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A B S T R A C T

The establishment of ecological risk thresholds for arsenic (As) plays a pivotal role in developing soil conservation
strategies. However, despite many studies regarding the toxicological profile of As, such thresholds varying by
diverse soil properties have rarely been established. This study aims to address this gap by compiling and critically
examining an extensive dataset of As toxicity data sourced from existing literature. Furthermore, to augment the
existing information, experimental studies on As toxicity focusing on barley-root elongation were carried out
across various soil types. The As concentrations varied from 12.01 to 437.25 mg/kg for the effective concen-
trations that inhibited 10% of barley-root growth (EC10). The present study applied a machine-learning approach
to investigate the complex associations between the toxicity thresholds of As and diverse soil properties. The
results revealed that Mn-/Fe-ox and clay content emerged as the most influential factors in predicting the EC10

contribution. Additionally, by using a species sensitivity distribution model and toxicity data from 21 different
species, the hazardous concentration for x% of species (HCx) was calculated for four representative soil scenarios.
The HC5 values for acidic, neutral, alkaline, and alkaline calcareous soils were 80, 47, 40, and 28 mg/kg,
respectively. This study establishes an evidence-based methodology for deriving soil-specific guidance concerning
As toxicity thresholds.
1. Introduction

Arsenic (As), a heavy metal widely distributed in the environment, is
classified as a Group-1 carcinogen [1]. As-contaminated soil is globally
widespread and presents a significant risk to human health through
water and food consumption [2,3]. In addition, As has negative effects
on the ecological processes within soils, such as impairing plant root and
shoot growth [4] and causing acute lethality in soil invertebrates [5].
Therefore, establishing standards for monitoring As in soil ecosystems
can profoundly enhance the management of As contamination, conser-
vation of biodiversity, and preservation of soil health [6]. It provides
guidance for policymakers, researchers, and land managers in evalu-
ating and mitigating the adverse effects of heavy metals, including As,
and promoting sustainable soil management practices [7]. Several
countries have set specific environmental quality standards for As for
various proposes: China has implemented screening values of
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20–60 mg/kg for development land and 20–40 mg/kg for agricultural
land. Similarly, the United States has set a screening value of 18 mg/kg
for plants, and Canada has established a screening value of 12 mg/kg for
agricultural and industrial land. The rational setting of soil quality
standards requires appropriate thresholds for soil contaminants [8].
However, the availability and toxicity of As in soil can be significantly
impacted by soil properties, which may have profound effects on the
structure and function of soil ecosystems, ultimately affecting the
ecological threshold for As [9,10].

The bioavailability and toxicity of As in soils can be strongly regulated
by physicochemical properties that influence As speciation, solubility,
and mobility. In particular, As exists predominantly as inorganic As(III)
and As(V) species [11]. Factors such as pH, clay, soil organic matter
(SOM), and Fe/Mn oxides play a vital role in the redox transformation
and adsorption of As species, which was closely related to their avail-
ability and mobility [12,13]. A variety of statistical approaches can be
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used to quantitatively analyze the relationships between inherent soil
properties and contaminant toxicity. Common statistical approaches
include empirical linear regression, correlation analyses, and path anal-
ysis [14–16]. Recently, machine learning (ML), a powerful tool for
uncovering hidden and non-linear relationships among variables, has
seen a growing application in environmental research, offering valuable
insights into understanding environmental issues [17,18]. To date, the
complex interactions between the ecological toxicity of As and soil-pro-
perties-based ML analysis have rarely been investigated.

Ecological risk thresholds for metal(loid)s in soils are commonly
extracted from limited toxicological data of plants and invertebrate
species. Whole ecosystem-level guidance values are then estimated using
statistical extrapolation techniques such as species sensitivity distribu-
tions (SSDs) [19]. Generally, the protection level is defined based on the
percentage of protected species and the SSD curve, whereas HC5 values
are often chosen as the threshold in ecological risk assessment, repre-
senting the concentration at which 95% of species are protected [20,21].
In the recent years, the SSD method has been increasingly adopted in the
study of soil environmental thresholds due to its ecological and statistical
significance for calculating HC5 values [22]. SSD curves are usually fitted
by Burr type III, log-logistic, log-normal, Weibull, and Gompertz distri-
butions. The choice of model depends on the confidence level of the data
[23].

