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Background-—We conducted a post hoc analysis of the SPS3 (Secondary Prevention of Small Subcortical Strokes) Trial to examine
the association of chronic kidney disease (CKD) with recurrent stroke, and to assess whether baseline renal function modifies the
effects of intensive systolic blood pressure control in patients with previous stroke.

Methods and Results-—A total of 3020 patients with recent magnetic resonance imaging–defined symptomatic lacunar infarctions
were randomized to a systolic blood pressure target of <130 mm Hg versus 130 to 149 mm Hg. Predefined primary outcomes
were (all-recurrent) stroke and a composite of stroke, acute myocardial infarction, or all-cause death; secondary outcomes were
acute myocardial infarction, all-cause death, and intracerebral hemorrhage individually. Among 3017 patients with baseline
estimated glomerular filtration rate measurements, we evaluated, using Cox proportional hazards models, the association of CKD
with recurrent stroke and effects of the blood pressure targets on outcomes using baseline estimated glomerular filtration rate
both as a categorical and linear variable. Regardless of the randomized treatment, CKD at baseline was significantly associated
with an increased risk of the primary cardiovascular composite outcome (hazard ratio, 1.7; 95% CI, 1.4–2.1), and all-recurrent
stroke (1.5; 1.1–2.0). However, the effects of the lower systolic blood pressure intervention on the primary outcome were not
influenced by baseline CKD status (P for interaction=0.62).

Conclusions-—CKD increases the risk of recurrent stroke by 50% in patients with previous lacunar stroke. We found no definitive
evidence that renal dysfunction modifies the effects of systolic blood pressure control in patients with previous stroke. Conclusive
evidence for this will require adequately powered studies with moderate-to-advanced CKD.

Clinical Trial Registration-—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00059306. ( J Am Heart Assoc. 2019;8:
e013098. DOI: 10.1161/JAHA.119.013098.)
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H ypertension and chronic kidney disease (CKD) are inter-
related global public health problems and both indepen-

dently increase the risk of stroke.1,2 In the United States, more
than one-third of the population has hypertension3,4 and around
15% of the population has CKD.5 Both hypertension and CKD
could cause or result from each other,6 and because of this

inter-related pathophysiology, hypertension, CKD, and a history
of previous stroke often coexist in patients.7 However, optimal
blood pressure (BP) targets in patients with previous stroke,
especially in those with CKD, are unclear.

The SPRINT (Systolic Blood Pressure Intervention) trial
reported cardiovascular benefits of an intensive systolic blood
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pressure (SBP) target of <120 mm Hg versus the standard
SBP target of <140 mm Hg in high-risk nondiabetic patients.8

This landmark trial has resulted in a wider acceptance of
intensive SBP targets. The 2017 American College of
Cardiology/American Heart Association BP guidelines recom-
mend a target SBP goal of <130 mm Hg for most patients,
including for patients with previous stroke.3,9

Observational data, however, suggest that CKD may
attenuate the beneficial effects of intensive SBP control.10

Randomized controlled trials (RCTs) have also not confirmed a
cardiovascular benefit from intensive BP control in patients
with CKD.11 A post hoc analysis of SPRINT found that in the
subset of participants with moderate-to-advanced CKD
(defined as estimated glomerular filtration rate [eGFR] of
<45 mL/min/1.73 m2), intensive SBP control provided little3

or no cardiovascular benefit, suggesting that CKD attenuates
the benefits of intensive SBP control.12 SPRINT excluded
patients with a history of stroke, and it remains unknown how
renal dysfunction modifies the effects of intensive SBP control
in patients with previous stroke.

The SPS3 (Secondary Prevention of Small Subcortical
Strokes) trial1,2 was a National Institutes of Health–sponsored
RCT that examined the cardiovascular effects of a lower SBP
target of <130 mm Hg versus a higher target of 130 to
149 mm Hg in patients with recent magnetic resonance
imaging–defined lacunar stroke. This RCT found a significant
reduction in hemorrhagic stroke with the lower SBP target and

a nonsignificant reduction in all (recurrent) stroke, disabling or
fatal stroke, and the cardiovascular composite outcome of
myocardial infarction (MI) or vascular death.2

It is also important to note that although CKD is an
established risk factor for stroke,13–16 the association
between CKD and risk of recurrent stroke is less clear.16

We conducted a post hoc analysis of the SPS3 trial to
examine (1) the association of CKD with recurrent stroke and
(2) whether baseline eGFR modifies the effects of intensive
SBP control in patients with previous stroke.

Methods
The SPS3 Trial data reported here are available to the public
and were provided to us by the National Institute of Health–
National Institute of Neurological Disorders and Stroke upon
request.

