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Abstract: The fish-eye lens camera has a wide field of view that makes it effective for various
applications and sensor systems. However, it incurs strong geometric distortion in the image due to
compressive recording of the outer part of the image. Such distortion must be interpreted accurately
through a self-calibration procedure. This paper proposes a new type of test-bed (the AV-type test-
bed) that can effect a balanced distribution of image points and a low level of correlation between
orientation parameters. The effectiveness of the proposed test-bed in the process of camera self-
calibration was verified through the analysis of experimental results from both a simulation and real
datasets. In the simulation experiments, the self-calibration procedures were performed using the
proposed test-bed, four different projection models, and five different datasets. For all of the cases,
the Root Mean Square residuals (RMS-residuals) of the experiments were lower than one-half pixel.
The real experiments, meanwhile, were carried out using two different cameras and five different
datasets. These results showed high levels of calibration accuracy (i.e., lower than the minimum value
of RMS-residuals: 0.39 pixels). Based on the above analyses, we were able to verify the effectiveness
of the proposed AV-type test-bed in the process of camera self-calibration.

Keywords: fish-eye lens camera; self-calibration; interior orientation parameters; calibration test-bed

1. Introduction

In recent years, fish-eye lens cameras have been used in various fields including
indoor and outdoor 3D modeling, autonomous driving, augmented and virtual reality,
Simultaneous Localization And Mapping (SLAM), people- and motion-detection, and so
on. This camera has a wider Field Of View (FOV) relative to a conventional optical camera;
hence, it can record an image over a much wider area. Campos et al. [1] used a backpack-
mounted fish-eye lens camera for forest mapping, and Schöps et al. [2] utilized fish-eye
lens cameras in the production of a three-dimensional model of a large area. Ronchetti
et al. [3] employed a drone-mounted fish-eye lens camera to produce a very-high-resolution
Digital Terrain Model (DTM) for precision agriculture. Zia et al. [4] proposed a UAV sensor
system to produce a high-quality 360-degree panorama, and used a fish-eye lens camera
for securing sufficient overlap between adjacent camera views. Kim et al. [5] incorporated
two fish-eye cameras into the design of an obstacle detection system without blind spot
at the rear of the car. Perez-Yus et al. [6] overcame the narrow FOV of an RGB-depth
system by coupling a fish-eye camera to it, and Sreedhar et al. [7] proposed a system
for Virtual Reality (VR) applications using multiple fish-eye lenses mounted on a camera
system covering the entire 360-degree FOV. Sánchez et al. [8] improved the accuracy of
urban navigation using a fish-eye lens camera. Xu et al. [9] used a fish-eye lens camera
for production of a 3D motion capture system, and Krams et al. [10] used a fish-eye lens
camera for people-detection purposes.
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The fish-eye lens camera has an obvious advantage relative to the conventional per-
spective projection camera; however, it also has a disadvantage that should be recognized.
The fish-eye lens camera shows strong geometric distortion in the image, due to com-
pressively recording the outer part of the image relative to the center part. Hence, such
distortion must be corrected through the self-calibration procedure [11,12], particularly
when the camera is used in fields where image geometry is important. Moreau et al. [13]
used a stereoscope composed of fish-eye lens cameras in order to increase GNSS local-
ization accuracy for vehicles. For this, they performed the self-calibration procedure.
Marković et al. [14] and Caruso et al. [15] used pre-calibrated fish-eye lens cameras for
SLAM. Auysakul et al. [16] proposed the Around View Monitor (AVM) system for the
Advanced Driving Assistance System (ADAS) using fish-eye lens cameras, all of which
were rectified through self-calibration. Gao et al. [17] and Yang et al. [18] derived a driving
assistance system consisting of pre-calibrated fish-eye lens cameras. Nakazawa et al. [19]
proposed an indoor positioning method based on Visible Light Communication (VLC) that
utilized a fish-eye lens camera to detect additional LED lights and, therefore, improve the
positioning accuracy. Gabor et al. [20] proposed a sensor system based on pre-calibrated
multiple fish-eye lens cameras to accurately estimate the 3D positions and motions of
clouds. Berveglieri et al. [21] used a fish-eye lens camera for automated mapping and
measurement of tree stems, preparatorily having performed self-calibration of the camera.
It should be emphasized that all of the studies mentioned above employed camera self-
calibration procedures or used pre-calibrated fish-eye lens cameras for their applications in
order to achieve high positioning accuracies.

1.1. Previous Studies of Fish-Eye Lens Camera Self-Calibration

Self-calibration is a process of determining Interior Orientation Parameters (IOPs) that
are used to interpret the geometry of sensory data recording. The process estimates the
internal characteristics (i.e., principal point coordinates, focal length, and lens distortion
parameters) of a camera considered. The mathematical model of imaging geometry of an
optical camera includes such characteristics [22]. Hence, precision of camera self-calibration
can significantly affect the quality of the mathematical interpretation of imaging geometry.
In other words, accurately estimated IOPs can correct the geometric distortions of the
images recorded.

The mathematical model of imaging geometry of an optical camera is represented
by two components, which are lens distortion and the projection models. Lens distortion
model has been verified through various previous studies of conventional [23–27] and
macro [28] lenses while considering configurations of test-beds, specifications of cameras
(e.g., FOV, focal length, etc.), and correlations between parameters. Lens distortion is a
phenomenon shown in all optical lenses, and a lens distortion model can be used for not
only the conventional and macro lens but also the fish-eye lens [29]. On the other hand,
the fish-eye lens camera has different projection models compared with conventional and
macro cameras. The equidistant, equisolid-angle, orthogonal, and stereographic projection
models have been considered as the typical basic projection models of the fish-eye lens
camera [30–33]. Previous studies demonstrated that these basic models can adequately
explain the geometric distortion of a fish-eye lens through the self-calibration procedure.
Hughes et al. [34,35] proposed a self-calibration method using the extracted vanishing
points from test images, and performed self-calibration for an equidistant projection fish-
eye lens camera. Sahin [36] suggested a self-calibration process for a fish-eye lens camera
and verified the process by applying the equidistant projection model. Bakstein et al. [37]
performed self-calibration based on a projection model that combines equisolid-angle with
stereographic projection. Schneider et al. [38] performed self-calibration of a fish-eye lens
camera by applying the typical basic fish-eye lens projection models: equidistant, equisolid-
angle, orthogonal, and stereographic. The authors demonstrated that the distortion of
a fish-eye lens camera could be accounted for and corrected using a combination of the
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typical projection and lens distortion models, regardless of which specific projection model
is used.