This study derived site-specific ecological risk thresholds for As
contamination in soils through integrated analysis of multiple online data
sources and experimental results. Specifically, toxicological data were
compiled from the literature on the adverse effects of As on plants, in-
vertebrates, and microorganisms across species and soil types, along with
original dose–response toxicity bioassays measuring As inhibition of
plant root elongation across soils of different properties. This study aimed
to (1) identify the key factors in controlling the As toxicity to barely by
traditional and ML methods and (2) derive ecological risk thresholds for
different land types based on ecological safety.

2. Material and methods

2.1. Soil samples

Twelve surface soil samples (0–20 cm) representing the major soil
types from various provinces of Chinawere collected. After air drying, soil
samples were removed from plant residues, roots, and pebbles and then
sieved for at least 2 mm to determine physiochemical properties. The
properties of soil samples were measured using standard procedures. The
pH and electrical conductivity (EC) were measured in purified water in
1:2.5 (w/v) and 1:5 (w/v) soil–water suspensions, respectively. SOM and
cation exchange capacity (CEC) were measured by the dichromate
method for the<100-mesh fraction [24] and ethylenediamine tetraacetic
acid–ammonium acetate exchange method for the <100-mesh fraction
[25], respectively. The pipette method was used to determine the clay
content in soil samples by using a 10-mesh sieve [26]. Total inorganic
carbon was determined using the high-temperature loss-on-ignition
method after the addition of HCl to remove carbonates on the <20-mesh
fraction (Leco TruMacCNS analyzer, USA). The amorphous Fe, Al, andMn
(Fe-ox, Al-ox and Mn-ox, respectively) were measured using the ammo-
nium oxalate–oxalic acid (pH 3.0) in the dark, whereas the crystalline Fe,
Mn, and Al (Fe-dithionite-citrate-bicarbonate [DCB], Al-DCB, and
Mn-DCB, respectively) were measured using DCB. The total of
nitrogen was measured by semi-micro-kjeldahl method on the<20-mesh
fraction [27]. A summary of soil properties of twelve soils is listed in
Table 1.

2.2. Experimental design

2.2.1. Aging experiment
In this study, all soils were spiked with As(V) (Na2HAsO4⋅7H2O) at

concentrations ranging from 0 to 1,000 mg/kg, depending on the soil pH.
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For acidic soils, 0, 250, 500, 750, and 1,000 mg/kg were added, whereas
for alkaline soils, 0, 200, 400, 600, and 800 mg/kg were added. The soils
were incubated for 3 months at water contents of approximately 70% (w/
w) of field capacity before experimentation. Prior to the toxicity exper-
iments, the soils were air-dried, sieved, and mixed again. For each
treatment in each soil, 400 g of air-dried soil was transferred to a poly-
vinyl chloride tube (7.5 cm � 14 cm), and deionized water was added to
achieve 70% water-holding capacity.

2.2.2. Toxicity assay
The test to investigate the toxicity of barely-root elongation to As was

conducted in accordance with ISO 11269–1:2012 in twelve soils. To
prepare for the barley-root-elongation test, MengMai No.11 barley seeds
were washed in 0.5% NaClO for 15 min and then washed with deionized
water eight times. The seeds were then allowed to germinate for 24 h at
25 �C on wet filter paper in a Petri dish. Seeds with root elongation of
between 1 and 2 mm were chosen for the test. Each tube held five seeds,
which were then covered with 1 cm of soil. All tubes were placed in an
artificial-climate chamber with preset growth conditions (14 h of light at
25 �C and 10 h of darkness at 18 �C, with a light intensity of 24,000 lx).
To keep the water-holding capacity at 70%, deionized water was added
every day. After four days of growth, the plants were carefully removed
from the tubes and washed repeatedly with deionized water. Addition-
ally, Mollisol from Jilin (S5), and Ultisol from Jiangxi (S12) as two
representative soils to grow 12 plants, including leafy (Bok choy [Brassica
rapa chinensis], Lettuce [Lactuca sativa], Water spinach [Ipomoea aqua-
tica], Amaranthus [Amaranthus tricolor]), solanaceous vegetables (Loofah
[Luffa aegyptiaca], Cucumber [Cucumis sativus], Radish [Raphanus sat-
ivus], Zucchini [Cucurbita pepo]), and landscape plants (Crpress vine
[Ipomoea quamoclit], Lavandula [Lavandula angustifolia], Zinnia [Zinnia
elegans Jacquin], Sunflower [Helianthus annuus]). These phytotoxicity
assays were similar to these barley-root-elongation experiments but with
extended exposure durations of 5 days to account for differential growth
rates. The S5 and S12 were selected for detailed investigation because
they exhibited notable differences in key properties known to influence
heavy-metal toxicity thresholds. Specially, S12 had a pH of 4.55 and SOM
content of 15.48 g/kg, whereas S5 had a pH of 7.62 and higher SOM
content of 30.33 g/kg. Significant differences were also observed in EC
and Fe, Mn, and Al contents between the two soils (Table 1). Further-
more, the S12 and S5 represent the range of cultivated agricultural soils
found across major rice-growing (Jiangxi) and wheat-growing (Jilin)
regions in China.

