = diagðvecðPtÞÞ, xt = vecðX tÞ, and Ht is the unfold-

ing matrix of the tensor Ht. For the sake of convenience, let Ut

Algorithm 1. Adaptive Tucker decomposition

Input:

-Incomplete slices fPt;X tgNt = 1;X t ˛RI13I23.3IN

- Tucker rank rTD = ½r1; r2;.; rðN+1Þ�,
forgetting factor l ˛ ð0;1�

- Parameters: a> 0; d> 0; and m > 0

Output: Loading factors fUðnÞ
t gNn = 1 and

the core tensor Gt

Initialization: fUðnÞ
0 gNn = 1

and G0 are initialized

randomly and fSðnÞ
t gNn = 1 = dIrn

Main Program:

for t = 1;2;. do

XUt
= Pt;X t

//Stage 1: Estimation of ut

St = randomsampleðjUtj;
�
m rðN+1Þ log rðN+1Þ

��
Ht = Gt� 1

YN
n = 1

3nU
ðnÞ
t� 1

ut = ðHu
St

HSt
+a IÞ� 1

Hu
St

xSt
ut

DX t = Pt;ðX t � Ht3N+1Þ
//Stage 2: Estimation of fUðnÞ

t gNn = 1

for n = 1; 2;.;N do

W
ðnÞ
t = ðUðnÞ

t� 1Þ
#
X

ðnÞ
Ut

S
ðnÞ
t = lS

ðnÞ
t� 1 +W

ðnÞ
t ðWðnÞ

t Þu

V
ðnÞ
t = ðSðnÞ

t Þ� 1
W

ðnÞ
t

U
ðnÞ
t = U

ðnÞ
t� 1 +DX

ðnÞ
t ðV ðnÞ

t Þu
end for

//Stage 3: Estimation of Gt

Zt = ut 5 ð5N� 1
n = 2 U

ðnÞ
t Þ

DGt = ðUð1Þ
t Þ# DX

ð1Þ
t Z#

t

DGt = reshapeðDGt;rTDÞ
Gt = Gt� 1 +DGt

end for

ll
OPEN ACCESSArticle
and xUt
be the set and vector containing the observed entries of

X t, while HUt
is the submatrix of Ht obtained by selecting the

rows corresponding to xUt
.

Generally, Equation 13 is an overdetermined least-squares

(LS) regression and requires OðjUtjr2Þ with respect to (w.r.t.)

computational complexity to compute the exact LS solution.61

Thus, it costs time and effort when handling high-dimensional

and high-order tensors. We propose to solve a regularized LS

sketch of Equation 13 instead, i.e.,

ut = argmin
u˛R

rðN+1Þ
k LðxUt

� HUt
uÞk22 +a k uk22; (Equation 14)

where a is a small positive parameter for regularization, and Lð:Þ
is a sketching map that helps reduce the sample size and hence

speed up the calculations. Accordingly, the updated rule for ut is

given by:

ut =
�
Hu

St
HSt

+aI
�� 1

Hu
St
xSt

; (Equation 15)
where HSt
and xSt

are transformed versions of HUt
and xUt

under

the sketching Lð:Þ, respectively. Here, the introduction of a k uk22
is made to avoid the singular/ill-posed computation, multicolli-

nearity, and other pathological phenomena in practice. For

example, in some cases, the matrix HSt
in Equation 18 may be

rank deficient or near singular. The computation of its inverse

is prone to large numerical errors, and hence, the ordinary LS so-

lution is no longer well defined. The presence of a k uk22 with a> 0

results in an additional positive term, aI, on the diagonal of the

moment matrix Hu
St
HSt

, while it does not change the eigenvec-

tors of Hu
St
HSt

. Accordingly, it can ensure that all of the eigen-

values are strictly greater than 0. In other words, the introduction

of the regularization term can prevent singularity and ill-posed

problems. With respect to the interpretability aspect, the inclu-

sion of a k uk22 effectively eliminates multicollinearity—a phe-

nomenon where two or more variables are highly correlated—

that affects the interpretability of regression models, including

the LS estimation.62,63 It stems from the fact that adding

a k uk22 introduces bias into an unbiased LS estimation, but it re-

duces the variance. Thereby, the regularized LS solver can result

in a more precise and hence more interpretable estimation in the

case in which the multicollinearity problem exists in data. Typi-

cally, the value of a can be chosen by cross validation in a batch

setting. However, it turns out to be inefficient for stream process-

ing due to its high complexity. In this work, the optimal value of

the coefficient vector ut is perfect, but a good estimation of ut

is sufficient for tensor tracking. A small a close to the noise level

is enough to avoid singular/ill-posed problems during the

tracking process. Therefore, we can choose its value in the range

½10� 3;1� for reasonable performance in practice.

Thanks to the tensor structure ofHt, the uniform row sampling

is effective in many cases, especially when we deal with a high-

order streaming tensor (N is large) and/or with some incoherent

tensor factors (see Appendix A for details). In the presence of

highly coherent factors, a preconditioning (mixing) step is neces-

sary to guarantee the incoherence. For instance, the sub-

sampled randomized Hadamard transform (SRHT) is a good

candidate that can produce a transformed matrix whose rows

have (almost) uniform leverage scores.64 In this context, we

here emphasize that well-known randomized LS algorithms

can help save much computational complexity while obtaining

reasonable estimations of ut, especially for large-scale low-

rank tensors. It is also worth noting that the update of ut costs

the most computation time of every tensor tracker, as it requires

all loading factors fUðnÞ
t� 1g

N

n = 1 to form Ht, and hence solves the

LS problem. Therefore, the proposed randomized technique

here plays an important role in reducing the overall complexity.

Estimation of U
ðnÞ
t

The loading factorU
ðnÞ
t can be updated by minimizing gtð ,Þw.r.t.

UðnÞ, as:

U
ðnÞ
t = argmin

UðnÞ ˛RIn 3 rn

"
1

t

Xt

k = 1

lt� k k P
ðnÞ
k ;

�
X

ðnÞ
k � UðnÞWðnÞ

k

�
k2F
#
;

(Equation 16)

whereX
ðnÞ
k (resp.P

ðnÞ
k) is themode-n unfolding ofX k (resp.Pk) and

the coefficient matrix W
ðnÞ
k is the mode-n unfolding of the tensor

Wk , which is defined byWk = ðGt� 1

QN
i = 1;isn3iU

ðiÞ
t� 1Þ3N+1u

u
k :
Patterns 4, 100759, June 9, 2023 7

ll
OPEN ACCESS Article
Interestingly,weexploit the fact thatminimization (Equation 16)

can boil down to the problem of subspace tracking in the pres-

ence of missing data.65 Particularly, the solution of Equation 16

can be obtained by minimizing subproblems for each row u
ðnÞ
m

of UðnÞ, m = 1; 2;.; In, as:

u
ðnÞ
t;m = argmin

u
ðnÞ
m ˛Rr

"
1

t

Xt

k = 1

lt� k k P
ðnÞ
k;m

��
x
ðnÞ
k;m

�u
� W

ðnÞ
k

	
uðnÞ
m

�u�k2F
#
;

(Equation 17)

where x
ðnÞ
k;m is the m-th row of X

ðnÞ
k and P

ðnÞ
k;m = diag

�
P
ðnÞ
k ðm; :Þ

�
.

Thanks to the parallel scheme of the well-known PETRELS algo-

rithm for subspace tracking,66 we derive an efficient estimator for

minimizing the exponentially weighted LS cost function (Equa-

tion 16). Particularly, we first define two auxiliary matrices, S
ðnÞ
t

and V
ðnÞ
t , as follows:

SðnÞ
t = lS

ðnÞ
t� 1 +

�
W

ðnÞ
t

�u
W

ðnÞ
t and V

ðnÞ
t =

�
SðnÞ
t

�� 1�
W

ðnÞ
t

�u
:

(Equation 18)

The loading factor U
ðnÞ
t is then updated recursively by:

U
ðnÞ
t = U

ðnÞ
t� 1 +DX

ðnÞ
t

�
V
ðnÞ
t

�u
; (Equation 19)

where the matrix DX
ðnÞ
t is derived from the mode-n unfolding of

the residual error tensor DX t = Pt;ðX t � Ht3N+1u
u
t Þ. To

enable the recursive updating rule, the matrix S
ðnÞ
0 is initialized

by a scaled identity matrix, S
ðnÞ
0 = dnIrn with dn > 0. This is not

PETRELS, but a modified version. Here, we can utilize the

already updated U
ðnÞ
t to track the remaining factors, which can

improve the rate of convergence. Also, we can estimate all the

N factors in a parallel scheme, which further reduces the overall

cost when several computational units are available.