Moreover, basic fish-eye projection models have been adopted and verified through
various application-based experiments, researchers having developed their own sensor
systems with fish-eye lens cameras and performed camera self-calibration procedures.
Yang et al. [18] performed self-calibration based on an equidistant projection model for
a driving assistance system. Nakazawa et al. [19] and Berveglieri et al. [21] calibrated
an equidistant projection camera using stripe patterns and coded targets, respectively.
Li et al. [39] performed self-calibration based on the equidistant projection model in order
to develop a spherical image sensor using fish-eye lens cameras. Chunyan et al. [40]
calibrated fish-eye lens cameras used as hazard cameras for a lunar rover by applying
the equidistant projection model. Schneider et al. [41] produced a multi-sensor system
using lidar and a fish-eye lens camera, calibrating the fish-eye lens camera by means of
equisolid-angle projection. Perfetti et al. [42] conducted 3D modeling using equisolid-angle
and stereographic projection lens cameras for narrow and hypogea environments, and
calibrated both fish-eye lens cameras.

Other models not belonging to the basic projection model family have also been
proposed based on several studies. Basu and Licardie [43] proposed and verified Fish-
Eye Transform (FET) and Polynomial Fish-Eye Transform (PFET). Devernay et al. [44]
and Fitzgibbon [45] proposed Field Of View (FOV) and division models, respectively.
Hughes et al. [29] proposed a self-calibration method and compared its accuracy using
equidistant, equisolid-angle, orthogonal, stereographic, FET, PFET, and FOV models.

The previous studies relevant to fish-eye lens self-calibration mostly have either veri-
fied the fitness of the projection models to the imaging geometry or compared to the per-
formances of models with each other. Moreover, they generally performed self-calibration
without analyzing the effects of the test-bed on the calibration quality. Most of them, in fact,
simply used the same test-bed as used for perspective projection camera calibration. More
specifically, they used either (i) test-beds using a single plane [6,11,16–18,34,35,42,46–48]
or (ii) test-beds using two or three planes [12,21,30,33,39,44]. Test-bed shape affects the
correlation between the orientation parameters; consequently, the level of correlation signif-
icantly affects the levels of accuracy and reliability of the estimated parameters [26,49,50].
In short, many studies have underestimated the effect of the test-bed on the quality of
fish-eye lens camera calibration.

In a few studies [36,38,41,51], several test-beds were proposed for accurate self-
calibration; however, they were mostly for the balanced distribution of image points, not for
the reduction of parameter-correlations. More specifically, Sahin [36] used satellite antennas
of 1.5-m diameter to establish a test-bed. By using the test-bed, the author balanced the dis-
tribution of the image points and also established different depths. Schneider et al. [38,41]
and Schwalbe [51] established a calibration room in which ground control points were
established in one half of the room in a way that all the points could be well-distributed.

On the other hand, Choi et al. [50] found that according to test-bed shapes, the accura-
cies of fish-eye lens camera self-calibration showed different levels. They demonstrated the
advantages and disadvantages of four different test-beds, and proposed a self-calibration
method for accurate estimation of IOPs. However, this study has the following limitations.
Firstly, the analysis was performed based on simulation experiments only, and the findings
were not re-verified using real data. Secondly, the V-type test-bed, which significantly
reduces parameter-correlations, is not easily established and kept semi-permanently in an
indoor environment. Such limitations need to be overcome in order to make accurate and
reliable calibration solutions possible.

1.2. Purpose of Study

The objectives of this study were (1) to propose a new type of test-bed that is suitable
for self-calibration of a fish-eye lens camera in the indoor environment, and (2) to verify
the effectiveness of the proposed test-bed through both simulation and real experiments.
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The test-bed herein proposed is based on the findings of Choi et al. [50]. According to
their study, the A-type test-bed has an advantage in terms of the explanation of the lens
distortion phenomenon, since it has a high coverage ratio for image points. Also, A-type
objects (e.g., concave corners) can be easily found in the indoor environment. However,
such a test-bed does not provide stable calibration solutions due to the high correlation
between some of the orientation parameters. On the other hand, the V-type test-bed works
well in resolving the correlation issue; however, it has a weak point in terms of the coverage
ratio of image points. Also, it is hard to find V-type objects (e.g., convex corners) in the
indoor environment.

In the present study, a new type of test-bed was designed to reconcile and compen-
sate for the pros and cons of the A- and V-type test-beds. In other words, the test-bed
was designed to effect (i) a balanced distribution of image points and (ii) a low level of
correlation between orientation parameters. The effectiveness of the proposed test-bed in
the process of camera self-calibration was verified through analysis of the experimental
results from simulation and real datasets. The experimental results were evaluated based
on the accuracy of principal point coordinates and focal length as well as how well the lens
distortion parameters interpreted the distortion caused by a fish-eye lens. The simulation-
based camera self-calibration process was carried out before conducting the process using
real data. The simulation experiments were performed for the following advantages. With
simulations, perfect control of all involved parameters is convenient, and the accuracy of
results can be clearly confirmed. In other words, direct comparison between the estimated
parameters values and true ones is possible in the simulated environment. In the present
study, following the simulation experiments, a new type of test-bed was set up in an indoor
environment, and self-calibration was carried out. The real experiments were necessary in
order to fully prove the validity of the fish-eye lens self-calibration approach using a new
type of test-bed suggested in this research.

This paper describes the present research contents in the following order. Section 2
describes the mathematical model of the fish-eye lens camera. Section 3 introduces the pro-
posed test-bed and explains the design of the simulation and real experiments. Section 4 an-
alyzes the experimental results as derived from the simulation and real datasets. Section 5
provides a discussion of the proposed method in terms of contributions, while comparing
it with previous studies. Finally, Section 6 draws conclusions.

2. Mathematical Model of Fish-Eye Lens Camera

This section, first, introduces the projection models of the fish-eye lens camera. The
representative four different projection models (i.e., equidistant, equisolid-angle, orthogo-
nal, and stereographic projection) of the fish-eye lens camera are explained. Afterward,
the well-known lens distortion model, which applies for the four projection models, is
introduced.

2.1. Projection Model of Fish-Eye Lens Camera

The projection model of the fish-eye lens camera is represented by IOPs, Exterior
Orientation Parameters (EOPs), coordinates of image points, and coordinates of object
points. The model is given by Equations (1)–(9) and Figure 1, where (x, y) and (xp, yp) are
the coordinates of the image and principal point respectively; r is the distance between the
principal and the image point; (X, Y, Z) are the coordinates of the object point; (X0, Y0, Z0,
ω, ϕ, κ) are EOPs; M(ω, ϕ, κ) is a three-dimensional rotation matrix; f is the focal length,
and θ is the incident angle of the object point:

x = xp −
r√

U2 + V2
U (1)

y = yp −
r√

U2 + V2
V (2)
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 U
V
W

 = M(ω, ϕ, κ)

 X− X0
Y−Y0
Z− Z0

 (3)

If Perspective Projection (Normal lens) r = f tanθ (4)

Else if Equidistant Projection (Fish− eye lens) r = f θ (5)

Else if Equisolid− angle Projection (Fish− eye lens) r = f 2 sin
θ

2
(6)

Else if Orthogonal Projection (Fish− eye lens) r = f sin θ (7)

Else if Stereographic Projection (Fish− eye lens) r = f 2 tan
θ

2
(8)

θ = arctan

(√
U2 + V2

W

)
(9)
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2.2. Lens Distortion Model

The lens distortion model is represented by Equations (10)–(13). Where ∆x and ∆y are
distortions of the image coordinates x and y, respectively; (K1, K2, K3) are the radial lens
distortion parameters; (P1, P2) are the decentering distortion parameters; and (A1, A2) are
the in-plane distortion parameters. Recall that r is the distance between the principal and
the image point.