2.2.3. Extraction of As in soils
In order to extract available As from aged soils, a sequential

extraction procedure was proposed by Wenzel et al. [28]. The first two
steps of this procedure involved using NH4H2PO4 (0.05 M) as the
extractant. Two gram of soil was mixed with 25 mL of the extractant
and shaken at room temperature for 16 h. Following this, the samples
were centrifuged at 5,000 rpm for 15 min, and the resulting superna-
tants were filtered through a 0.45-μm membrane filter. The concen-
trations of As in the extracts were then determined using atomic
fluorescence spectrometry.
2.3. Normalize and analyze toxicity data

2.3.1. Dose–response curves fitting
The elongation of roots was recorded, and relative root elongation

(RRE, %) was calculated by the following equation (Eq. 1):

RRE ¼ (RET /REC0) � 100% (1)

where RET and REC0 are the barley-root elongation in soils with and
without As addition, respectively.

The dose–response data were fitted by logistic curve as follows
(Eq. 2):
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y ¼ (A1 – A2)/[1 þ (x/x0)
p] þ A2 (2)

where y is the relative root elongation (%), x is the spiked As concen-
tration (mg/kg), and x0 is the half-maximal effective concentration
(EC50) (mg/kg). A1, A2, and p are the parameters to be fitted. The EC10,
EC20, and EC50 were obtained after fitting, indicating 10%, 20%, or 50%
of inhibition effects on barley-root elongation, respectively.

2.3.2. Screening of toxicological data and normalization of As ecotoxicity
data

In this study, a toxicity data search was conducted in Web of Science
to identify toxicity studies related to As in soil. Literature collection was
carried out based on the following requirements: (1) As contamination
was caused by exogenous addition and relevant soil properties were
provided; (2) test endpoints were based on plants, invertebrates, and
microorganisms; (3) EC10 were directly provided or inferred from
original data; and (4) experiments used standardized experimental
methods and procedures. Ultimately, toxicity data for 9 species were
collected.

Due to the lack of sufficient toxicity data, some species may not be
able to build As ecotoxicity prediction models and, therefore, have to use
the same prediction model as for other species. In general, toxicity data
were obtained from different soils of varying characteristics. A cross-
species extrapolation of results was built upon the assumption that the
slopes of the parameters (a and b) remained consistent between plant
species, indicating soil properties exerted a uniform influence on metal
toxicity to plants. Only the intrinsic sensitivity parameter (k) was pre-
sumed to vary between species [29]. The normalized approach in this
study was based on an empirical prediction model between As toxicity
data and basic soil properties. The predictive model for EC10 toxicity of
As in soils is typically given by Eq. 3:

log[EC10] ¼ a � pH þ b � log[clay] þ k (3)

where EC10 is the biologically inhibited 10% concentration, a and b are
the slopes of the soil properties, and k is the intrinsic sensitivity of the
species.

The normalized EC10nor equation:

EC10nor ¼ EC10 � 10a�(pHnor-pH)þb�(log[claynor]-log[clay]) (4)

where EC10 is the biologically inhibited 10% concentration, a and b are
the slopes of the soil properties, and “nor” is the corresponding target
normalization parameter.