Design and Participants
Details of the SPS3 study design have been previously
published.1,2 Briefly, SPS3 was a randomized, multicenter
clinical trial that enrolled 3020 participants from 81 centers in
North America, Latin America, and Spain. Eligible patients were
at least 30 years old and had a recent (at least 2 weeks, but
within 180 days) symptomatic lacunar stroke confirmed by
magnetic resonance imaging. Individuals were excluded if they
had a cortical or large (>2 cm) subcortical stroke, a disabling
stroke, a hemorrhagic stroke, or if they had advanced kidney
disease, defined as an eGFR <40 mL/min/1.73 m2 at screen-
ing. Participants were randomized to a lower SBP target of
<130 mm Hg or higher target of 130 to 149 mm Hg using the
prospective, randomized, open, blinded end-point design.1 All
participants signed informed consent, and the appropriate
institutional review board approved the trial.1,2

For this post hoc analysis, we obtained de-identified data
from the SPS3 trial from the National Institute of Neurological
Disorders and Stroke data repository. The institutional review
board at the University of Utah granted exemption from
institutional review board oversight given that this was a
secondary analysis of de-identified data. We only included the
SPS3 participants who had a measure of serum creatinine at
study baseline. Of the 3020 participants who entered SPS3,
we excluded 3 participants who had missing measures of
serum creatinine at baseline, for a final sample size of 3017
individuals.

BP Targets and Management
As noted above, participants were randomly assigned to a
higher SBP target of 130 to 149 mm Hg or a lower target of
<130 mm Hg. A study physician at each study site oversaw

Clinical Perspective

What Is New?

• We know that chronic kidney disease (CKD) increases risk
of stroke; however, whether CKD increases risk of recurrent
stroke has been relatively unclear.

• This study shows that CKD is associated with an indepen-
dent 50% increase in risk for recurrent stroke in patients
with previous lacunar stroke.

• We found no evidence that baseline estimated glomerular
filtration rate modifies the effects of blood pressure control
in patients with previous stroke.

What Are the Clinical Implications?

• Clinicians taking care of patients with previous stroke
should be aware that the presence of CKD in these patients
substantially increases risk of recurrent stroke.

• Providers should take measures to reduce risk and have a
low threshold for suspicion for recurrent stroke in patients
with previous stroke and CKD.

• We found no evidence that baseline renal function should
prompt clinicians to modify BP goals in patients with
previous stroke.
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BP management. Patients were allowed to continue their
antihypertensive medications. Patients were seen monthly
until their BP target was achieved and then quarterly for
BP measures and medication adjustment. Patients were
provided the antihypertensive medications through a study
formulary, which included at least 1 drug from each of
the major classes. Other details have been reported
previously.2

Study Measurements
BP was measured using the Colin 8800C automated device,
according to a detailed protocol based on the Joint National
Committee on Prevention, Detection, Evaluation, and Treat-
ment of High Blood Pressure (JNC VII) guidelines.17 BP was
determined by the average of the 3 BP readings separated by
at least 2 minutes in the seated position. The Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation was
used to calculate eGFR.18 Sociodemographic and medical
history data were collected at baseline. Clinical and laboratory
data were obtained at baseline and every 3 months. Other
details have been outlined previously.2

Clinical Outcomes
A committee blinded to treatment arm adjudicated the
outcomes, which have been previously described in detail.1

The primary end point of the SPS3 trial was reduction in all
stroke. For our analyses, in addition to all recurrent stroke, we
defined an additional primary outcome as the composite of all
recurrent stroke or acute MI or all-cause death. The secondary
outcomes for our study were acute MI, all-cause death, and
intracerebral hemorrhage.

Statistical Analysis
Our first objective was to assess the associations of CKD,
defined as eGFR <60 mL/min/1.73 m2 at baseline with the
primary and secondary outcomes. We used Cox proportional
hazards regression models adjusted for treatment arm and
then additionally adjusted for age, sex, study sites, baseline
diabetes mellitus, hypertension, coronary artery disease, use
of statin, use of angiotensin-converting enzyme inhibitor/
angiotensin II receptor blocker, and SBP. We tested
proportional hazards assumptions using log-log against
survival plots and Schoenfeld residuals. If multiple events
of the same type occurred, we calculated the time to event
as the time to first event. We censored data for patients
with no events at the end of study participation or death,
whichever occurred first. Our second objective was to
evaluate the consistency of the effects of lower BP control
on the outcomes between eGFR strata. We computed