Equations (14) and (15) are the final mathematical models of the fish-eye lens camera,
and are expressed using the projection and lens distortion models. The mathematical model
includes projection model Equations (1) and (2) along with distortion model Equations (10)
and (11).

∆x = x
(

K1r2 + K2r4 + K3r6
)
+ P1

(
r2 + 2x2

)
+ 2P2xy + A1x + A2y (10)

∆y = y
(

K1r2 + K2r4 + K3r6
)
+ 2P1xy + P2

(
r2 + 2y2

)
(11)

x = x− xp (12)

y = y− yp (13)

x = xp −
r√

U2 + V2
U + ∆x (14)
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y = yp −
r√

U2 + V2
V + ∆y (15)

3. Camera Calibration Design: Simulation and Real Experiments

This study undertook to derive a new type of test-bed for efficient and accurate
fish-eye lens self-calibration in the indoor environment. The test-bed (called the AV-type
test-bed in this research) was designed by combining the A-and V-type components.
Usually, the A- (e.g., concave corner) and V-type (e.g., convex corner) components are
seen inside and outside of buildings, respectively. The AV-type test-bed was proposed
to adopt the advantages of both the A- and V-type test-beds, as mentioned in Section 1.2.
In other words, the authors planned to use the test-bed so as to be able to explain the
lens distortion phenomenon and effectively reduce the level of correlation between the
orientation parameters at the same time.

Calibration experiments were designed in two parts: simulations and real experiments.
The simulation experiments proceeded according to the following steps: (i) AV-type test-
bed shape design, (ii) camera specification setting and projection model selection, (iii)
simulation images generation, and (iv) camera self-calibration and result analysis. Four
different projection models were utilized for the data generation and camera self-calibration
procedures. As for the real experiments, they proceeded according to the following steps:
(i) real AV-type test-bed installation, (ii) image acquisition using real fish-eye cameras, and
(iii) camera self-calibration and result analysis. In both the simulation and real experiments,
the various analyses were carried out while checking the stability of self-calibration and
the accuracy of the IOPs.

3.1. Design of Simulation Experiments

The simulation experiments were carried out to confirm that the proposed AV-type
test-bed is appropriate for explaining lens distortions and reducing the correlation between
orientation parameters in consideration of the four different projection models. The design
of test-bed applied in the simulation experiments is shown in Figure 2. The A-type
component was designed with two planes (each plane 3.5 m in height and 6 m in width).
The V-type component was designed with two smaller planes (each plane 1.5 m in height
and 1.5 m in width), and was positioned in the middle of the A-type component.
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Figure 2. Designed AV-type test-bed for simulation experiments.

The specifications of the fish-eye lens camera sets for the simulations are provided in
Table 1. These values were predetermined by similarly following a Sunex DSL31 fish-eye
lens (Sunex, Carlsbad, CA, USA) and a Chameleon3 USB3 5.0 MP camera body (FLIR,
Wilsonville, OR, USA). Figure 3 shows the configuration of the image acquisition for the
simulations. Using the AV-type test-bed, eight images were produced in different shooting
positions and viewing angles. The simulation image data included both landscape (k = 0◦)
and portrait (k = 90◦) images for de-correlation between the principal point coordinates
and EOPs. Location numbers 1 and 2 had the same shooting position but different viewing
angles (i.e., k angles). The same was true for location numbers 3 and 4. More specifically,
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location numbers 2 and 4 were set to take portrait images, and location numbers 1, 3, and
5 to 8 were for landscape images. Then, the simulated image datasets were prepared by
using the AV-type test-bed, camera specification, image acquisition configuration, and
projection model selected.

Table 1. Specification of camera in simulation experiments.

f xp yp
DistortionParameters

K1 K2 K3 P1 P2 A1 A2

2.9 mm
(840.58 pixel)

0.004 mm
(1.16 pixel)

0.002 mm
(0.58 pixel) 1−5 1−7 3−9 −1−5 −2−7 1−5 2−7

Pixel Size
Image Dimension Image Measurement Random Noise (1σ)
x y

0.00345 mm 2448 pixel 2048 pixel 0.5 pixel
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Figure 3. Configuration of image acquisition for simulations.

Self-calibrations were performed using five different simulation datasets for each
projection model. Table 2 shows the different cases of simulation datasets (dataset a-e)
utilized for the self-calibrations. The datasets were made of two, four, or eight images
including at least one portrait image to resolve the correlation between the orientation
parameters (especially, xp − X0, yp − Y0). Datasets a, b, c, d, and e were used for the
evaluation of the AV-type test-bed.

Table 2. Five different simulation datasets utilized.

Dataset Location Number
(Number of Images) Usage

a 3, 4 (two images)

Evaluation of the AV-type
test-bed

b 1, 2, 3, 4 (four images)
c 3, 4, 5, 8 (four images)
d 3, 4, 6, 7 (four images)
e All (eight images)

3.2. Design of Real Experiments

In the real experiments, the proposed AV-type test-bed was produced as shown in
Figure 4. The corner of the room was used as the A-type component consisting of two
walls sized about 2 m in height by 3 m in width. The additional planes (actually, office
partitions) were used to build the V-type component. One partition plane’s size was about
1.2 m in height by 0.9 m in width.
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Chameleon3 USB3 5.0 MP

Projection model Focal length Pixel size Image size (pixel)

Equisolid-angle 2.67 mm (773.91 pixel) 0.00345 mm 2448 × 2048

Table 4 shows the different cases of real datasets utilized for the self-calibrations. The
configuration of the image acquisition and the dataset for the real experiments were similar
to the simulation cases (in Table 2). Datasets A, B, C, D, and E were acquired using the
AV-type test-bed and applied to fish-eye lens camera self-calibration. Figures 5 and 6 show
the images taken by cameras 1 and 2, respectively.
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Table 4. Configuration of image acquisition and dataset for real experiments.

Dataset Location Number
(Number of Images) Usage Configuration of Image Acquisition

A 3, 4 (two images)

Evaluation for the AV-type test-bed
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4. Results of Self-Calibration

The analysis of the experimental results proceeded in the same sequence as for the
simulation and real experiments. Each experiment was analyzed in terms of three aspects.
Firstly, it was determined whether the proposed test-bed contributed to de-correlation
between orientation parameters. If the correlation issue is resolved, self-calibration per-
forms in stable states without divergence or a local minimum problem. Secondly, it was
confirmed whether the estimated IOPs were accurate. In the cases of the simulation experi-
ments, the estimated IOPs were directly compared with true IOPs that had been pre-set.
In the cases of the real experiments, the accuracy of the estimated IOPs was evaluated
indirectly by checking the residuals of the image points and the standard deviation of the
orientation parameters.