Estimation of Gt

For the estimation ofGt, given the latest updated loading factors,

Equation 11 is reformulated as:

Gt = argmin
G

"
1

t

Xt

k = 1

lt� k k Pð1Þ
k ;

Xð1Þ

k � Uð1Þ
t Gð1ÞZk

�
k2F
#
;

(Equation 20)

where the variable Gð1Þ is the mode-1 unfolding of G and the ma-

trix Zk is given by Zk = uk 5 ð5N
n = 2U

ðnÞ
t Þ:

Whenhandling a streaming tensorwith a huge number of slices

(i.e., t is large) and a large number of unknown parameters in G
(i.e.,

QN+1
n = 1rn is large), applying batch gradientmethods for Equa-

tion 20maybe time consumingdespite the effect of the forgetting

factor l. Stochastic approximation is introduced as a good alter-

native.67 In particular, we minimize the following function:

Gt = argmin
G

k P
ð1Þ
t ;

X

ð1Þ
t � U

ð1Þ
t Gð1ÞZt

�
k2F : (Equation 21)

Given the estimation of U t, the residual error between the

newcoming tensor slice and the recovered one is given by

DX
ð1Þ
t = P

ð1Þ
t ;

�
X
ð1Þ
t �U

ð1Þ
t G

ð1Þ
t� 1Zt

�
: Accordingly, we can derive

the variation of G at time t from:
8 Patterns 4, 100759, June 9, 2023
DXð1Þ
t = Pð1Þ

t ;
�
Uð1Þ

t DGð1Þ
t Zt

�
; (Equation 22)

where DG
ð1Þ
t = G

ð1Þ
t � G

ð1Þ
t� 1. In particular, DGt is computed as:

DGð1Þ
t =

�
U

ð1Þ
t

�#
DX

ð1Þ
t Z#

t : (Equation 23)

As Zt is of the Kronecker structure, we can obtain the pseudo-

inverse of Zt efficiently by using the following nice property68:

ðA15A25/5AnÞ# = A#
1 5 A#

2 5 /5 A#
n . After that, DG

ð1Þ
t

will be reshaped into a tensor DGt of size r1 3 r2 3 /3 rðN+1Þ.
To sum up, we obtain the simple rule for updating Gt as follows:

Gt = Gt� 1 +DGt: (Equation 24)

We note that, for overdetermined cases, the rule for updatingGt

can be sped up by using the following ‘‘vector trick’’: vec

ðABCuÞ = ðC5AÞvecðBÞ;cA;B; andCofsuitablesize. Inpartic-

ular, Equation 22 can be cast into the standard LS format as

follows:

dxt = Pt

ut 5

5
N

n = 1
U

ðnÞ
t

��
dgt; (Equation 25)

where dxt = vec
�
DX

ð1Þ
t

�
, dgt = vec

�
DG

ð1Þ
t

�
and Pt = diag�

vec
�
P
ð1Þ
t

��
. Interestingly,Equation25hasaKronecker structure;

thus, dgt can be efficiently computed by applying randomized

sketching techniques with a much lower complexity, e.g., the uni-

form sampling or the Kronecker product regression in Diao et al.69
Variants of ATD
Orthogonal ATD

In the cases where orthogonality constraints are imposed on the

loading factors, we add an orthogonalization step of UðnÞ at each
time t as follows:

UðnÞ
t = UðnÞ

t

h�
UðnÞ

t

�u
UðnÞ

t

i� 1=2

; (Equation 26)

where ð:Þ� 1=2 represents the inverse square root, or simply take

the QR decomposition of U
ðnÞ
t . Accordingly, the update of DGt in

Equation 23 can be sped up by replacing the pseudo-inverse

with the transpose operator:

DGt =
�
U

ð1Þ
t

�u
DX

ð1Þ
t Zu

t : (Equation 27)

We refer to this variant of ATD as ATD-O.

Adaptive CP decomposition

It is well known that CP decomposition is viewed as a special

case of Tucker decomposition when the core tensor is an identity

tensor, I , of size r3 r3 /3 r, thanks to the following relation:

I
YN
n = 1

3 nU
ðnÞ =

Xr
i = 1

u
ð1Þ
i +uð2Þ

i +/+uðNÞ
i : (Equation 28)

Therefore, we can derive a new ACP from ATD. Particularly in

step 1 and step 2 of ATD, we recast the designmatrixHt in Equa-

tion 13 into Ht = 1N
n = 1U

ðnÞ
t� 1 and the coefficient matrix W

ðnÞ
k in

Equation 16 into W
ðnÞ
k = ð1N

i = 1;isnU
ðiÞ
t� 1Þ1uu

k : Meanwhile, step

A B Figure 2. Effect of the forgetting factor l on

the performance of ACP versus the rotation

angle a

Its performance is evaluated on a synthetic fourth-

order streaming tensor of size 20 3 20 3 20 3 500

and rank 5, while the noise level s is fixed at 10�3.

(A) and (B) respectively illustrate the estimation ac-

curacy of ACP with 10% and 50% missing data.

ll
OPEN ACCESSArticle
3 of ATD is no longer required as we set the core tensor Gt to I .
This modification of ATD is referred to as ACP, which stands for

adaptive CP decomposition.
Performance analysis
Memory storage and computational complexity

We assume that the fixed dimensions of the streaming tensor

are equal to I and the desired Tucker rank is rTD = ½r; r;.; r�: In
terms of memory storage, ATD requires OðrN+1Þ and OðNIrÞ
words of memory to save the core tensor G and N tensor factors

fUðnÞgNn = 1, respectively. In addition, the cost of saving N

matrices S
ðnÞ
t is OðNr2Þ words of memory. In total, ATD requires

OðNrðI + rÞ + rN+1Þ words of memory at each time t. Meanwhile,

ACP costs a lower memory storage of OðNrðI + rÞÞ, as it does

not need to save the core tensor at each time t.

In terms of computational complexity, the computation of ATD

comes from threemain estimations: (1) theweight vectorut, (2) the

tensor factors fUðnÞgNn = 1, and (3) the core tensor G. The two

former estimations require a cost of OðjUtjr + ðIN� 1 + jS1jÞr2Þ
flops in a parallel scheme where S1 denotes the size of the

sampling set of Equation 13. The latter estimation costs

OðjUtjr + IN� 1r2ðN+1ÞÞ flops for computing DX and DG. If using
the randomize technique in this stage, the complexity is reduced

to OðjUtjr + jS2jr2ðN+1ÞÞ flops, where S2 is the set of samples

selected from Equation 25. Therefore, the overall computational

complexity of ATD is OðjUtjr + ðIN� 1 + jS1jÞr2 + jS2jr2ðN+1ÞÞ flops
in a parallel scheme. For ACP, the overall computational

complexity is OðjUtjr + ðNIN� 1 + jS1jÞr2Þ flops and reduces to

OðjUtjr + ðIN� 1 + jS1jÞr2Þ flops in a parallel scheme. Note that

when a preconditioning step (e.g., SRHT) is needed to guarantee

the incoherence ofHUt
, ATD and ACP require an additional cost of

OðjUtjr log r2Þ flops.
Convergence guarantee

Our main theoretical result is stated in the following lemma.
A B
Lemma 1. Given assumptions (A1)–(A4), l = 1, and the true G
and U are fixed, the solutions fGt;U tgNt = 1 generated by ATD

converge to a stationary point of ft when t/+N, i.e.,

VftðGt;U tÞ/0 as t/+N.

Proof of Lemma 1 can be obtained by applying the same frame-

work to derive the asymptotic convergence of adaptive algorithms

for problems of online matrix and tensor factorization.8,9,16,55,56,70

In particular, the analysis consists of the following three main

stages: (S1) the surrogate function gtðG;UÞ is strongly biconvex

in the sense that G and U are seen asmultivariate variables. Solu-

tions fGt;U tgNt = 1 generated by ATD are bounded and their varia-

tions between two successive time instances satisfy

k U
ðnÞ
t+1 � U

ðnÞ
t kF/Oð1 =tÞ a.s. (S2) The non-negative sequence

fgtðGt;U tÞgNt = 1 is a quasi-martingale and hence convergent

almost surely. Furthermore, gtðGt;U tÞ � ftðGt;U tÞ/0 a.s. (S3)

The empirical cost function ftðG;UÞ is continuously differentiable

and Lipschitz. The sequence of solutions fGt;U tgNt = 1 converges

to a stationary point of ftðG; UÞ, i.e., when t/N, the gradient

VftðGt;U tÞ/0 a.s. We refer the readers to our companion work

on robust tensor tracking16 for details on this proof framework.

RESULTS

In this subsection, experiments are conducted to evaluate the per-

formance of the two proposed algorithms (ACP and ATD) on both

synthetic and real data.We also compare themwith several state-

of-the-art algorithms to provide practical evidence of their effec-

tivenessandefficiency.All experimentsare implementedonaWin-

dows computer with an Intel Core i5-8300H and 16 GB of RAM.

Performance of ACP
We assess the performance of ACP w.r.t. the following aspects:

(1) impact of algorithm parameters on its tracking ability;

(2) performance of ACP in non-stationary and time-varying envi-

ronments; and (3) effectiveness and efficiency of ACP compared

with other adaptive CP decomposition algorithms.
Figure 3. Performance of ACP in stationary

environments

The underlying fourth-order streaming tensor is of

size 20 3 20 3 20 3 1,000 and rank 5. An abrupt

change is created at t = 500. (A) shows the tracking

ability of ACP with different values of the forgetting

factor l in noise-free and stationary environments

(i.e., the noise level s = 0 and the rotation angle a =

0). (B) demonstrates the effect of noise on the per-

formance of ACP with l = 1.