2.3.3. SSD construction and HC5 values derivation
The SSD curves and HC5 values were estimated using the Burr Type

III distribution fitted with BurrliOZ software (version 1.0.14, CSIRO,
Australia). The Burr III function is a flexible three-parameter distribution
well suited for approximating other commonly used distributions. The
Burr Type III distribution is defined by the following equation:

y¼ 1�
1þ

�
b
x

�c�k (5)

where b, c, and k are the three parameters. When k and c approach in-
finity, the Burr Type III distribution approaches the ReWeibull and
RePareto distributions, respectively [29].
2.4. Influencing factors identification

2.4.1. Traditional statistic methods
The correlation and regression analysis between EC10 and soil prop-

erties were conducted by SPSS (version 18) (SPSS, Chicago, IL). The
aggregate-boosting trees (ABT) model was performed through the
gbmplus package in R language [30].
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2.4.2. Machine-learning method
Research methods in studies addressing the effects of soil properties

on the toxicity of heavy metals are mostly based on correlation analysis,
ordinary linear regression, and empirical models, which are traditionally
limited either by the number of properties considered or by the influence
factors based on subjective assumptions [31]. ML methods do not rely on
hypothetical mechanisms to discover data and can accurately identify
relationships between input and output variables from data and provide
predictive models by learning input variables and predicting target
values [32]. Although ML methods have been widely used in environ-
mental field research, they are still very limited due to data or input
variables [18]. To address this gap, we used a gradient-boosting regres-
sion tree (GBRT) model to develop a predictive model for ECx of As.

During the modeling, the input data consisted of soil pH, OM, clay,
CEC, Fe-ox, Mn-ox, and Al-ox. The output variables were the toxicity
thresholds for barley root elongation, specifically EC10 and EC50. The
procedure of the GBRT model development included (1) unifying the
units of each variable; (2) transforming the input (except pH) and
target into the logarithm form; (3) splitting the data into training and
test set in the ratio of 8:2; (4) tuning the hyperparameters, including
learning rate, max depth and the number of estimators, by Bayesian
optimization during 5-fold cross-validation on training set; and (5)
quantifying the model performance based on R2 (coefficient of
determination).

Based on the optimal GBRT model, three feature analysis methods
were applied to assess feature importance and the relationships between
descriptors and targets. The SHapley Additive exPlanationmethod, based
on coalitional game theory, is wildly used to explain how certain features
influence its output in a black-box model. Partial dependence plots
(PDPs) and two-dimensional interactions PDPs were used to provide
systematic explanations of the correlation between the descriptors of
interest and the output variable.

3. Results

3.1. Soil characteristics

As shown in Table 1, the 12 test soils exhibited a wide range of
physicochemical properties important for As toxicity assessments. Spe-
cifically, soil pH varied from 4.46 to 8.45. Clay content also showed
significant diversity, ranging from 11.7% to 62.9%. Regarding soil
minerals influencing As bioavailability, higher Fe-ox contents
(2.91–4.19 g/kg) in the soils from Zhejiang (S1), Heilongjiang (S4), and
Guangdong (S9) were found in comparison to 0.71–2.76 g/kg in others.
Similarly, Mn-ox levels in soils from Zhejiang (S1), Hainan (S2), and
Hubei (S11) of 0.79–1.57 g/kg were higher than that in other soils
(0.04–0.56 g/kg). Wu et al. [33] analyzed 12 soils and found that when
pH ranged from 4.91 to 8.25, SOM content ranged from 7.9 to 46.1 g/kg,
Fe-ox content ranged from 0.52 to 7.87 g/kg, and Mn-ox ranged from
0.02 to 0.55 g/kg. Meanwhile, Huang et al. [34] characterized 18 soils
across China and reported that when pH ranged from 4.62 to 8.69, SOM
content ranged from 5.7 to 81.1 g/kg, and clay content ranged from
10.4% to 61.8%. Therefore, the physicochemical properties of soils from
the same regions in this study fell within the ranges outlined in previous
work, suggesting that our test soils adequately represented conditions
reported nationally.

3.2. Toxicity of As on barley root elongation model

3.2.1. Dose–response curve
The log-logistic model was used to fit the dose–response curves of

results collected from various test endpoints in the 12 soil samples
(Fig. S1). The inhibition of barley-root elongation and toxicity thresholds
(EC10, EC20, and EC50) varied significantly between soils. The EC10, EC20,
and EC50 were 12.01–437.25, 21.71–481.47, and 59.75–678.26 mg/kg,
respectively (Table S1). The Inceptisol (S3) exhibited the lowest EC10,
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EC20, and EC50 (EC10: 12.01 mg/kg; EC20: 21.71 mg/kg; EC50: 59.75 mg/
kg). In contrast, the Oxisol (S2) exhibited the highest EC10 and EC20
(EC10: 437.25 mg/kg; EC20: 481.47 mg/kg) and the Alfisol (S1) exhibited
the highest EC50 (EC50: 678.26 mg/kg).