4.1. Experimental Results Using Simulation Datasets

Camera self-calibration was carried out to confirm the effectiveness of the proposed
AV-type test-bed regardless of projection models. The simulation-based experiments were
analyzed in two steps: the first step evaluated the stability and correlation of the solution;
the second step analyzed the accuracies of the estimated IOPs.

4.1.1. Stability and Correlation Analysis in Simulation Experiments

The stability and correlation analysis were carried out based on the results of the
simulated experiments. Stability was evaluated in two statuses, which were ‘stable’ and
‘unstable’. When most of the orientation parameters diverged, or when the solution did
not reach the global minimum, stability was evaluated as “unstable”. On the other hand,
stability was evaluated as “stable” when the parameters converged while reaching the
global minimum. Table 5 shows the results of the stability and correlation analyses.

Table 5. Stability and correlations in simulated datasets.

Projection Model Stability Dataset
Correlations

f−Z0 xp−X0 yp−Y0 X0−ϕ Y0−ω

Equidistant Stable

a 0.91 0.18 0.21 0.40 0.50
b 0.83 0.18 0.15 0.45 0.61
c 0.49 0.09 0.17 0.34 0.49
d 0.80 0.20 0.28 0.40 0.57
e 0.53 0.13 0.15 0.44 0.64

mean 0.71 0.15 0.19 0.41 0.56

Equisolid-angle Stable

a 0.93 0.19 0.16 0.47 0.52
b 0.83 0.17 0.12 0.50 0.63
c 0.49 0.07 0.14 0.40 0.49
d 0.79 0.19 0.23 0.49 0.60
e 0.52 0.11 0.14 0.50 0.65

mean 0.71 0.15 0.16 0.47 0.58

Orthogonal Stable

a 0.90 0.16 0.10 0.56 0.64
b 0.81 0.15 0.11 0.60 0.68
c 0.64 0.08 0.12 0.45 0.54
d 0.68 0.18 0.14 0.62 0.68
e 0.58 0.12 0.14 0.59 0.70

mean 0.72 0.14 0.12 0.57 0.65

Stereographic Stable

a 0.90 0.14 0.20 0.33 0.47
b 0.82 0.17 0.16 0.37 0.54
c 0.53 0.09 0.15 0.27 0.45
d 0.80 0.20 0.29 0.31 0.50
e 0.55 0.14 0.16 0.37 0.58

mean 0.72 0.15 0.19 0.33 0.51
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The correlation values from the five different datasets and their mean values are shown.
All of the mean values of the projection models were lower than 0.72. Medium or somewhat
high correlation values were shown in case of f − Z0. The highest correlation values in the
cases of f − Z0 for all projection models occurred when the dataset a, which was composed
of just two images, was used. It should be noted that all of the self-calibration solutions
stably converged even though some cases (i.e., dataset a) had somewhat (not significantly)
high correlations. The stabilities and accuracies of the self-calibration solutions are proven
also in the following Section 4.1.2.

4.1.2. Accuracy of IOPs in Simulation Experiments

The absolute errors of the principal point coordinates and focal length were calculated
by comparing the estimated values with the pre-set ones (shown in Table 1 for the sim-
ulation). Tables 6 and 7 show the absolute errors of the principal point coordinates and
focal length, respectively. The largest errors of the principal point coordinates and focal
length were 0.34 and 0.56 pixels, respectively. These indicate that both the principal point
coordinates and focal length were estimated to high accuracies.

Table 6. Absolute error of principal point coordinates (pixel) in simulation experiments.

Projection Model
Dataset

a b c d e Mean

Equidistant 0.21 0.16 0.14 0.15 0.05 0.14
Equisolid-angle 0.14 0.16 0.11 0.14 0.15 0.14

Orthogonal 0.16 0.12 0.11 0.20 0.12 0.14
Stereographic 0.23 0.34 0.26 0.09 0.23 0.23

Table 7. Absolute error of focal length (pixel) in simulation experiments.

Projection Model
Dataset

a b c d e Mean

Equidistant 0.56 0.10 0.15 0.29 0.13 0.25
Equisolid-angle 0.29 0.03 0.03 0.25 0.09 0.14

Orthogonal 0.32 0.31 0.37 0.24 0.13 0.27
Stereographic 0.09 0.07 0.23 0.14 0.00 0.11

The accuracy of the lens distortion parameters was evaluated by comparing the true
and the estimated distortions. The distortion was calculated at all pixels either using the
pre-set or the estimated parameters. Table 8 shows the Root Mean Square Error (RMSE)
values of lens distortion. The largest RMSE value was 0.68 pixels, which indicates that the
estimated distortion parameters had high accuracies regardless of the dataset utilized.

Table 8. RMSE value of lens distortion (pixel) in simulation experiments.

Projection Model
Dataset

a b c d e Mean

Equidistant 0.68 0.29 0.27 0.31 0.20 0.35
Equisolid-angle 0.37 0.12 0.13 0.21 0.07 0.18

Orthogonal 0.18 0.25 0.29 0.26 0.08 0.21
Stereographic 0.41 0.19 0.22 0.26 0.10 0.24

Table 9 shows the RMS-residuals calculated using all of the estimated IOPs (i.e., the
principal point coordinates, focal length, and lens distortion parameters). The largest RMS-
residual was 0.46 pixels, which also indicates that the estimated IOPs had high accuracies.
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Table 9. Root Mean Square residuals (RMS-residuals) of Interior Orientation Parameters (IOPs)
(pixel) in simulation experiments.

Projection Model
Dataset

a b c d e Mean

Equidistant 0.46 0.30 0.25 0.25 0.17 0.29
Equisolid-angle 0.20 0.20 0.19 0.14 0.16 0.18

Orthogonal 0.22 0.10 0.14 0.18 0.14 0.16
Stereographic 0.43 0.48 0.33 0.32 0.33 0.38

Based on the accuracy analysis of IOPs using the simulated datasets, it was verified
that the proposed AV-type test-bed is appropriate to use for self-calibration of a fish-eye
lens camera. Principal point coordinates, focal length, and distortion parameters were
estimated accurately by using the proposed test-bed. The accuracy of the IOPs was high,
even for the case of ‘Dataset a’ composed of just two images. In other words, by using
the AV-type test-bed, self-calibration for the fish-eye lens cameras could be performed
accurately and efficiently.

4.2. Experimental Results Using Real Datasets

The effectiveness of the proposed AV-type test-bed in the process of camera self-
calibration was re-verified by analyzing the results of the real experiments. Similarly to
the simulation case, the real experiments were analyzed in two steps. In the first step,
the correlations between orientation parameters were evaluated. In the second step, the
accuracy of the estimated IOPs was evaluated using the standard deviations and RMS-
residuals of image points.