Patterns 4, 100759, June 9, 2023 9

A B

C D

Figure 4. Convergence behavior of ACP

The underlying fourth-order streaming tensor is

of size 20 3 20 3 20 3 1,000 and rank 5.

Two noise levels (s = 0 and s = 10�3) and three

missing densities (r = 10%, 30%, and 50%)

are considered. (A) and (C) respectively plot

the objective value ft(Ut) with time for s = 0 and

s = 10�3. (B) and (D) respectively represent the

time variation kUt+1 � UtkF for s = 0 and s = 10�3.

ll
OPEN ACCESS Article
Experimental setup

According to the setup of OLSTEC,9 a time-varying model for

streaming tensors is constructed as follows. At t = 0, the

loading factor U
ðnÞ
t is generated at random whose entries are

i.i.d. drawn from the Gaussian distribution Nð0; 1Þ. At time t >

0, U
ðnÞ
t ˛RIn3r is varied under the model U

ðnÞ
t = U

ðnÞ
t� 1Qt; where

Qt ˛Rr3r is a rotation matrix to control the variation of UðnÞ be-
tween t and t � 1, which is defined by:

Qt =

2
6666664

Ipt � 1 0 0 0

0 cosðatÞ � sinðatÞ 0
0 sinðatÞ cosðatÞ 0

0 0 0 Ir�pt � 1

3
7777775
; (Equation 29)

where pt = modðt + r � 2; r � 1Þ+ 1 and at is the rotation angle

with 0%at %p=2. Specifically, the higher the value of at is, the

faster the loading factor UðnÞ changes. The t-th slice X t with

missing entries is derived from the model:

X t = Pt;

I
YN
n = 1

3 nU
ðnÞ
t 3 N+1u

u
t + sN t

!
; (Equation 30)
A B

10 Patterns 4, 100759, June 9, 2023
where Pt is a binary mask tensor whose

entries are generated randomly using the

Bernoulli model with the probability r,

i.e., r represents the missing density in

the measurement; N t is a Gaussian noise

tensor (with zero-mean, unit power entries)

of the same size as X t, and the non-nega-
tive factor s is to control the noise level; the weight vector ut is a

Gaussian random vector living on Rr space. To assess the

adaptability of tensor algorithms to unforeseen events and unex-

pected corruption, we also create abrupt (significant) changes at

some time instances during the tracking process by setting the

rotation angle at this time instant to p=2.

To evaluate estimation accuracy, we measure the relative er-

ror (RE) metric defined by:

REðAtr ;AesÞ =
k Atr � AeskF

k AtrkF ; (Equation 31)

where Atr (resp. Aes) refers to the ground truth (resp. estimation).

Due to the permutation and scaling indeterminacy of the CP

decomposition, we can find Ues, which is matched with Utr

from Ut, as follows: Ues = UtP
uD� 1, where the permutation

matrix P˛Rr3r and the diagonal matrix D˛Rr3r are derived by

minimizing the optimization argminD;P k Ut � UtrDPk2F .
Effect of forgetting factor l

The choice of l plays a central role in how effective and efficient

ACP can be in non-stationary environments. To investigate the

effect of the forgetting factor, we vary the value of l from 0 to

1 and measure the estimation accuracy of ACP in different tests
Figure 5. Performance of ACP in noisy and

time-varying environments

The underlying fourth-order streaming tensor is of

size 20 3 20 3 20 3 1,000 and rank 5. (A) and

(B) respectively illustrate the effect of the noise level

s and the rotation angle a on the tracking ability of

ACP with time. We fix the value of the rotation angle

a at 0 in (A) and the noise level s at 10�3 in (B). Also,

an abrupt change is created at t = 600 in (B).

A B Figure 6. Tracking performance of adaptive

CP algorithms

The underlying third-order streaming tensor is of

size 203 203 1,000 and rank r = 5. The noise level

and the rotation angle are set to s = 10�3 and a = p/

360. (A) and (B) illustrate the performance compar-

ison between ACP and other adaptive CP algo-

rithms in the presence of 10% and 50% missing

data, respectively.

ll
OPEN ACCESSArticle
with regard to the rotational angle a. Figure 2 illustrates the

experimental results of applying ACP to a synthetic fourth-order

streaming tensor whose size is 203203203500 and its rank r =

5. The noise level s is set at 10� 3, while the sketching parameter

m is fixed at 10. It is clear that the optimal value of l depends not

only on the rotation angle a, but also on the missing density r.

When l increases from 0 to 1, the performance of ACP first in-

creases and then drops. Particularly when l is close to 1, most

of the observations are taken into the estimation of the underly-

ing LRA of streaming tensors. However, the properties of old

data may be very different from those of the latest observations,

especially in fast time-varying environments. Therefore, the

performance of ACP degrades significantly in such a case.

When the value of l is small, ACP discounts exponentially the in-

fluence of old observations, including the very recent ones. As a

result, its convergence rate is slow in stationary or slowly time-

varying environments. Accordingly, the forgetting factor l should

be neither too small nor too large. As can be seen in Figure 2, the

value of l should be around 0.5 for reasonable performance.

Thus, we fix l = 0:5 in the next experiments. It is worth noting

that in stationary environments, we can set the value of l = 1

to achieve the best performance (please see Figure 3 for an

illustration).

Asymptotic convergence behavior

We next illustrate the convergence behavior of ACP in terms of

the variation k Ut+1 � UtkF and the objective value ftðU tÞ. We
use the same fourth-order tensor as above, but with 1,000 tensor

slices. Two noise levels are considered (including s = 0 and s =

10� 3), while the missing density r is chosen among f10%;30%;

50%g. The experimental results are shown in Figures 4 and S1 (in

the supplemental information). We can see that the convergence

results agree with those stated in Lemma 1.

Noisy and dynamic environments

First, the robustness of ACP is investigated against the noise vari-

ance. We test ACP’s tracking ability on the same static fourth-or-

der tensor as above with different values of the noise level s. Fig-

ure 5A shows that the value of s does not affect the

convergence rate of ACP, but only its estimation error. Specif-

ically, when we increase the noise level s, the RE between the

ground truth and the estimation gradually increases, but toward

an error bound.

Next, we use the same tensor, but the number of slices is dou-

ble to illustrate the robustness of ACP against time-varying envi-

ronments. In particular, the proposed algorithm is evaluated in

two scenarios, including a slow time-varying case (i.e., a =

p=360) and a fast time-varying case (i.e., a = p=45). Also, at

time t = 600, we make an abrupt change in these models. In

addition, the missing density r is chosen among f10%; 30%;

50%g. Experimental results indicate that ACP is capable of

tracking t-LRA in dynamic environments, as shown in Figure 5B.

In both scenarios, the RE between the ground truth and the esti-

mation always converges toward a steady-state error bound.
Figure 7. Running time and averaged error of

adaptive CP algorithms

Patterns 4, 100759, June 9, 2023 11

Figure 8. Performance of ATD versus the

missing density r and the noise level s

The underlying fourth-order streaming tensor is of

size 203 203 203 500 and Tucker rank rTD = [3, 3,

3, 3]. Two noise levels (s = 1 and s = 10�2) and three

missing densities (r = 10%, 40%, and 70%) are

studied.

ll
OPEN ACCESS Article
The missing density r has an influence only on the convergence

rate of ACP. Specifically, the lower the missing density r is, the

faster ACP converges.

Evaluation of effectiveness and efficiency

To demonstrate the effectiveness and efficiency of our algorithm,

wecompare theperformance of ACP in termsof estimation accu-

racy and running timewith the state-of-the-art ACPalgorithms for

incomplete tensors, including OLSTEC,9 CP-PETRELS,10 and

TeCPSGD.8 For a fair comparison, the parameters of these algo-

rithms were carefully fine-tuned to achieve good performance.

Particularly, the forgetting factor l is set at 0.7 and 0.98, respec-

tively, for OLSTEC and CP-PETRELS. Moreover, OLSTEC and

TeCPSGD are also dependent on a penalty parameter, which is

set at 10� 3 in both cases. As CP-PETRELS is sensitive to initial-

ization, we use a set of L training data samples and apply the

batch CP method to obtain a good starting point for it. Here, we

consider two versions of CP-PETRELS with L = 100 and L =

20, denoted by CP-PETRELS-v1 and CP-PETRELS-v2, respec-

tively. We use random initialization for ACP, OLSTEC, and

TeCPSGD.