3.2.2. Influence of soil properties on As toxicity thresholds
To obtain more reliable results, a correlation analysis was conducted

by integrating toxicological data from Song et al. [35] and this experi-
ment based on barley-root elongation (Fig. 1a). The combined results
indicated that Mn-ox, Al-ox, and clay were the primary factors affecting
EC10, as well as the results from this experiment (Fig. S2), which could be
confirmed by ABT analysis (Fig. 1b). Stepwise multiple linear regression
analysis was applied to derive optimal equations for predicting EC10 and
EC50, based on soil properties. Mn-ox was identified as a significant factor
in elucidating the variability in both EC10 and EC50. The resulting
regression equations accounted for 68.9% of the variation in EC10 and
63.0% of the variation in EC50 when Fe-ox was added to the equations
(Table S2).

To further explore the intricate relationships between the toxicity
thresholds of As and various soil properties, ML methods were con-
ducted. A comprehensive dataset was also constructed by combining the
results of this experiment and Song's results [35] to predict the ECx of As.
The prediction results from the optimal GBRT model are shown in Fig. 1
and S4. For EC10, the training and test R2 were 0.95 and 0.67, respec-
tively, and for EC50, the training and test R2 were 0.99 and 0.65,
respectively (Fig. S3).

Based on the optimal GBRT model, the role of the final feature con-
cerning the output ECx was explored using both the GBRT explainer and
SHAP methods (Fig. 1d, Fig. S4a). Specifically, high SHAP values imply
that the corresponding input features have a greater impact on model
predictions. The two most important features used to predict the
contribution of EC10 were soil clay andMn-ox, whereas Fe-ox and pH also
had an impact on EC10 prediction (Fig. 1e). The remaining properties,
including CEC, SOM, and Al-ox, showed less potency in predicting the
EC10 in the following order: CEC > SOM > Al-ox. Similarly, the impor-
tance of features involved in EC50 was in the following order: clay > Fe-
ox > Mn-ox > pH > CEC > Al-ox > SOM (Fig. S4).

Based on the results of the SHAP analysis, this study extracted the four
most important features to investigate their intrinsic correlation with
ECx. The PDPs with ICEs subplots thoroughly elaborated the correlation
of these four features with the output variables (Figs. 1 and S4). It was
observed that clay and Fe-ox showed a fluctuating upward trend with
both EC10 and EC50, indicating that higher values of these variables were
associated with higher toxicity thresholds (Fig. 1f and 1h, Fig. S4c and
S4d, Fig. S5). In addition, Mn-ox showed a significant positive contri-
bution to EC10 and EC50 (Fig. 1g and Fig. S4e).

3.2.3. Bioavailability of As in soils
The availability of As was closely related to its toxicity and was

assessed based on NH4H2PO4 (0.05 M) single extraction. The extract-
able As accounted for 17.7%–65.2% of the total As content in soils
among all treatments after aging for three months, and previous study
has shown that the bioavailability of exogenous As in soil typically
reaches equilibrium within approximately three months during the
aging process [36]. Indeed, with similar conditions in this study, we
found no significant differences in the bioavailability of As between 90
and 360 days of aging in the soils investigated. Extracted As concen-
tration was higher with larger value of As added into soils and resulted
in more obvious inhibition of root elongation. Similar results have been
previously reported for As toxicity in soil, indicating that the available
As could serve as a more accurate predictor of its toxicity in plants [37].
The relationship between barley-root elongation and extracted As
concentration is exhibited in Fig. S6, showing a negative linear rela-
tionship (with a slope of �0.016) between the root elongation and As
bioavailability, indicating obvious inhibition of bioavailable As to root
elongation.



Fig. 1. (a) Correlation analysis between toxicity thresholds and soil properties, the relative contribution of soil properties to (b) EC10, and (c) EC50; (d and e) Shapley
additive explanations (SHAP) values and the mean absolute Shapley for soil properties affecting EC10; (f, g, h, i) PDPs analysis for clay, Mn-ox, Fe-ox, and pH affecting
EC10. PDP, partial dependence plot.
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3.3. Ecological risk threshold for As

3.3.1. Normalization of toxicology data and establishment of database
The ML analysis identified soil pH, clay, and Fe-/Mn-ox as the pri-

mary predictors for As toxicity thresholds. However, Fe-/Mn-ox data
were largely absent from the compiled literature during data screening,
precluding its inclusion in predictive modeling across all studies.
Therefore, to develop a more robust and generalizable model using
commonly reported parameters, soil pH and clay content were selected as
the independent variables for the toxicity prediction equation [38,39].
Two equations were derived (for barley and wheat) by normalizing the
limited toxicological data available from laboratory experiments and
literature (Table 2). The specific normalization process used is detailed in
SI.