4.2.1. Stability and Correlation Analysis in Real Experiments

All of the self-calibrations using the two fish-eye lens cameras, five datasets and
proposed AV-type test-bed were performed without divergence or local minimum problem.
This means that the implemented self-calibrations were all stably converged. More specifi-
cally, Table 10 shows the correlation values between the orientation parameters derived
from the self-calibration results. As seen in the table, most cases (i.e., xp − X0, yp − Y0,
X0− ϕ, Y0−ω) showed low correlations. On the other hand, relatively medium or high
correlation values were shown in the case of f − Z0. The highest correlation values in the
cases of f − Z0 for cameras 1 and 2 were 0.95 and 0.93, respectively. These two highest
correlations occurred when Dataset A, composed of just two images, was used. It should
be noted that all of the self-calibration solutions stably converged even though some cases
had somewhat (not significantly) high correlations. The stabilities and accuracies of the
self-calibration solutions are proven also in the following Section 4.2.2.

Table 10. Stability and correlations in real datasets.

Camera Stability Dataset
Correlations

f−Z0 xp−X0 yp−Y0 X0−ϕ Y0−ω

Fish-eye Lens
Camera 1

(Equidistant)
Stable

A 0.95 0.11 0.30 0.31 0.36
B 0.77 0.19 0.32 0.42 0.22
C 0.88 0.22 0.40 0.19 0.22
D 0.93 0.15 0.37 0.29 0.36
E 0.59 0.58 0.49 0.33 0.38

mean 0.82 0.25 0.38 0.31 0.31

Fish-eye Lens
Camera 2

(Equisolid-angle)
Stable

A 0.93 0.07 0.08 0.45 0.52
B 0.90 0.05 0.06 0.54 0.67
C 0.70 0.14 0.22 0.38 0.39
D 0.80 0.05 0.20 0.49 0.56
E 0.56 0.50 0.47 0.50 0.55

mean 0.78 0.16 0.21 0.47 0.54
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4.2.2. Accuracy of IOPs in Real Experiments

The accuracy of the IOPs was evaluated by checking (i) the estimated IOPs and their
standard deviations, and (ii) their RMS-residuals. Firstly, the different IOPs from the
five datasets were compared with each other; and the precisions of the parameters were
analyzed by checking the standard deviations themselves and by comparing them with
the parameter values. Secondly, the RMS-residuals of IOPs showed differences between
the measured and estimated image point coordinates. Hence, the accuracy of the estimated
IOPs were analyzed via the RMS-residuals.

Table 11 shows the estimated values and standard deviations of the principal point
coordinates and focal lengths. For each camera, the principal point coordinates and focal
length were estimated as similar values regardless of the dataset used. In the case of camera
1, the maximum absolute differences of xp, yp, and f among the different datasets were
0.91, 0.74, and 0.37 pixels, respectively. In this case, all of the differences were less than
one pixel. In the case of camera 2, the maximum absolute differences of xp, yp, and f
among the different datasets were 0.13, 0.28, and 0.39 pixels, respectively. In this case, all of
the differences were less than one-half pixel. In terms of standard deviations, the values
themselves were all lower than one-half pixel. Also, all of the standard deviations were
much lower than the estimated parameter values.

Table 11. Estimated values and standard deviations of principal point coordinates and focal length in real experiments.

Camera Dataset
Estimated Value (Pixel) Standard Deviation (Pixel)

xp yp f xp yp f

Fish-eye Lens
Camera 1

(equidistant)

A −4.82 27.39 1910.53 0.32 0.17 0.48
B −4.10 27.70 1910.90 0.38 0.23 0.39
C −3.91 26.96 1910.79 0.33 0.21 0.35
D −4.45 27.33 1910.65 0.28 0.16 0.42
E −4.15 27.32 1910.58 0.27 0.20 0.42

Fish-eye Lens
Camera 2

(equisolid-angle)

A −10.06 −32.21 777.56 0.07 0.07 0.22
B −10.07 −32.18 777.78 0.06 0.06 0.16
C −10.17 −32.24 777.87 0.07 0.07 0.15
D −10.04 −31.96 777.66 0.06 0.07 0.13
E −10.09 −32.15 777.95 0.09 0.10 0.23

Tables 12 and 13 show the estimated distortion parameters and their standard devia-
tions for cameras 1 and 2, respectively. As can be seen, the maximum absolute differences
of the lens distortion parameters among the different datasets were almost zero. Also, all
of the standard deviations were much lower than the corresponding distortion parame-
ter values.

Table 12. Estimated values and standard deviations of lens distortion parameters in real experiments (camera 1).

Dataset K1 K2 K3 P1 P2 A1 A2

Estimated Value

A −4.28−4 9.81−7 −2.39−8 1.02−5 3.49−6 3.46−4 2.19−4

B −4.28−4 8.18−7 −2.20−8 1.14−5 3.19−6 3.46−4 2.19−4

C −4.28−4 9.52−7 −2.36−8 1.02−5 3.49−6 3.46−4 2.19−4

D −4.28−4 9.10−7 −2.31−8 1.02−5 3.49−6 3.46−4 2.19−4

E −4.28−4 1.01−6 −2.40−8 1.02−5 3.49−6 3.46−4 2.19−4

Standard deviation

A 6.27−5 4.22−7 1.10−8 5.70−6 1.92−6 8.74−5 7.22−5

B 3.42−5 2.62−7 5.51−9 3.07−6 1.05−6 7.26−5 5.69−5

C 1.31−5 1.81−7 3.07−9 2.23−6 1.08−6 3.80−5 4.16−5

D 5.13−5 2.09−7 4.15−9 3.57−6 1.29−6 8.64−5 5.91−5

E 1.15−5 1.82−7 1.92−9 1.93−6 8.39−7 5.53−5 3.72−5
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Table 13. Estimated values and standard deviations of lens distortion parameters in real experiments (camera 2).

Dataset K1 K2 K3 P1 P2 A1 A2

Estimated Value

A −4.17−3 3.36−4 −3.97−5 −9.22−5 6.83−5 1.86−4 −8.84−5

B −4.17−3 3.36−4 −3.99−5 −9.22−5 6.83−5 1.86−4 −8.83−5

C −4.17−3 3.36−4 −4.03−5 −9.23−5 6.83−5 1.86−4 −8.83−5

D −4.17−3 3.37−4 −3.99−5 −9.22−5 6.83−5 1.86−4 −8.83−5

E −4.17−3 3.36−4 −4.02−5 −9.22−5 6.83−5 1.86−4 −8.83−5

Standard deviation

A 6.25−5 8.41−5 7.41−6 2.49−5 2.66−5 7.99−5 3.44−5

B 2.92−4 5.72−5 3.59−6 1.38−5 1.71−5 6.69−5 1.50−5

C 2.08−4 3.36−5 2.01−6 1.29−5 1.37−5 5.20−5 1.06−5

D 4.17−4 8.08−5 4.79−6 1.84−5 1.98−5 4.83−5 1.68−5

E 1.67−4 2.69−5 1.61−6 9.22−6 6.83−6 3.53−5 9.71−6

Table 14 shows the RMS-residuals of the IOPs for each dataset and camera. The
maximum value of RMS-residuals was 0.39 pixels (lower than one-half pixel). The mean
values for cameras 1 and 2 were 0.27, and 0.35 pixels, respectively. Based on the analysis
results as tabulated by Tables 11–14, it was confirmed that the principal point coordinates,
focal length, and lens distortion parameters for the two different fish-eye lens cameras had
been estimated reliably and accurately.