Since these algorithms are capable of tracking third-

order tensors only, we use synthetic streaming tensors of size

N3N31;000 in this task. The noise level is fixed at s = 10� 3,

while we set the rotation angle at a = p=360. The performance

of these algorithms is evaluated on a small tensor 203 203
Table 2. Performance of Tucker algorithms on a static fourth-order tensor of size 20320

Missing r = 50 % r = 70 %

metric REðXÞ SEPðUÞ Time (s) REðXÞ SEPðUÞ
iHOOI 3:0e�4 4:2e�8 88:1 8:1e�4 4:7e�7

ALSaS 3:1e�4 4:3e�8 109:9 7:8e�4 4:9e�7

WTucker 2:1e�4 2:4e�8 209:1 3:5e�4 1:3e�7

ATD 6:4e�5 7:6e�9 2:5 1:8e�4 1:4e�8

iHOOI 9:1e�2 5:1e�4 192:9 3:5e�1 1:3e�2

ALSaS 1:0e�4 4:2e�9 719:1 8:3e�4 3:4e�8

WTucker 3:7e�5 2:8e�10 241:2 5:0e�5 3:3e�1

ATD 1:7e�5 6:8e�11 21:7 3:2e�5 2:5e�8

12 Patterns 4, 100759, June 9, 2023
1;000 and a big tensor 2003 2003

1;000. Results are shown in Figures 6

and 7. We can see that ACP and OLSTEC

provide the best tracking performance in

terms of estimation accuracy. When the

number of missing data is small (e.g., r =

10%), ACP converges faster than

OLSTEC. TeCPSGD’s convergence rate

is much slower than those of ACP and

OLSTEC, and its estimation accuracy is
also worse. Thanks to the second-order estimation, CP-

PETRELShas the fastest convergence rate, but itsREs are higher

than those of the others. With respect to the running time, ACP is

several times faster than OLSTEC, especially in big tensor tests.

TeCPSGD is also a fast adaptive algorithm, thanks to SGD, while

the running time of CP-PETRELS is high. For additional perfor-

mance comparison results, we refer the reader to the supple-

mental information (i.e., Figures S2–S4).

Performance of ATD
Experimental setup

Follow the setup above, the incomplete tensor sliceX t at time t is

generated randomly using the following model:

X t = Pt;

Gt

YN
n = 1

3 nU
ðnÞ
t 3 uu

t + sN t

!
; (Equation 32)

where the loading factor U
ðnÞ
t and the core tensor Gt are updated

by the following rules:

UðnÞ
t = UðnÞ

t� 1 + εNðnÞ
t and Gt = Gt� 1 + εVt; (Equation 33)

where U
ðnÞ
0 ;N

ðnÞ
t ˛RIn3rn and Vt ˛Rr13r23/3rðN+1Þ are the Gaussian

noises whose entries are distributed i.i.d. from Nð0;1Þ, and the

time-varying factor ε is to control their variation.
3203500 and the noise level s = 10� 2

RankTime (s)

345:3 [3, 3, 3, 3]

539:5

597:4

5:7

571:5 [10, 10, 10, 10]

3754:6

0 631:7

58:2

Figure 9. Performance of Tucker algorithms

The underlying fourth-order streaming tensor is of

size 203 203 203 500 and Tucker rank rTD = [3, 3,

3, 3]. The 50% data are supposed to be missing at

random and the noise level is fixed at s = 10�2. ATD

is shown to be the fastest Tucker algorithm, much

faster than iHOOI, ALSaS, and WTucker. See Fig-

ure S5 in the supplemental information for further

performance comparison among these Tucker al-

gorithms.

ll
OPEN ACCESSArticle
In addition to the REmetric, we also use the subspace estima-

tion performance ðSEPÞ71 metric to evaluate the subspace esti-

mation accuracy, which is defined by:

SEPðUtr ;UesÞ =
trðU#

esðI � UtrU
#
tr ÞUesÞ

trðU#
esðUtrU

#
tr ÞUesÞ

; (Equation 34)

where Utr (resp. Ues) refers to the true loading factor (resp. esti-

mated factor). The lower the value of SEP is, the more accurate

the algorithm is.

Robustness of ATD

To demonstrate the robustness of ATD against data corruption,

we change the number of missing entries in the measurement by

varying the value of r and evaluate its performance on different

noise levels. We also compare ATD with three well-known batch

Tucker algorithms for tensor completion, including iHOOI,72 AL-
SaS,72 and WTucker.73 These algorithms

are iterative, so their procedure will be

stopped when the accuracy tolerance tol

or the maximum iteration ITERmax is

achieved. Particularly, the tolerance tol is

used to bound the fitting/estimation error

of iterative algorithms, which is defined

as k P;ðX � GQN
n = 13nU

ðnÞÞkF= k P;

XkF . As a convergence guarantee, we fix
the value of tol at 10� 4, while the value of ITERmax is set at

500, 500, and 100, respectively, for iHOOI, ALSaS, andWTucker.

For ATD, the forgetting factor l is fixed at 0.7 in the following

experiments.

In this task, we use a static tensor of size 203203203500

(i.e., the time-varying factor ε = 0), whose core is generated at

random from a Gaussian distribution of zero-mean and unit vari-

ance. Under the Tucker model with rTD = ½3; 3;3;3�, the perfor-

mance of ATD on the tensor is illustrated in Figure 8. Results

show that ATD can successfully track the multilinear low-rank

model in all test cases. Similar to ACP, the missing density

r has influence only on the convergence rate of ATD, i.e., the

higher the value of r is, the more slowly ATD converges. The per-

formance comparison among Tucker algorithms is reported in

Table 2 and shown in Figures 9 and S5 (in the supplemental

information). We can see that ATD achieves an estimation
Figure 10. Effect of the time-varying factor ε
on the performance of ATD

The underlying fourth-order streaming tensor is of

size 203 203 203 500 and Tucker rank [3, 3, 3, 3].

The 90%entries are observed, the noise is s = 10�2,

and an abrupt change is created at t = 300. The

time-varying factor is varied among the range

[10�4, 10�1].

Patterns 4, 100759, June 9, 2023 13

T
a
b
le

3
.
P
e
rf
o
rm

a
n
c
e
o
f
a
d
a
p
ti
v
e
te
n
s
o
r
d
e
c
o
m
p
o
s
it
io
n
s
o
n
v
id
e
o
d
a
ta
s
e
ts

M
e
th
o
d
s

T
e
C
P
S
G
D

O
L
S
T
E
C

C
P
-P

E
T
R
E
L
S

A
C
P

A
T
D

D
a
ta
s
e
t

S
iz
e

M
is
s
in
g

R
E
ðX

Þ
T
im

e
(s
)

R
E
ðX

Þ
T
im

e
(s
)

R
E
ðX

Þ
T
im

e
(s
)

R
E
ðX

Þ
T
im

e
(s
)

R
E
ðX

Þ
T
im

e
(s
)