To validate the prediction equations, the study compared the pre-
dicted toxicity thresholds against the actual measured thresholds for each
test species. The ratios between the predicted and actual toxicity
Table 2
The intrinsic sensitivity (k values) for non-model cultivars fitted by model from barle

Species Prediction equation Cultivar

Barley (Hordeum vulgare) log[EC10] ¼ �0.016pH þ 0.343log[Clay] þ 1.69 Corn (Ze
Celtuce
Earthwo
Acid pho
Springta
Zinnia (Z
Cucumb
Zucchini
Lavandu

Wheat (Triticum) log[EC10] ¼ �0.16pH – 0.049log[Clay] þ 2.05 Broad be
Alkaline
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thresholds were found to be within a factor of 2 (Fig. 2). For each species,
the prediction equation that resulted in a ratio closest to 1 between the
predicted and measured thresholds was selected as the most accurate
prediction model.

3.3.2. Species sensitivity of As in two representative soils
This study selected Mollisol from Jilin (S5) and Ultisol from Jiangxi

(S12) as two representative soils to grow 12 plants, including leafy,
solanaceous vegetables, and landscape plants. In S5 soil, the EC10
ranged from 100.17 to 353.7 mg/kg and EC50 ranged from 270 to
1,234.15 mg/kg. Meanwhile, in S12 soil, EC10 ranged from 140.41 to
723.96 mg/kg and EC50 ranged from 414.52 to 1,003.85 mg/kg
(Table S3, Fig. S7). Besides, toxicity data of 9 species were collected,
including plants, invertebrates, and microorganisms (Table S4), and
plants generally exhibited the lowest sensitivities to As. The normalized
EC10 of species in different soils are varied, with corn being the most
sensitive to As toxicity in acidic and neutral soil and broad bean being
y and wheat.

s k Cultivars k

a mays) 1.19 Crpress vine (Ipomea quamoclit) 2.12
(Lactuca sativa var augustana) 1.71 Lettuce (Lactuca sativa) 1.92
rm (Eisenia foetida) 2.13 Water spinach (Ipomea aquatica) 2.12
sphatase 1.63 Amaranthus (Amaranthus tricolor) 1.68
ils (Collembola) 2.31 Bok choy (Brassica rapa chinensis) 2.08
innia elegans Jacquin) 2.22 Radish (raphanus sativus) 2.23
er (Cucumis sativus) 2.05 Loofah (Luffa aegyptiaca) 2.05
(Cucurbita pepo) 2.12 Sunflower (Helianthus annuus) 1.94
la (Lavandula angustifolia) 2.25
an (Vicia faba Linn)
phosphatase

2.84
2.94



Fig. 2. Measured EC10 versus predicted values from this study and the literature from (a) barley model and (b) wheat model. The solid line indicates the 2-fold
prediction interval between the predicted and measured values.
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the most sensitive species in alkaline and alkaline calcareous soil.
Meanwhile, zucchini and springtails were the least sensitive species in
the four representative scenario soils (Fig. 3).

3.3.3. The fit of SSD curve
The SSD curves for As in the four representative soil scenarios were

constructed by fitting normalized ecotoxicity data with Burr Type III. The
soil properties of four representative soil scenarios: acidic, neutral,
alkaline, and alkaline calcareous soil are shown in Table S5 [40].
The plant height of corn and root elongation of broad bean are most
sensitive to As toxicity, and the survival rate springtails are least sensitive
to As toxicity. The HC5 values exhibited approximately a four-fold range
across the four soil types evaluated, i.e., 80 mg/kg (acidic soil), 47 mg/kg
(neutral soil), 40 mg/kg (alkaline soil), and 28 mg/kg (alkaline calcar-
eous soil). The HC5 values decreased with increasing soil pH (Fig. 3).
Fig. 3. Species sensitivity distribution of toxicity threshol
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The prediction models for HCx of four different land types were
obtained by stepwise regression (Table S6), and the ecological risk
thresholds of different land types with pH and clay were obtained by the
predictive model (Table 3). The study reveals that the ecological risk
thresholds for nature conservation and agricultural land are the most
stringent, ranging from 32 to 82 mg/kg, whereas commercial and in-
dustrial land has relatively less stringent thresholds, ranging from 134
to 230 mg/kg. Furthermore, the ecological risk thresholds of alkaline
soils are generally more stringent than for acidic soils. Meanwhile, this
study derived HC5 values for S5 soil and S12 soil from Burr Type III
based on the toxicity thresholds of 12 species planted on the two soils,
and it was found that the HC5 value of S5 soil was 114 mg/kg, whereas
that of S12 soil was 158 mg/kg (Fig. S8). The hazard concentrations for
the different land types were also derived based on the two
soils (Table S7).
ds for 21 species in four representative soil scenarios.