Table 14. RMS-residuals of IOPs in real experiments.

Camera
Dataset

A B C D E Mean

Fish-eye Lens Camera 1
(Equisolid-angle) 0.27 0.20 0.23 0.28 0.37 0.27

Fish-eye Lens Camera 2
(Equidistant) 0.34 0.31 0.39 0.36 0.35 0.35

In this study, based on simulations and real experiments, the effectiveness of the
proposed AV-type test-bed was evaluated using different projection models and datasets.
The results can be summarized as follows:

• The proposed AV-type test-bed was effective in resolving the correlation between the
orientation parameters, and self-calibration was performed stably.

• At the same time, lens distortion was interpreted accurately due to the proposed
test-bed having contributed to the balanced distribution of image points.

• The estimated IOPs using the AV-type test-bed showed high accuracy and precision.
Even though self-calibration was performed using a dataset composed of just two
images, the IOPs were estimated reliably and accurately.

5. Discussion

In this section, the effectiveness of the proposed approach is deeply discussed in terms
of distribution of image points, and accuracy by comparing it with previous studies. First,
a comparative analysis between Choi et al. [50]’s study and the proposed one is carried out
based on the experimental results using simulation datasets.

To compare the distributions of image points according to the utilized types of test-
beds, we produced simulation images while changing the data acquisition configuration.
Figure 7 shows the simulation images produced by utilizing V-type test-bed, which was
selected for self-calibration by Choi et al. [50]. Also, Figure 8 shows the simulation images
produced by utilizing AV-type test-bed, which was proposed in this study. One should
note that the data acquisition configurations for Figures 7 and 8 are the same.
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In terms of the distribution of image points, AV-type test-bed produced relatively
well-distributed image points compared to V-type test-bed, as seen in Figures 7 and 8.
Especially, the portions enclosed by red lines in Figure 7 show a high density of image
points. Such distribution makes the image point measurement difficult in reality and
might cause inaccurate lens distortion parameters. To avoid this issue when the V-type
test-bed is used for self-calibration, data acquisition configuration should be determined
very carefully. On the other hand, we do not see such a high density of image points when
the AV-type test-bed is used as seen in Figure 8. Moreover, AV-type test-bed can be easily
set up in an indoor environment (such as a corner of a room) and used semi-permanently.

In terms of accuracy, the absolute error of principal point coordinates, absolute error
of focal length, RMSE value of lens distortion, and RMS-residuals of IOPs, which are
derived from both of the proposed approach and Choi et al. [50]’s study, are compared
in Tables 15–18. In these tables, the number of images utilized for the self-calibration is
shown in the parenthesis. When comparing the values for the same projection model, most
of the values from the proposed approach were lower than the ones from Choi et al. [50]’s
study in all the tables. The mean values calculated for each projection model were, also,
compared to each other. The values from the AV-type test-bed were all lower than the ones
from the V-type test-bed. This means that the self-calibration performances using AV-type
test-bed (even though a smaller number of images are utilized) were superior to the ones
using V-type test-bed.
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Table 15. Comparison of absolute error of principal point coordinates (pixel).

Projection Model

Dataset

AV-Type Test-Bed V-Type Test-Bed
(Choi et al. [50])

a (2) b (4) c (4) d (4) e (8) Mean 1 (10) 2 (10) 3 (14) Mean

Equidistant 0.21 0.16 0.14 0.15 0.05 0.14 0.40 0.78 0.71 0.63
Equisolid-angle 0.14 0.16 0.11 0.14 0.15 0.14 0.56 0.32 0.46 0.45

Orthogonal 0.16 0.12 0.11 0.20 0.12 0.14 0.26 0.41 0.11 0.26
Stereographic 0.23 0.34 0.26 0.09 0.23 0.23 0.41 0.37 0.18 0.32

Table 16. Comparison of absolute error of focal length (pixel).

Projection Model

Dataset

AV-Type Test-Bed V-Type Test-Bed
(Choi et al. [50])

a (2) b (4) c (4) d (4) e (8) Mean 1 (10) 2 (10) 3 (14) Mean

Equidistant 0.56 0.10 0.15 0.29 0.13 0.25 1.97 0.04 0.04 0.68
Equisolid-angle 0.29 0.03 0.03 0.25 0.09 0.14 1.25 0.22 0.46 0.64

Orthogonal 0.32 0.31 0.37 0.24 0.13 0.27 1.91 0.58 0.16 0.88
Stereographic 0.09 0.07 0.23 0.14 0.00 0.11 0.61 0.96 0.70 0.76

Table 17. Comparison of RMSE values of lens distortion (pixel).

Projection Model

Dataset

AV-Type Test-Bed V-Type Test-Bed
(Choi et al. [50])

a (2) b (4) c (4) d (4) e (8) Mean 1 (10) 2 (10) 3 (14) Mean

Equidistant 0.68 0.29 0.27 0.31 0.20 0.35 7.48 0.18 0.15 2.60
Equisolid-angle 0.37 0.12 0.13 0.21 0.07 0.18 2.47 0.34 0.39 1.07

Orthogonal 0.18 0.25 0.29 0.26 0.08 0.21 1.21 0.32 0.08 0.54
Stereographic 0.41 0.19 0.22 0.26 0.10 0.24 3.12 1.50 0.75 1.79

Table 18. Comparison of RMS-residuals of IOPs (pixel).

Projection Model

Dataset

AV-Type Test-Bed V-Type Test-Bed
(Choi et al. [50])

a (2) b (4) c (4) d (4) e (8) Mean 1 (10) 2 (10) 3 (14) Mean

Equidistant 0.46 0.30 0.25 0.25 0.17 0.29 6.12 0.85 0.70 2.56
Equisolid-angle 0.20 0.20 0.19 0.14 0.16 0.18 1.63 0.28 0.39 0.77

Orthogonal 0.22 0.10 0.14 0.18 0.14 0.16 0.38 0.35 0.11 0.28
Stereographic 0.43 0.48 0.33 0.32 0.33 0.38 2.45 0.78 0.61 1.28

Secondly, additional comparative analysis between the previous studies and the
proposed one is carried out based on the experimental results using real datasets. At
this stage, one should note that a direct comparison of the performance among different
approaches is almost impossible since their type of cameras, projection models, calibration
methods, datasets, and environments are all different. Nevertheless, the comparison in
Table 19 shows the overall performances of the approaches. In the table, the values of
standard deviations, and RMS-residuals of IOPs derived from different approaches are
compared to each other.
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Table 19. Comparison with other self-calibration results using real datasets.