H
ig
h
w
a
y

3
2
0
3

2
4
0
3

1
;7
0
0

1
0
%

0
.2
0
5
7

3
6
.5
8
2

0
.1
6
9
3

1
3
2
.0
2

0
.9
2
5
0

4
5
1
.4
1

0
.2
1
7
8

1
4
.4
3
7

0
.1
4
8
4

3
6
.5
8
7

5
0
%

0
.2
1
1
1

3
5
.2
5
2

0
.1
7
0
9

9
5
.1
8
8

0
.9
3
4
6

2
7
3
.9
8

0
.2
2
5
1

1
3
.2
9
5

0
.1
5
2
6

3
3
.2
6
9

9
0
%

0
.2
2
5
6

2
7
.1
0
3

0
.1
8
4
9

5
4
.2
4
6

0
.9
2
2
4

1
0
7
.7
9

0
.2
7
2
5

1
3
.0
1
7

0
.1
9
6
4

2
6
.9
9
6

H
a
ll

3
2
0
3

2
4
0
3

1
;7
0
0

1
0
%

0
.1
4
5
6

1
5
.0
6
0

0
.1
2
4
7

8
3
.7
8
9

0
.9
8
1
9

3
3
9
.1
0

0
.1
4
5
7

1
1
.8
5
2

0
.1
0
0
6

3
6
.2
9
3

5
0
%

0
.1
4
5
0

1
4
.9
1
6

0
.1
2
6
0

7
4
.8
6
9

0
.9
2
6
9

1
8
8
.1
5

0
.1
6
0
2

1
1
.8
0
8

0
.1
0
4
5

3
1
.5
7
6

9
0
%

0
.1
6
1
4

1
2
.5
3
2

0
.1
4
9
7

4
7
.2
3
5

0
.9
2
8
1

7
1
.5
7
6

0
.2
3
4
1

1
1
.8
9
7

0
.1
4
2
6

2
5
.0
4
7

L
o
b
b
y

3
2
0
3

2
4
0
3

1
;7
0
0

1
0
%

0
.1
3
2
4

5
.6
7
2

0
.1
2
1
3

2
9
.4
9
0

0
.9
1
6
1

1
0
7
.4
4

0
.1
2
5
8

4
.6
1
3

0
.0
8
6
8

1
4
.5
9
0

5
0
%

0
.1
4
5
2

4
.9
2
0

0
.1
2
2
8

2
1
.9
4
0

0
.8
5
9
6

6
1
.0
5
1

0
.1
8
8
1

4
.7
1
1

0
.0
8
8
4

1
0
.6
3
0

9
0
%

0
.1
7
3
3

4
.0
2
2

0
.1
5
3
0

1
4
.7
0
1

0
.9
7
3
6

2
2
.1
5
0

0
.2
6
0
2

3
.8
1
1

0
.1
3
3
3

9
.2
4
5

P
a
rk

3
2
0
3

2
4
0
3

1
;7
0
0

1
0
%

0
.1
0
5
7

1
0
.3
0
3

0
.0
9
0
5

4
9
.2
1
3

0
.9
9
4
5

1
8
6
.2
8

0
.1
2
7
0

6
.4
5
8

0
.0
6
8
6

1
6
.1
5
7

5
0
%

0
.1
2
4
6

9
.9
4
0

0
.0
9
1
6

3
3
.6
6
0

0
.9
8
9
2

1
2
7
.3
0

0
.1
4
4
1

5
.8
2
5

0
.0
7
5
9

1
4
.0
5
2

9
0
%

0
.1
3
6
9

8
.4
9
7

0
.1
0
0
6

2
2
.0
3
1

0
.9
6
2
7

5
0
.4
3
5

0
.2
0
0
1

5
.1
7
9

0
.1
1
2
2

1
0
.9
6
6

ll
OPEN ACCESS Article

14 Patterns 4, 100759, June 9, 2023
accuracy similar to those of iHOOI, ALSaS, and WTucker. As

ATD starts from a random point, it needs a certain number of ob-

servations to converge during the early stage of tracking. By

contrast, iHOOI, ALSaS, and WTucker process data samples

in a group or batch. Therefore, their REs often remain almost

the same when the time-varying factor and the noise level are

fixed over time. Experimental results also indicate that ATD is

the fastest algorithm, much faster than the state-of-the-art

Tucker algorithms, thanks to the adaptive scheme and the ran-

domized technique. For example, when dealing with the case

of 50% missing observations and rTD = ½3; 3; 3;3�, the running

time of ATD is only 2.51 s, which is 35 times faster than the sec-

ond-fastest algorithm, iHOOI.

Tracking ability in dynamic environments

We continue to investigate the tracking ability of ATD in non-sta-

tionary and time-varying environments by changing the time-vary-

ing factor ε in the range ½10� 4;10� 1�. We use the same tensor di-

mensions as in the previous task. We also create a significant

subspace change at time t = 300 to see how fast ATD can

converge. Figure 10 shows the convergence behavior of ATD

versus the time-varying factor ε. We can see that the convergence

rate of ATD is not affected by ε but only its estimation error. The

performance of the orthogonal ATD (ATD-O) is illustrated in Fig-

ure S6 (in the supplemental information). Both ATD and ATD-O

converge toward the same steady-state error bound. However,

the convergence rate of ATD-O is slightly better than that of ATD.

Real data
To demonstrate the effectiveness of our algorithms on real data-

sets, we consider two related applications: video completion

and multichannel electroencephalography (EEG) analysis.

Video completion

In this task, four real video surveillance sequences are used,

including Highway, Hall, Lobby, and Park (video sequences:

http://jacarini.dinf.usherbrooke.ca/). Specifically, Highway con-

tains 1,700 frames of size 3203240 pixels showing the two-

lane traffic surveillance of vehicles on a highway. Hall, which

has 3,584 frames of size 1743144 pixels, shows an airport hall

with many people coming in and out. Lobby consists of 1,546

frames of size 1283160 pixels captured in an office lobby, where

the background was changed by switching lights on and off.

Park includes 600 frames of size 2883352 pixels shot by a ther-

mal camera. To create missing pixels in videos, we use a set of

binary masks of the same size as the video frames, and their en-

tries are derived from a Bernoulli model with probability r (i.e., r

indicates the missing density). Then, we apply the Hadamard

product to multiply these masks with all video frames (each

mask corresponds to each frame) to create zero entries, as in

the previous tasks on synthetic data.

We compare the proposed algorithms with OLSTEC,9

TeCPSGD,8 and CP-PETRELS.10 We set the value of l at 0.7

and 0.999 respectively for OLSTEC and CP-PETRELS. OLSTEC

and TeCPSGD also depend on the regularization parameter m,

whose value is fixed at 0.1. The performance of these algorithms

is shown statistically in Table 3 and graphically in Figure 11. We

can see that ATD outperforms adaptive CP algorithms in almost

all tests. ACP also provides reasonable estimation accuracy on

these data compared with others. CP-PETRELS seems to fail

to track the video background and thus fails to recover missing

http://jacarini.dinf.usherbrooke.ca/

A B

C D

Figure 11. Performance of adaptive tensor

completion algorithms on video datasets

(A) and (C) respectively illustrate the completion

performance of adaptive tensor algorithms on

Lobby and Hall video data in the presence of 50%

missing pixels. (B) and (D) respectively illustrate the

performance of ATD on Lobby and Hall video data

with different missing densities.

ll
OPEN ACCESSArticle
data. With respect to the running time, experimental results indi-

cate that ACP is the fastest adaptive CP decomposition. We

refer the reader to the supplemental information for more exper-

imental results (see Figures S7–S10).

Multichannel EEG analysis

We follow the experimental framework in Acar et al.74 and

Linh-Trung et al.75 to illustrate the use of ACP for analyzing

multichannel EEG signals. In this task, we use a public EEG

dataset collected on 14 subjects during the stimulation of

hands (EEG data: http://www.erpwavelab.org/index.htm).

The EEG signals are recorded using a system of 64 channels

(electrodes) and we have 28 measurements per subject

in total.

We construct a third-order EEG tensor of measurement 3

channel 3 time � frequency by taking a continuous wavelet

transform of each EEG channel, as in our past works.16,76

Note that the resulting time-frequency representations are re-
A B

Figure 12. Waveform-preserving character of ACP on the EEG tensor with 20 missing channe

(A), (B), and (C) show the estimation performance of CP-WOPT (batch), NL-PETRELS (adaptive), and ACP (

available, the estimation of CP-WOPT is regarded as benchmark. It is clear that ACP provides results similar

than NL-PETRELS. Red circles are to highlight the difference among the three results.
shaped into vectors of length 4,392 and

are hence streamed. In a nutshell, we

have the EEG tensor whose size is

2836434;392 and its rank is set at 3 as

provided in Acar et al.74 and Linh-Trung

et al.75. At each time, data of 20 (and

40) channels are assumed to be dis-

carded randomly for our missing observa-

tion purpose.

We evaluate the performance of ACP by

comparing it with the adaptive NL-
PETRELS algorithm in Linh-Trung et al.75 and the batch CP-

WOPT algorithm in Acar et al.74 To have a good initialization for

NL-PETRELS, the first 1,500 slices are used to construct the

training tensor. Also, the forgetting factor l is set at 0.999. By

contrast, ACP is not as sensitive to initialization conditions, so

it is initialized at random. We consider results obtained by using

the batch algorithm as our ground truth.

Under the CPmodel with rCP = 3, taking the tensor decompo-

sition of the EEG tensor results in three loading factors,

A˛R2833, B˛R6433, and C˛R439233, corresponding to,

respectively, the measurement, channel, and time-frequency

modes. Figures 12 and 13 illustrate the estimation of A;B, and

C using CP-WOPT, NL-PETRELS, and ACP. In particular, we

use bar plots and 3D head plots to represent the column vectors

of A and B, while the time-frequency representations corre-

sponding to the columns C are plotted as matrices. We can

see from Figure 12 that both adaptive algorithms are capable
C

ls

adaptive), respectively. Since the ground truth is not

to those of CP-WOPT and a slightly better estimation

Patterns 4, 100759, June 9, 2023 15

http://www.erpwavelab.org/index.htm

A B C

Figure 13. Waveform-preserving character of ACP on the EEG tensor with 40 missing channels

(A), (B), and (C) illustrate the estimation performance of CP-WOPT (batch), NL-PETRELS (adaptive), and ACP (adaptive), respectively. NL-PETRELS fails to

recover the EEG loading factors, while ACP still works well compared with CP-WOPT.

ll
OPEN ACCESS Article
of tracking three EEG loading factors. Our ACP provides a

slightly better estimation compared with that of CP-WOPT. In

the presence of highly incomplete observations (e.g., 40 chan-

nels are missing), NL-PETRELS fails to estimate the EEG loading

factors, while our ACP algorithm still works well, as shown in Fig-

ure 13. The running time of the three algorithms is reported in Ta-

ble 4, which indicates that ACP is much faster than NL-PETRELS

and CP-WOPT.
DISCUSSION

In this paper, we have proposed two new low-complexity algo-

rithms, namely ACP and ATD, for the adaptive decomposition

of higher-order incomplete and streaming tensors. Developed

based on CP decomposition, ACP estimates a multilinear LRA

of streaming tensors from noisy and high-dimensional data

with high accuracy, even when the decomposition model is

slowly time-varying. In parallel, developed based on Tucker

decomposition, ATD is a fast randomized tracker, able to recover

missing entries from highly incomplete observations. Due to the

advantages of stochastic approximation and uniform sampling,

ATD is one of the fastest Tucker algorithms, much faster than

batch algorithms, while providing good estimation accuracy.