hazard ratios (HRs) and 95% CIs by 2 eGFR strata (<60 and
≥60 mL/min/1.73 m2) for primary and secondary out-
comes. In addition, we investigated the possibility of
interaction by fitting a Cox regression for the primary and
secondary outcomes with main effects for the SBP
intervention and each 10 mL/min/1.73 m2 increase in
baseline eGFR, plus the interaction term between the SBP
intervention and each 10 mL/min/1.73 m2 increase in
baseline eGFR. The P value for the interaction term <0.1 is
showing potential evidence of effect modification. In
sensitivity analyses, we examined the effects of lower
BP control across 4 eGFR strata (<45, 45 to <60, 60 to
<90, and ≥90 mL/min/1.73 m2). We conducted all analy-
ses with the intention-to-treat approach and with 2-sided
tests at the 5% level of significance using R software
(version 3.4.3; R Foundation for Statistical Computing,
Vienna, Austria).

Results

Baseline Characteristics
Mean age for the 3017 participants was 62.8�10.8 years,
37.1% were female, 16.3% were black, 33.2% were diabetic,
75.0% were hypertensive, and the mean eGFR at baseline was
80.5�19.0 mL/min/1.73 m2. Mean baseline SBP was
143.0�18.8, and diastolic BP was 78.3�10.6 mm Hg. Mean
baseline eGFRs in the <60 and ≥60 mL/min/1.73 m2 sub-
groups were 51.0�7.0 and 86.0�15.0 mL/min/1.73 m2,
respectively. Even though patients with <40 mL/min/
1.73 m2 were excluded at screening, we found that 41
participants had an eGFR of <40 mL/min/1.73 m2 at baseline
(using the CKD-EPI equation). Baseline characteristics for the
whole cohort and by the 2 baseline eGFR subgroups are
summarized in Table 1 and by the 4 eGFR subgroups are
summarized in Table S1. In general, participants with lower
baseline eGFR tended to be older, have a higher baseline SBP,
and more likely to be hypertensive at baseline.

Achieved BPs
Mean achieved SBPs at 1 year in the lower and higher SBP
arms were 126.9 and 137.9 mm Hg, respectively, and for the
<60 and ≥60 mL/min/1.73 m2 eGFR subgroups were 135.0
and 132.0 mm Hg, respectively. Boxplots displaying the
medians and 25th and 75th percentiles of the achieved SBP
and diastolic BP at 1-year follow-up by 2 baseline eGFR
subgroups for participants in the lower and higher SBP target
groups are presented in Figure 1 and by 4 baseline eGFR
subgroups are presented in Figure S1. The achieved SBP was
significantly higher among participants in the eGFR <60 mL/
min/1.73 m2 compared with eGFR ≥60 mL/min/1.73 m2
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within both the lower-target group (130.0�17.1 versus
126.3�13.2 mm Hg; P=0.003) and higher-target group
(140.5�14.8 versus 137.4�14.4 mm Hg; P=0.01).

Clinical Outcomes
Association of baseline CKD with outcomes

During the median follow-up period of 3.7 years, there were
total 474 primary outcome events (the composite of all

recurrent stroke or acute MI or all-cause death). In the
subgroup with CKD (baseline eGFR of <60 mL/min/
1.73 m2) at baseline (N=474), 113 (23.8%) primary out-
come events occurred, of which 58 (12.2%), 11 (2.3%), and
44 (9.3%) were recurrent stroke, acute MI, and all-cause
death, respectively. In the subgroup without CKD (eGFR
≥60 mL/min/1.73 m2) at baseline (N=2543), 361 (14.2%)
primary outcome events occurred, of which 213 (8.4%), 52
(2%), and 96 (3.8%) were recurrent stroke, acute MI, and

Table 1. Baseline Characteristics of the Secondary Prevention of Small Subcortical Strokes Trial Participants According to
Treatment Arms and 2 Baseline eGFR Subgroups (n=3017)

Baseline eGFR Subgroups

All

<60 mL/min/1.73 m2 ≥60 mL/min/1.73 m2

Higher-Target
Group (n=227)

Lower-Target
Group (n=247)

Higher-Target
Group (n=1290)

Lower-Target
Group (n=1253)

Age, mean (SD), y 69.4 (10.9) 69.3 (11.4) 61.7 (10.4) 61.5 (10.1) 62.8 (10.8)

Female, N (%) 91 (40.1) 125 (50.6) 438 (34.0) 464 (37.0) 1118 (37.1)

Race/ethnicity, N (%)

Non-Hispanic white 128 (56.4) 134 (54.3) 630 (48.8) 638 (50.9) 1530 (50.7)

Black 36 (15.9) 33 (13.4) 215 (16.7) 208 (16.6) 492 (16.3)