Approaches Projection Model
Number of

Used Images

Standard Deviation (Pixel) RMS-Residuals of
IOPs (Pixel)xp yp f

Proposed Equidistant 2–8 0.27–0.38 0.16–0.23 0.35–0.48 0.20–0.37
Equisolid-angle 2–8 0.06–0.09 0.06–0.10 0.13–0.23 0.31–0.39

Marcato et al. [12] Stereographic 43 0.20 0.20 0.19 0.51
Sahin [36]

(used 2 cameras) Equidistant 13 0.96/2.84 0.89/2.85 0.75/1.15 0.60/0.71

Schneider et al. [38] Equisolid-angle 9 0.78 3.14 0.95 0.30

As seen in the table, it is not easy to directly compare Marcato et al. [12]’s study
with the proposed one since they are dealing with different projection models. However,
we can, overall, see similar performances in terms of standard deviations. In the case of
RMS-residuals of IOPs, the proposed one showed better performance. Marcato et al. [12],
however, used many images (i.e., 43 images) for the calibration process compared to
the proposed one (i.e., 2–8 images). Sahin [36]’s study showed worse results for both
standard deviations and RMS-residuals of IOPs compared to the proposed one. In the
case of Schneider et al. [38], it showed worse results for standard deviations; however, a
similar result for RMS-residuals of IOPs compared to the proposed approach. The overall
comparison through Table 19 proved that even though the proposed approach used a
smaller number of images (2 to 8 images), it provided similar or better performances
compared to other approaches (which used 9 to 43 images) for the calibration procedure.

6. Conclusions

This paper proposed a new type of test-bed (i.e., the AV-type) for stable and accurate
self-calibration of a fish-eye lens camera in an indoor environment. The effectiveness of
the proposed test-bed was verified through simulation and real experiments. This study
was conducted in two steps: (i) camera calibration design, and (ii) validation through
simulation and real experiments.

The proposed AV-type test-bed was designed to contribute a balanced distribution
of image points (the advantage of the A-type test-bed) along with de-correlation between
orientation parameters (the advantage of the V-type test-bed) simultaneously. In addi-
tion, the proposed test-bed could be installed conveniently in the indoor space and used
semi-permanently.

In the simulation experiments, the self-calibration procedures were performed using
the proposed test-bed, four different fish-eye lens projection models, and five different
datasets. For all of the cases, the self-calibration proceeded stably, and eventually, provided
accurately estimated IOPs. The RMS-residuals of the estimated IOPs were lower than the
random noise level (i.e., pre-set to 0.5 pixels).

The real experiments were carried out to re-verify the effectiveness of the proposed
AV-type test-bed in the process of camera self-calibration using two different fish-eye lens
cameras and five different datasets. All of the real experimental cases showed high levels of
calibration accuracy (i.e., lower than the minimum value of RMS-residuals: 0.39 pixels) and
precise standard deviations. Through analysis of the data obtained from the simulation
and real experiments, we came to the conclusion that the proposed AV-type test-bed was
appropriate for self-calibration of the fish-eye lens camera and accurate IOP estimation.

This study will contribute to fish-eye lens camera self-calibration in the following
ways. By using the proposed test-bed, it is ensured that the self-calibration of a fish-eye
lens camera will be performed in a stable state and that the IOPs will be derived accurately.
Also, the proposed test-bed will provide for efficiency of self-calibration in terms of both
test-bed installation and operation.
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14. Marković, I.; Chaumette, F.; Petrović, I. Moving object detection, tracking and following using an omnidirectional camera on a
mobile robot. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China,
31 May–7 June 2014; pp. 5630–5635.

15. Caruso, D.; Engel, J.; Cremers, D. Large-scale direct slam for omnidirectional cameras. In Proceedings of the 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 141–148.

16. Auysakul, J.; Xu, H.; Zhao, W. Development of hemi-cylinder plane for panorama view in around view monitor applications. In
Proceedings of the 2016 International Conference on Computational Intelligence and Applications (ICCIA), Jeju, Korea, 27–29
August 2016; pp. 26–30.

17. Gao, Y.; Lin, C.; Zhao, Y.; Wang, X.; Wei, S.; Huang, Q. 3-D surround view for advanced driver assistance systems. IEEE Trans.
Intell. Transp. Syst. 2018, 19, 320–328. [CrossRef]

18. Yang, Z.; Zhao, Y.; Hu, X.; Yin, Y.; Zhou, L.; Tao, D. A flexible vehicle surround view camera system by central-around coordinate
mapping model. Multimed. Tools. Appl. 2019, 78, 11983–12006. [CrossRef]

19. Nakazawa, Y.; Makino, H.; Nishimori, K.; Wakatsuki, D.; Komagata, H. Indoor positioning using a high-speed, fish-eye lens-
equipped camera in visible light communication. In Proceedings of the International Conference on Indoor Positioning and
Indoor Navigation, Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–8.

http://doi.org/10.3390/s18030827
http://doi.org/10.1016/j.eswa.2015.04.035
http://doi.org/10.1109/TVCG.2019.2898650
http://doi.org/10.1590/S1982-21702015000300036
http://doi.org/10.3390/s17010119
http://www.ncbi.nlm.nih.gov/pubmed/28106746
http://doi.org/10.1109/TITS.2017.2750087
http://doi.org/10.1007/s11042-018-6744-4


Sensors 2021, 21, 2776 19 of 20

20. Katai-Urban, G.; Eichhardt, I.; Otte, V.; Megyesi, Z.; Bixel, P. Reconstructing atmospheric cloud particles from multiple fisheye
cameras. Sol. Energy 2018, 171, 171–184. [CrossRef]

21. Berveglieri, A.; Tommaselli, A.; Liang, X.; Honkavaara, E. Photogrammetric measurement of tree stems from vertical fisheye
images. Scand. J. For. Res. 2017, 32, 737–747. [CrossRef]

22. Choi, K.H.; Kim, C.; Kim, Y. Comprehensive Analysis of system calibration between optical camera and range finder. ISPRS Int. J.
Geoinf. 2018, 7, 188. [CrossRef]

23. Brown, D.C. Decentering distortion of lenses. Photogramm. Eng. 1966, 32, 444–462.
24. Beyer, H.A. Accurate calibration of CCD-cameras. In Proceedings of the 1992 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Champaign, IL, USA, 15–18 June 1992; pp. 96–101.
25. Fraser, C.S. Digital camera self-calibration. ISPRS J. Photogramm. Remote Sens. 1997, 52, 149–159. [CrossRef]
26. Remondino, F.; Fraser, C. Digital camera calibration methods: Considerations and comparisons. In Proceedings of the ISPRS

Commission V Symposium ‘Image Engineering and Vision Metrology’, Dresden, Germany, 25–27 September 2006; Volume 36,
pp. 266–272.