Our experimental results indicate that ATD outperforms state-

of-the-art adaptive CP algorithms, including our ACP algorithm,

in video completion. Thanks to the Tucker format, ATD is more

stable than ACP, but with more parameters, and is thus slower

than ACP.
Table 4. Multichannel EEG analysis: Running times of tensor

algorithms

Missing data 20 channels 40 channels 60 channels

CP-WOPT 87.51 (s) 90.15 (s) 95.29 (s)

NL-PETRELS 59.72 (s) 39.83 (s) 37.12 (s)

ACP 1.84 (s) 1.75 (s) 1.42 (s)

16 Patterns 4, 100759, June 9, 2023
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Dr. Nguyen Linh Trung (linhtrung@vnu.edu.vn).

Materials availability

No new materials were generated in this study.

Data and code availability

All original code has been deposited at https://github.com/thanhtbt/

tensor_tracking and archived in Figshare under https://doi.org/10.6084/m9.

figshare.22276105. Any additional information required to reanalyze the data

reported in this paper is available from the lead contact upon request.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100759.

ACKNOWLEDGMENTS

This research was conducted under research project QG.22.62 ‘‘Multidimen-

sional data analysis and application to Alzheimer’s disease diagnosis’’ of Viet-

nam National University, Hanoi.

AUTHOR CONTRIBUTIONS

Conceptualization, L.T.T.; methodology, L.T.T. and K.A.-M.; formal analysis,

L.T.T.; validation, K.A.-M., N.L.T., and A.H.; software, L.T.T.; writing – original

draft, L.T.T.; writing – review & editing, L.T.T., K.A.-M., N.L.T., and A.H.; visu-

alization, L.T.T.; supervision, K.A.-M., N.L.T., and A.H.; funding acquisi-

tion, N.L.T.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 5, 2022

Revised: December 28, 2022

Accepted: May 2, 2023

Published: June 9, 2023

mailto:linhtrung@vnu.edu.vn
https://github.com/thanhtbt/tensor_tracking
https://github.com/thanhtbt/tensor_tracking
https://doi.org/10.6084/m9.figshare.22276105
https://doi.org/10.6084/m9.figshare.22276105
https://doi.org/10.1016/j.patter.2023.100759
https://doi.org/10.1016/j.patter.2023.100759

ll
OPEN ACCESSArticle
REFERENCES

1. Chen, M.H., Li, C.T., Lin, W.C., Wei, H.T., Chang, W.H., Chen, T.J., Pan,

T.L., Su, T.P., and Bai, Y.M. (2014). Big data: a survey. Schizophr. Res.

159, 171–175. https://doi.org/10.1007/s11036-013-0489-0.

2. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E.,

and Faloutsos, C. (2017). Tensor decomposition for signal processing and

machine learning. IEEE Trans. Signal Process. 65, 3551–3582. https://doi.

org/10.1109/TSP.2017.2690524.

3. Kolda, T.G., and Bader, B.W. (2009). Tensor decompositions and applica-

tions. SIAM Rev. 51, 455–500. https://doi.org/10.1137/07070111X.

4. De Lathauwer, L., DeMoor, B., and Vandewalle, J. (2000). Amultilinear sin-

gular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278.

https://doi.org/10.1137/S0895479896305696.

5. Harshman, R.A. (1970). Foundations of the PARAFAC procedure: models

and conditions for an explanatory multimodal factor analysis. UCLAWork.

Pap. Phonetics 16, 1–84.

6. Nion, D., and Sidiropoulos, N.D. (2009). Adaptive algorithms to track the

PARAFAC decomposition of a third-order tensor. IEEE Trans. Signal

Process. 57, 2299–2310. https://doi.org/10.1109/TSP.2009.2016885.

7. Thanh, L.T., Abed-Meraim, K., Trung, N.L., and Hafiane, A. (2022). A

contemporary and comprehensive survey on streaming tensor decompo-

sition. IEEE Trans. Knowl. Data Eng. 1–20. https://doi.org/10.1109/TKDE.

2022.3230874.

8. Mardani, M., Mateos, G., and Giannakis, G.B. (2015). Subspace learning

and imputation for streaming matrices and tensors. IEEE Trans. Signal

Process. 63, 2663–2677. https://doi.org/10.1109/TSP.2015.2417491.

9. Kasai, H. (2019). Fast online low-rank tensor subspace tracking by CP

decomposition using recursive least squares from incomplete observa-

tions. Neurocomputing 347, 177–190. https://doi.org/10.1016/j.neucom.

2018.11.030.

10. Minh-Chinh, T., Nguyen, V.D., Linh-Trung, N., and Abed-Meraim, K.

(2016). Adaptive PARAFAC decomposition for third-order tensor comple-

tion. IEEE Int. Conf. Consum. Electron. 297–301. https://doi.org/10.1109/

CCE.2016.7562652.

11. Recht, B., Fazel, M., and Parrilo, P.A. (2010). Guaranteed minimum-rank

solutions of linear matrix equations via nuclear norm minimization. SIAM

Rev. 52, 471–501. https://doi.org/10.1137/070697835.

12. Hu, Z., Nie, F., Wang, R., and Li, X. (2021). Low rank regularization: a re-

view. Neural Network. 136, 218–232. https://doi.org/10.1016/j.neunet.

2020.09.021.

13. Ahn, D., Kim, S., and Kang, U. (2021). Accurate online tensor factorization

for temporal tensor streams with missing values. ACM Int. Conf. Inf.

Knowl. Manag. 2822–2826. https://doi.org/10.1145/3459637.3482048.

14. Zhang, Z., and Hawkins, C. (2018). Variational Bayesian inference for

robust streaming tensor factorization and completion. IEEE Int. Conf.

Data Min. 1446–1451. https://doi.org/10.1109/ICDM.2018.00200.

15. Lee, D., and Shin, K. (2021). Robust factorization of real-world tensor

streams with patterns, missing values, and outliers. IEEE Int. Conf. Data

Eng. 840–851. https://doi.org/10.1109/ICDE51399.2021.00078.

16. Thanh, L.T., Abed-Meraim, K., Trung, N.L., and Hafiane, A. (2022). Robust

tensor tracking with missing data and outliers: novel adaptive CP decom-

position and convergence analysis. IEEE Trans. Signal Process. 70, 4305–

4320. https://doi.org/10.1109/TSP.2022.3201640.

17. Zhou, S., Vinh, N.X., Bailey, J., Jia, Y., and Davidson, I. (2016).

Accelerating online CP decompositions for higher order tensors. In ACM

Int. Conf. Knowl. Discover. Data Min., pp. 1375–1384. https://doi.org/10.

1145/2939672.2939763.

18. Smith, S.W., Huang, K., Sidiropoulos, N.D., and Karypis, G. (2018).

Streaming tensor factorization for infinite data sources. Proceedings of

SIAM Int. Conf. Data Min. 81–89. https://doi.org/10.1137/1.

9781611975321.10.

19. Thanh, L.T., Abed-Meraim, K., Linh-Trung, N., and Hafiane, A. (2021). A

fast randomized adaptive CP decomposition for streaming tensors. In
IEEE Int. Conf. Acoust. Speech Signal Process., pp. 2910–2914. https://

doi.org/10.1109/ICASSP39728.2021.9413554.

20. Zeng, C., and Ng, M.K. (2021). Incremental CP tensor decomposition by

alternating minimization method. SIAM J. Matrix Anal. Appl. 42,

832–858. https://doi.org/10.1137/20M1319097.

21. Lyu, H., Wang, J., Wu, W., Duong, V., Zhang, X., Dye, T.D., and Luo, J.

(2022). Online nonnegative CP-dictionary learning for Markovian data. J.

Mach. Learn. Res. 23, 1–50.

22. Kasai, H., and Mishra, B. (2016). Low-rank tensor completion: a

Riemannian manifold preconditioning approach. Int. Conf. Mach. Learn.

1012–1021.

23. Fang, S., Kirby, R.M., and Zhe, S. (2021). Bayesian streaming sparse

Tucker decomposition. In Conf. Uncertain. Artif. Intell., pp. 558–567.

24. Zdunek, R., and Fona1, K. (2022). Incremental nonnegative Tucker decom-

position with block-coordinate descent and recursive approaches.

Symmetry 14, 113. https://doi.org/10.3390/sym14010113.

25. Jang, J.-G., and Kang, U. (2023). Static and streaming Tucker decompo-

sition for dense tensors. ACMTrans. Knowl. Discov. Data 17, 1–34. https://

doi.org/10.1145/3568682.

26. Sun, J., Lin, Z., Feng, J., Li, Y., and Shen, B. (2008). Incremental tensor

analysis: theory and applications. ACM Trans. Knowl. Discov. Data 2,

1–37. https://doi.org/10.1145/1409620.1409621.

27. Traoré, A., Berar, M., and Rakotomamonjy, A. (2019). Online multimodal

dictionary learning. Neurocomputing 368, 163–179. https://doi.org/10.

1016/j.neucom.2019.08.053.

28. Li, P., Feng, J., Jin, X., Zhang, L., Xu, X., and Yan, S. (2019). Online robust

low-rank tensor modeling for streaming data analysis. IEEE Transact.

Neural Networks Learn. Syst. 30, 1061–1075. https://doi.org/10.1109/

TNNLS.2018.2860964.

29. Chachlakis, D.G., Dhanaraj, M., Prater-Bennette, A., and Markopoulos,

P.P. (2021). Dynamic L1-norm Tucker tensor decomposition. IEEE J.