Table 3
Ecological risk thresholds of total As in soils of different land types.

Land types Hazard concentration <5.5 5.5–6.5 6.5–7.5 >7.5

a b c a b c a b c a b c

Nature conservation and agricultural land HC5 64 75 82 51 59 65 40 47 52 32 37 41
Park land HC20 115 133 145 99 115 125 85 99 108 74 85 93
Residential land HC40 156 183 201 141 165 182 127 149 164 115 134 148
Commercial and industrial land HC50 171 206 230 158 190 212 146 176 196 134 162 181

The thresholds at soil pH values of 5.0, 6.0, 7.0, and 8.0 were used for scenarios of soil pH <5.5, 5.5–6.5, 6.5–7.5, and >7.5, respectively.
a, b, and c were scenarios with soil clay contents of 20%, 40%, 60% respectively.
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4. Discussion

4.1. Critical soil factors for As ecotoxicity

In this study, the toxicity thresholds of barley-root elongation were
predicted by both traditional data analysis (correlation and regression
analysis) and the ML method. The ML method showed that the main
influencing factors for EC10 and EC50 were clay, Fe-/Mn-ox, and pH. Pre-
vious studies have indicated that the clay content and Mn oxides in soil are
associated with the bioavailability of As [41]. Because of its layered
structure and large surface area, clay is a natural adsorbent for As through
inner-sphere complexation [42]. In addition, Fe (hydr)oxides, including
goethite and ferrihydrite, could effectively immobilize As species [43,44],
and it has been shown that As(V) is adsorbed by mononuclear bidentate
corner-sharing with Fe oxides [45]. Oxidation and adsorption processes
can significantly affect the environmental As mobility. Mn oxides are
important adsorbents and oxidizers in soils as the –OH on Mn oxides can
convert As(III) to less toxic As(V), and Mn oxides can adsorb As(V) via
inner-sphere complexation at edge surface sites [46–48].

Similar results were obtained from the correlation analysis and linear
regression, which revealed that Mn-ox has the greatest effect on EC10,
followed by Al-ox, Fe-ox, and clay. However, the effect of pH on EC10 was
not significant in the correlation analysis. Indeed, ML analysis was able to
reveal non-linear relationships that better capture their associations.
Specifically, as shown in Fig. 1d, e, and i, the ML model uncovered a non-
linear relationship between pH and EC10 values. Additionally, by
analyzing feature interactions between pH, clay, and Fe oxides (Fig. S5),
it was found that higher pH levels (pH > 7.5) combined with either high
clay content (log[Clay] > 1.35) or high Fe oxides (log[Fe-ox] > 0.25)
tended to increase EC10.

Furthermore, there are additional factors that could impact As
behavior in soils, including soil redox potential, microbial activity, and
coexisting anion. Under reduced soil conditions, As(V) could be micro-
bially reduced to the more toxic As(III) and then methylated into species
such as monomethylarsenate and dimethylarsenate by sulfate-reducing
bacteria [49,50], which could significantly alter their bioavailability
and toxicity. However, the aging experiment in this study was conducted
under oxic conditions, limiting the influence of redox-driven processes on
As mobilization and toxicity. In addition, coexisting phosphate can
compete with As for adsorption sites on soil particles, potentially
affecting As bioavailability, as shown previously [51].
4.2. As toxicity to the ecosystem