27. Zhang, Z. A Flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
28. Percoco, G.; Sánchez Salmerón, A.J. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features:

An experimental validation of the close-range camera calibration model for narrow angles of view. Meas. Sci. Technol. 2015,
26, 095203. [CrossRef]

29. Hughes, C.; Denny, P.; Jones, E.; Glavin, M. Accuracy of fish-eye lens models. Appl. Opt. 2010, 17, 3338–3347. [CrossRef]
30. Kannala, J.; Brandt, S.S. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE

Trans. Pattern Anal. Mach. Intell. 2006, 28, 1335–1340. [CrossRef]
31. Miyamoto, K. Fish eye lens. J. Opt. Soc. Am. 1964, 54, 1060–1061. [CrossRef]
32. Ray, S.F. Applied Photographic Optics: Imaging Systems for Photography, Film, and Video; Focal Press: Oxford, UK, 2002.
33. Abraham, S.; Förstner, W. Fish-eye-stereo calibration and epipolar rectification. ISPRS J. Photogramm. Remote Sens. 2005, 59,

278–288. [CrossRef]
34. Hughes, C.; McFeely, R.; Denny, P.; Glavin, M.; Jones, E. Equidistant (fθ) fish-eye perspective with application in distortion centre

estimation. Image Vis. Comput. 2010, 28, 538–551. [CrossRef]
35. Hughes, C.; Denny, P.; Glavin, M.; Jones, E. Equidistant fish-eye calibration and rectification by vanishing point extraction. IEEE

Trans. Pattern Anal. Mach. Intell. 2010, 32, 2289–2296. [CrossRef]
36. Sahin, C. Comparison and calibration of mobile phone fisheye lens and regular fisheye lens via equidistant model. J. Sens. 2016,

2016, 9379203. [CrossRef]
37. Bakstein, H.; Pajdla, T. Panoramic mosaicing with a 180/spl deg/field of view lens. In Proceedings of the IEEE Workshop on

Omnidirectional Vision 2002. Held in conjunction with ECCV’02, Copenhagen, Denmark, 2 June 2002; pp. 60–67.
38. Schneider, D.; Schwalbe, E.; Maas, H.-G. Validation of geometric models for fisheye lenses. ISPRS J. Photogramm. Remote Sens.

2009, 64, 259–266. [CrossRef]
39. Li, S. Full-view spherical image camera. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06),

Hong Kong, China, 20–24 August 2006; pp. 386–390.
40. Li, C.; Wang, L.; Lu, X.; Chen, J.; Fan, S. Researches on hazard avoidance cameras calibration of lunar rover. In Proceedings of the

International Conference on Space Optics—ICSO 2010, Rhodes Island, Greece, 4–8 October 2010; p. 105652T.
41. Schneider, D.; Schwalbe, E. Integrated processing of terrestrial laser scanner data and fisheye-camera image data. In Proceedings

of the the 21st ISPRS Congress, Beijing, China, 3–11 July 2008; pp. 1037–1044.
42. Perfetti, L.; Polari, C.; Fassi, F. Fisheye photogrammetry: Tests and methodologies for the survey of narrow spaces. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 573–580. [CrossRef]
43. Basu, A.; Licardie, S. Alternative models for fish-eye lenses. Pattern Recognit. Lett. 1995, 16, 433–441. [CrossRef]
44. Devernay, F.; Faugeras, O. Straight lines have to be straight. Mach. Vis. Appl. 2001, 13, 14–24. [CrossRef]
45. Fitzgibbon, A.W. Simultaneous linear estimation of multiple view geometry and lens distortion. In Proceedings of the 2001 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001;
pp. 125–132.

46. Davide Scaramuzza, A.M.; Roland, S. A flexible technique for accurate omnidirectional camera calibration and structure from
motion. In Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS), New York, NY, USA,
5–7 January 2006; pp. 45–53.

47. Bellas, N.; Chai, S.M.; Dwyer, M.; Linzmeier, D. Real-time fisheye lens distortion correction using automatically generated
streaming accelerators. In Proceedings of the 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines,
Napa, CA, USA, 5–7 April 2009; pp. 149–156.

48. Hsu, C.-Y.; Chang, C.-M.; Kang, L.-W.K.; Fu, R.-H.; Chen, D.-Y.; Weng, M.-F. Fish-eye lenses-based camera calibration and
panoramic image stitching. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW),
Ilan, Taiwan, 19–21 May 2018; pp. 1–2.

49. Schiller, I.; Beder, C.; Koch, R. Calibration of a PMD-camera using a planar calibration pattern together with a multi-camera setup.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 21, 297–302.

http://doi.org/10.1016/j.solener.2018.06.050
http://doi.org/10.1080/02827581.2016.1273381
http://doi.org/10.3390/ijgi7050188
http://doi.org/10.1016/S0924-2716(97)00005-1
http://doi.org/10.1109/34.888718
http://doi.org/10.1088/0957-0233/26/9/095203
http://doi.org/10.1364/AO.49.003338
http://doi.org/10.1109/TPAMI.2006.153
http://doi.org/10.1364/JOSA.54.001060
http://doi.org/10.1016/j.isprsjprs.2005.03.001
http://doi.org/10.1016/j.imavis.2009.09.001
http://doi.org/10.1109/TPAMI.2010.159
http://doi.org/10.1155/2016/9379203
http://doi.org/10.1016/j.isprsjprs.2009.01.001
http://doi.org/10.5194/isprs-archives-XLII-2-W3-573-2017
http://doi.org/10.1016/0167-8655(94)00115-J
http://doi.org/10.1007/PL00013269


Sensors 2021, 21, 2776 20 of 20

50. Choi, K.H.; Kim, Y.; Kim, C. Analysis of fish-eye lens camera self-calibration. Sensors 2019, 19, 1218. [CrossRef] [PubMed]
51. Schwalbe, E. Geometric modelling and calibration of fisheye lens camera systems. In Proceedings of the ISPRS Working Group,

Panoramic Photogrammetry Workshop, Berlin, Germany, 24–25 February 2005.

http://doi.org/10.3390/s19051218
http://www.ncbi.nlm.nih.gov/pubmed/30857373

	Introduction 
	Previous Studies of Fish-Eye Lens Camera Self-Calibration 
	Purpose of Study 

	Mathematical Model of Fish-Eye Lens Camera 
	Projection Model of Fish-Eye Lens Camera 
	Lens Distortion Model 

	Camera Calibration Design: Simulation and Real Experiments 
	Design of Simulation Experiments 
	Design of Real Experiments 

	Results of Self-Calibration 
	Experimental Results Using Simulation Datasets 
	Stability and Correlation Analysis in Simulation Experiments 
	Accuracy of IOPs in Simulation Experiments 

	Experimental Results Using Real Datasets 
	Stability and Correlation Analysis in Real Experiments 
	Accuracy of IOPs in Real Experiments 


	Discussion 
	Conclusions 
	References