Sel. Top. Signal Process. 15, 587–602. https://doi.org/10.1109/JSTSP.

2021.3058846.

30. Thanh, L.T., Duy, T.T., Abed-Meraim, K., Linh Trung, N., and Hafiane, A.

(2022). Robust online Tucker dictionary learning from multidimensional

data streams. IEEE Asia-Pacific Signal Inf. Process. Assoc. Annu. Conf.

1815–1820. https://doi.org/10.23919/APSIPAASC55919.2022.9980029.

31. Gilman, K., Tarzanagh, D.A., and Balzano, L. (2022). Grassmannian opti-

mization for online tensor completion and tracking with the t-SVD. IEEE

Trans. Signal Process. 70, 2152–2167. https://doi.org/10.1109/TSP.

2022.3164837.

32. Martin, C.D., Shafer, R., and LaRue, B. (2013). An order-p tensor factoriza-

tion with applications in imaging. SIAM J. Sci. Comput. 35, A474–A490.

https://doi.org/10.1137/110841229.

33. Zhang, Z., Wu, Y., Yu, F., Niu, C., Du, Z., Chen, Y., and Du, J. (2017). Exact

tensor completion using t-SVD. IEEE Trans. Signal Process. 65, 1511–

1526. https://doi.org/10.1109/TSP.2016.2639466.

34. Jiang, F., Liu, X.-Y., Lu, H., and Shen, R. (2018). Efficient multi-dimensional

tensor sparse coding using t-linear combination. AAAI Conf. Artif. Intell.

32, 3326–3333. https://doi.org/10.1609/aaai.v32i1.11620.

35. De Lathauwer, L. (2008). Decompositions of a higher-order tensor in block

terms – Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30,

1033–1066. https://doi.org/10.1137/070690729.

36. Gujral, E., and Papalexakis, E.E. (2020). OnlineBTD: streaming algorithms

to track the block term decomposition of large tensors. IEEE Int.

Conf. Data Sci. Adv. Anal. 168–177. https://doi.org/10.1109/

DSAA49011.2020.00029.

37. Rontogiannis, A.A., Giampouras, P.V., and Kofidis, E. (2021). Online rank-

revealing block-term tensor decomposition. Asilomar Conf. Signals

Syst. Comput. 1678–1682. https://doi.org/10.1109/ICASSP39728.2021.

9415104.

38. Thanh, L.T., Abed-Meraim,K., Trung,N.L., andBoyer, R. (2021). Adaptive al-

gorithms for tracking tensor-train decomposition of streaming tensors. Eur.
Patterns 4, 100759, June 9, 2023 17

https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/S0895479896305696
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref5
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref5
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref5
https://doi.org/10.1109/TSP.2009.2016885
https://doi.org/10.1109/TKDE.2022.3230874
https://doi.org/10.1109/TKDE.2022.3230874
https://doi.org/10.1109/TSP.2015.2417491
https://doi.org/10.1016/j.neucom.2018.11.030
https://doi.org/10.1016/j.neucom.2018.11.030
https://doi.org/10.1109/CCE.2016.7562652
https://doi.org/10.1109/CCE.2016.7562652
https://doi.org/10.1137/070697835
https://doi.org/10.1016/j.neunet.2020.09.021
https://doi.org/10.1016/j.neunet.2020.09.021
https://doi.org/10.1145/3459637.3482048
https://doi.org/10.1109/ICDM.2018.00200
https://doi.org/10.1109/ICDE51399.2021.00078
https://doi.org/10.1109/TSP.2022.3201640
https://doi.org/10.1145/2939672.2939763
https://doi.org/10.1145/2939672.2939763
https://doi.org/10.1137/1.9781611975321.10
https://doi.org/10.1137/1.9781611975321.10
https://doi.org/10.1109/ICASSP39728.2021.9413554
https://doi.org/10.1109/ICASSP39728.2021.9413554
https://doi.org/10.1137/20M1319097
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref21
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref21
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref21
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref22
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref22
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref22
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref23
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref23
https://doi.org/10.3390/sym14010113
https://doi.org/10.1145/3568682
https://doi.org/10.1145/3568682
https://doi.org/10.1145/1409620.1409621
https://doi.org/10.1016/j.neucom.2019.08.053
https://doi.org/10.1016/j.neucom.2019.08.053
https://doi.org/10.1109/TNNLS.2018.2860964
https://doi.org/10.1109/TNNLS.2018.2860964
https://doi.org/10.1109/JSTSP.2021.3058846
https://doi.org/10.1109/JSTSP.2021.3058846
https://doi.org/10.23919/APSIPAASC55919.2022.9980029
https://doi.org/10.1109/TSP.2022.3164837
https://doi.org/10.1109/TSP.2022.3164837
https://doi.org/10.1137/110841229
https://doi.org/10.1109/TSP.2016.2639466
https://doi.org/10.1609/aaai.v32i1.11620
https://doi.org/10.1137/070690729
https://doi.org/10.1109/DSAA49011.2020.00029
https://doi.org/10.1109/DSAA49011.2020.00029
https://doi.org/10.1109/ICASSP39728.2021.9415104
https://doi.org/10.1109/ICASSP39728.2021.9415104

ll
OPEN ACCESS Article
Signal Process. Conf. 995–999. https://doi.org/10.23919/Eusipco47968.

2020.9287780.

39. Thanh, L.T., Abed-Meraim, K., Trung, N.L., and Hafiane, A. (2022). Robust

tensor tracking with missing data under tensor-train format. Eur. Signal.

Process. Conf. 832–836. https://doi.org/10.23919/EUSIPCO55093.2022.

9909702.

40. Yu, J., Zou, T., and Zhou, G. (2022). Online subspace learning and impu-

tation by tensor-ring decomposition. Neural Network. 153, 314–324.

https://doi.org/10.1016/j.neunet.2022.05.023.

41. Song, Q., Huang, X., Ge, H., Caverlee, J., and Hu, X. (2017). Multi-aspect

streaming tensor completion. ACM Int. Conf. Knowl. Disc. Data Min.

435–443. https://doi.org/10.1145/3097983.3098007.

42. Najafi, M., He, L., and Yu, P.S. (2019). Outlier-robust multi-aspect stream-

ing tensor completion and factorization. Int. Joint Conf. Artificial Intell.

3187–3194. https://doi.org/10.24963/ijcai.2019/442.

43. Nimishakavi, M., Mishra, B., Gupta, M., and Talukdar, P. (2018). Inductive

framework for multi-aspect streaming tensor completion with side infor-

mation. ACM Int. Conf. Inf. Knowl. Manag. 307–316. https://doi.org/10.

1145/3269206.3271713.

44. Mahoney, M.W. (2011). Randomized algorithms for matrices and data.

Found. Trends Mach. Learn. 3, 123–224.

45. Wang, Y., Tung, H.-Y., Smola, A.J., and Anandkumar, A. (2015). Fast and

guaranteed tensor decomposition via sketching. Adv. Neural Inf. Process.

Syst. 991–999.

46. Song, Z., Woodruff, D., and Zhang, H. (2016). Sublinear time orthogonal

tensor decomposition. Adv. Neural Inf. Process. Syst. 793–801.

47. Battaglino, C., Ballard, G., and Kolda, T.G. (2018). A practical randomized

CP tensor decomposition. SIAM J. Matrix Anal. Appl. 39, 876–901. https://

doi.org/10.1137/17M1112303.

48. Malik, O.A., and Becker, S. (2018). Low-rank Tucker decomposition of

large tensors using Tensorsketch. Adv. Neural Inf. Process. Syst.

10096–10106.

49. Che, M., and Wei, Y. (2019). Randomized algorithms for the approxima-

tions of Tucker and the tensor train decompositions. Adv. Comput.

Math. 45, 395–428. https://doi.org/10.1007/s10444-018-9622-8.

50. Che, M., Wei, Y., and Yan, H. (2021). Randomized algorithms for the low

multilinear rank approximations of tensors. J. Comput. Appl. Math. 390,

113380. https://doi.org/10.1016/j.cam.2020.113380.

51. Minster, R., Saibaba, A.K., and Kilmer, M.E. (2020). Randomized algo-

rithms for low-rank tensor decompositions in the Tucker format. SIAM J.

Math. Data Sci. 2, 189–215. https://doi.org/10.1137/19M1261043.

52. Ahmadi-Asl, S., Abukhovich, S., Asante-Mensah, M.G., Cichocki, A.,

Phan, A.H., Tanaka, T., and Oseledets, I. (2021). Randomized algorithms

for computation of Tucker decomposition and higher-order SVD

(HOSVD). IEEE Access 9, 28684–28706. https://doi.org/10.1109/

ACCESS.2021.3058103.

53. Cichocki, A., Lee, N., Oseledets, I., Phan, A.-H., Zhao, Q., and Mandic,

D.P. (2016). Tensor networks for dimensionality reduction and large-scale

optimization: Part I low-rank tensor decompositions. FNT. in Machine

Learning 9, 249–429.