Arsenic is a non-essential element for plant growth. Upon uptake, it in-
terferes with metabolic processes, resulting in physiological and morpho-
logical abnormalities and retarded growth [52]. Due to similarities in
chemical structure betweenarsenate andphosphate, phosphate transporters
could facilitate the absorption and translocation of As within plants [53].
Once internalized, As binds to enzymes and proteins, disrupting normal
metabolism. This metabolic disruption increases the production of reactive
oxygen species, such as superoxide and hydroxyl radicals, in plant tissues.
These free radicals induce oxidative stress through oxidation reactions, ul-
timately damaging cellular growth via oxidation-based damage [54,55].
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Invertebrates are an essential component of the ecosystem and the
main species in soil formation and organic matter decomposition [56]. In
the past, the main indicators for invertebrate toxicity studies were survival,
growth, and reproduction. These endpoints are usually insensitive. In
recent years, studies have focused more onmolecular endpoints because of
their ability to respond sensitively, even in the presence of low concen-
trations of pollutants [57,58]. According to Wang et al. [59], under As
stress, the amounts of superoxide dismutase, catalase, glutathione perox-
idase, and glutathione s-transferase in earthworms would initially increase
and then decrease, whereas malondialdehyde had a tendency to increase
gradually. Although organic As shows less toxicity to organisms, it could be
converted into highly toxic inorganic As under demethylation. Different
forms of As have different toxicity effects on invertebrates, as evidenced by
the finding that As(III) is more toxic than As(V) to earthworms at the
molecular and subcellular levels, including oxidative damage,
metallothionein induction and lysosomal membrane damage [60].

Microorganisms play an important role in soil geochemical cycling
processes [61] and can alter the form of As in soil through redox,
methylation–demethylation, and thus its availability [62]. However,
microorganisms do not have specific As transport pathways since As is
usually transported by phosphate pathways [63]. The toxic effect of As on
soil enzyme activity could be altered by soil type, enzyme species, and
arsenic valence. Urease activity was insensitive to As(V), but can be
inhibited by high concentrations of As(III), whereas alkaline phosphatase
activity was strongly inhibited by As(V) [64,65].
4.3. Toxicity thresholds and significance of HC5 values derivation

Various species tested in different soils exhibited diverse responses to
As toxicity, and the derived ECx values from different test endpoints for
the same species exhibited significant variations [66,67]. Biological test
endpoints are essential in determining the toxicity threshold [68]. In
general, indicators of long-term or chronic toxicity of test species should
be prioritized in the development of environmental quality criteria [69].
The toxic effects of As on different test endpoints varied significantly, and
the toxicity data collected in this study varied in the selection of test
endpoints by species, because indicators of toxicity have been shown to
better represent the ecotoxicity of As when deriving ecological risk
thresholds [68,70]. The SSD method has been demonstrated to be
effective for determining ecological risk thresholds [71]. It is worth
noting that the HC5 values obtained through the SSD curve do not imply
that 5% of the species are “sacrificed”, whereas 95% of the species are
protected [72]. The current Chinese environmental quality standards for
As thresholds range from 25 to 40 mg/kg for food safety. However, there
are no specific ecological risk thresholds established for As in soil.

In this study, the ecological risk thresholds of different land types and
the hazard concentration of two typical cultivated soils were obtained. The
ecological risk thresholds were negatively correlated with pH and posi-
tively correlatedwith clay, ranging from 32 to 82mg/kg. At the same time,
the HC5 values derived for Mollisol (S5) and Ultisol (S12) were 114 and
158 mg/kg, respectively, which were more lenient than the ecological risk
thresholds in four representative soil scenarios. This is due to the fact that
the ecological risk thresholds were derived with more comprehensive
toxicity data (including invertebrates and microorganisms) and were
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normalized. Therefore, it is necessary to consider the relationship between
the number and proportion of different species in an ecosystem.

However, due to the lack of leaching and aging models, the toxicity
data collected in the literature were not corrected for leaching-aging in
this study. In order to enhance the accuracy of toxicity data, future der-
ivations of ecological risk thresholds require the correction of the
leaching-aging model. In addition, further field validation should
strengthen the confidence of the thresholds established in this study.

5. Conclusion

This study investigated the relationships between soil properties and
As toxicity by combining ML methods and traditional data analysis. Soil
pH, Mn/Fe oxides, and clay content were found to be the most influ-
encing soil factors. Then ecologically relevant As thresholds tailored to
different soil conditions were established, ranging from 32 to 82 mg/kg
and varying considerably between soils. These thresholds were found to
correlate negatively with soil pH but positively with clay content. Taken
together, the findings in this study filled the gap between ecological risk
thresholds of As and soil properties based on existing data set and
additional experiments in this study, offering valuable guidance critical
for environmental management and protection of soil ecosystems.
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