54. De Silva, V., and Lim, L.-H. (2008). Tensor rank and the ill-posedness of the

best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30,

1084–1127. https://doi.org/10.1137/06066518X.

55. Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010). Online learning for

matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60.

56. Thanh, L.T., Dung, N.V., Trung, N.L., and Abed-Meraim, K. (2021). Robust

subspace tracking with missing data and outliers: novel algorithm with

convergence guarantee. IEEE Trans. Signal Process. 69, 2070–2085.

https://doi.org/10.1109/TSP.2021.3066795.

57. Thanh, L.T., Abed-Meraim, K., Hafiane, A., and Trung, N.L. (2022). Sparse

subspace tracking in high dimensions. In IEEE Int. Conf. Acoust. Speech
18 Patterns 4, 100759, June 9, 2023
Signal Process., pp. 5892–5896. https://doi.org/10.1109/ICASSP43922.

2022.9746546.

58. Chatterjee, S. (2020). A deterministic theory of low rankmatrix completion.

IEEE Trans. Inf. Theor. 66, 8046–8055. https://doi.org/10.1109/TIT.2020.

3019569.

59. Candes, E.J., and Tao, T. (2010). The power of convex relaxation: near-

optimal matrix completion. IEEE Trans. Inf. Theor. 56, 2053–2080.

https://doi.org/10.1109/TIT.2010.2044061.

60. Mairal, J. (2015). Incremental majorization-minimization optimization with

application to large-scale machine learning. SIAM J. Optim. 25 (2),

829–855. https://doi.org/10.1137/140957639.

61. Raskutti, G., and Mahoney, M.W. (2016). A statistical perspective on ran-

domized sketching for ordinary least-squares. J. Mach. Learn. Res. 17,

7508–7538.

62. Farrar, D.E., and Glauber, R.R. (1967). Multicollinearity in regression anal-

ysis: the problem revisited. Rev. Econ. Stat. 49, 92–107. https://doi.org/

10.2307/1937887.

63. Allen, M.P. (1997). The problem of multicollinearity. Understanding

Regression Analysis, 176–180. https://doi.org/10.1007/978-0-585-

25657-3_37.

64. Tropp, J.A. (2011). Improved analysis of the subsampled randomized

Hadamard transform. Adv. Adapt. Data Anal. 03 (01n02), 115–126.

https://doi.org/10.1142/S1793536911000787.

65. Balzano, L., Chi, Y., and Lu, Y.M. (2018). Streaming PCA and subspace

tracking: the missing data case. Proc. IEEE 106, 1293–1310. https://doi.

org/10.1109/JPROC.2018.2847041.

66. Chi, Y., Eldar, Y.C., and Calderbank, R. (2013). PETRELS: parallel sub-

space estimation and tracking by recursive least squares from partial ob-

servations. IEEE Trans. Signal Process. 61, 5947–5959. https://doi.org/10.

1109/TSP.2013.2282910.

67. Spall, J.C. (2005). Introduction to Stochastic Search and Optimization

(John Wiley & Sons).

68. Langville, A.N., and Stewart, W.J. (2004). The Kronecker product and sto-

chastic automata networks. J. Comput. Appl. Math. 167, 429–447. https://

doi.org/10.1016/j.cam.2003.10.010.

69. Diao, H., Jayaram, R., Song, Z., Sun, W., andWoodruff, D. (2019). Optimal

sketching for Kronecker product regression and low rank approximation.

Adv. Neural Inf. Process. Syst. 4739–4750.

70. Feng, J., Xu, H., and Yan, S. (2013). Online robust PCA via stochastic opti-

mization. Adv. Neural Inf. Process. Syst. 404–412.

71. Linh-Trung, N., Nguyen, V.D., Thameri, M., Minh-Chinh, T., and Abed-

Meraim, K. (2018). Low-complexity adaptive algorithms for robust sub-

space tracking. IEEE J. Sel. Top. Signal Process. 12, 1197–1212.

https://doi.org/10.1109/JSTSP.2018.2876626.

72. Xu, P., Xu, A., Chen, B., Zheng, S., Xu, Y., Li, H., Li, B., Huang, P., Zhang,

Y., Ge, Y., and Liu, C. (2017). Fast algorithms for higher-order singular

value decomposition from incomplete data. J. Comput. Math. 35,

395–420. https://doi.org/10.4208/jcm.1608-m2016-0641.

73. Filipovi�c, M., and Juki�c, A. (2015). Tucker factorization with missing data

with application to low-n-rank tensor completion. Multidim. Syst. Signal

Process. 26, 677–692. https://doi.org/10.1007/s11045-013-0269-9.

74. Acar, E., Dunlavy, D.M., Kolda, T.G., and Mørup, M. (2011). Scalable

tensor factorizations for incomplete data. Chemometr. Intell. Lab. 106,

41–56. https://doi.org/10.1016/j.chemolab.2010.08.004.

75. Linh-Trung, N., Minh-Chinh, T., Nguyen, V.D., and Abed-Meraim, K.

(2018). A non-linear tensor tracking algorithm for analysis of incomplete

multi-channel EEG data. IEEE Int. Symp. Medical Inf. Commun. Tech.

114–119. https://doi.org/10.1109/ISMICT.2018.8573711.

76. Thanh, L.T., Dao, N.T.A., Dung, N.V., Trung, N.L., and Abed-Meraim, K.

(2020). Multi-channel EEG epileptic spike detection by a new method of

tensor decomposition. J. Neural. Eng. 17, 016023. https://doi.org/10.

1088/1741-2552/ab5247.

https://doi.org/10.23919/Eusipco47968.2020.9287780
https://doi.org/10.23919/Eusipco47968.2020.9287780
https://doi.org/10.23919/EUSIPCO55093.2022.9909702
https://doi.org/10.23919/EUSIPCO55093.2022.9909702
https://doi.org/10.1016/j.neunet.2022.05.023
https://doi.org/10.1145/3097983.3098007
https://doi.org/10.24963/ijcai.2019/442
https://doi.org/10.1145/3269206.3271713
https://doi.org/10.1145/3269206.3271713
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref44
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref44
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref45
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref45
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref45
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref46
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref46
https://doi.org/10.1137/17M1112303
https://doi.org/10.1137/17M1112303
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref48
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref48
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref48
https://doi.org/10.1007/s10444-018-9622-8
https://doi.org/10.1016/j.cam.2020.113380
https://doi.org/10.1137/19M1261043
https://doi.org/10.1109/ACCESS.2021.3058103
https://doi.org/10.1109/ACCESS.2021.3058103
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref53
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref53
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref53
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref53
https://doi.org/10.1137/06066518X
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref55
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref55
https://doi.org/10.1109/TSP.2021.3066795
https://doi.org/10.1109/ICASSP43922.2022.9746546
https://doi.org/10.1109/ICASSP43922.2022.9746546
https://doi.org/10.1109/TIT.2020.3019569
https://doi.org/10.1109/TIT.2020.3019569
https://doi.org/10.1109/TIT.2010.2044061
https://doi.org/10.1137/140957639
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref61
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref61
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref61
https://doi.org/10.2307/1937887
https://doi.org/10.2307/1937887
https://doi.org/10.1007/978-0-585-25657-3_37
https://doi.org/10.1007/978-0-585-25657-3_37
https://doi.org/10.1142/S1793536911000787
https://doi.org/10.1109/JPROC.2018.2847041
https://doi.org/10.1109/JPROC.2018.2847041
https://doi.org/10.1109/TSP.2013.2282910
https://doi.org/10.1109/TSP.2013.2282910
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref67
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref67
https://doi.org/10.1016/j.cam.2003.10.010
https://doi.org/10.1016/j.cam.2003.10.010
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref69
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref69
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref69
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref70
http://refhub.elsevier.com/S2666-3899(23)00104-6/sref70
https://doi.org/10.1109/JSTSP.2018.2876626
https://doi.org/10.4208/jcm.1608-m2016-0641
https://doi.org/10.1007/s11045-013-0269-9
https://doi.org/10.1016/j.chemolab.2010.08.004
https://doi.org/10.1109/ISMICT.2018.8573711
https://doi.org/10.1088/1741-2552/ab5247
https://doi.org/10.1088/1741-2552/ab5247

	PATTER100759_proof_v4i6.pdf
	Tracking online low-rank approximations of higher-order incomplete streaming tensors
	Introduction
	Background
	Notations and definitions
	Low-rank approximations of tensors

	Problem statement
	Proposed methods
	Proposed ATD algorithm
	Estimation of ut
	Estimation of Ut(n)
	Estimation of Gt

	Variants of ATD
	Orthogonal ATD
	Adaptive CP decomposition

	Performance analysis
	Memory storage and computational complexity
	Convergence guarantee

	Results
	Performance of ACP
	Experimental setup
	Effect of forgetting factor λ
	Asymptotic convergence behavior
	Noisy and dynamic environments
	Evaluation of effectiveness and efficiency

	Performance of ATD
	Experimental setup
	Robustness of ATD
	Tracking ability in dynamic environments

	Real data
	Video completion
	Multichannel EEG analysis

	Discussion
	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References