Hispanic 56 (24.7) 73 (29.6) 412 (30.3) 380 (30.3) 921 (30.5)

Other/multiple 7 (3.1) 7 (2.8) 33 (2.6) 27 (2.2) 74 (2.5)

Region, N (%)

North America 134 (59.0) 164 (66.4) 848 (65.7) 812 (64.8) 1958 (64.9)

Latin America 55 (24.2) 57 (23.1) 297 (23) 285 (22.7) 694 (23.0)

Spain 38 (16.7) 26 (10.5) 145 (11.2) 156 (12.5) 365 (12.1)

SBP, mean (SD), mm Hg 146.8 (21.0) 147.3 (21.0) 143.0 (18.7) 141.5 (17.8) 143.0 (18.8)

DBP, mean (SD), mm Hg 77.9 (11.6) 76.9 (11.1) 79.2 (10.6) 77.8 (10.3) 78.4 (10.6)

History of CAD, N (%) 29 (12.8) 28 (11.3) 109 (8.4) 86 (6.9) 252 (8.4)

History of CHF, N (%) 3 (1.3) 7 (2.8) 10 (1.0) 12 (1.0) 32 (1.1)

Diabetes mellitus, N (%) 74 (32.6) 93 (37.7) 425 (32.9) 409 (32.6) 1001 (33.2)

Hypertension, N (%) 196 (86.3) 218 (88.3) 939 (72.8) 909 (72.5) 2262 (75.0)

eGFR, mean (SD), mL/min/1.73 m2 50.9 (7.1) 51.1 (6.9) 85.9 (14.9) 86.0 (15.1) 80.5 (19.0)

Total cholesterol, mean (SD), mg/dL 174.0 (56.8) 175.1 (52.4) 177.3 (57.6) 175.7 (55.7) 176.2 (56.3)

Smoking, N (%)

Current 32 (14.1) 27 (10.9) 275 (21.3) 282 (22.5) 616 (20.4)

Past 100 (44.1) 113 (45.7) 498 (38.6) 495 (39.5) 1206 (40.0)

Never 95 (41.9) 107 (43.4) 517 (40.1) 476 (38.0) 1195 (39.6)

Plasma glucose, mean (SD), mg/dL 118.9 (45.1) 127.6 (60.7) 126.9 (55.8) 125.0 (54.6) 125.6 (55.0)

Statin use, N (%) 152 (67.0) 175 (70.9) 890 (69.0) 862 (68.8) 2079 (68.9)

Aspirin use, N (%) 130 (57.3) 129 (52.2) 731 (56.7) 707 (56.4) 1697 (56.3)

BMI, mean (SD), kg/m2 28.8 (5.9) 28.3 (5.5) 29.3 (7.7) 29.1 (6.2) 29.1 (6.8)

No. of antihypertensive drugs,
mean (SD)

1.9 (1.2) 2.0 (1.2) 1.6 (1.1) 1.5 (1.1) 1.6 (1.1)

Values for categorical variables are presented as number (percentage); values for continuous variables, as mean (SD). BMI indicates body mass index; CAD, coronary artery disease; CHF,
congestive heart failure; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure.
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all-cause death, respectively. CKD at baseline was associ-
ated with a significant 40% increase in risk for the
composite outcome (HR, 1.4; 95% CI, 1.1–1.7) and with a
significant 50% increase in risk for all recurrent stroke (HR,
1.5; 95% CI, 1.1–2.0; Table 2). Nevertheless, differences in
risk for secondary outcomes of acute MI, all-cause death,
and intracerebral hemorrhage were not significant between
subgroups with and without baseline CKD. Figure 2 shows
the cumulative incidence of the primary composite outcome

and all recurrent stroke in patients with versus without CKD
at baseline, respectively.

Modification of effects of the SBP intervention on the
outcomes by baseline eGFR

When stratified by 2 baseline eGFR strata, <60 and
≥60 mL/min/1.73 m2 (CKD and non-CKD), the HR for
the primary composite outcome was 0.98 (95% CI, 0.67–
1.41) within the CKD group and 0.86 (95% CI, 0.70–1.06)

Figure 1. Achieved blood pressures by randomized SBP intervention and 2 baseline eGFR subgroups. Boxplots display the median, 25th, and
75th percentiles of the patients’ follow-up values at 1 year for systolic blood pressure (SBP; A) and diastolic blood pressure (DBP; B) by
randomized SBP intervention and two baseline eGFR groups. One hundred twenty-three of 3017 subjects (4.1%; 68 in the higher-target group
and 55 in the lower-target group) had missing blood pressure measurements at 1 year and were not included. eGFR indicates estimated
glomerular filtration rate.

Table 2. Association Between Baseline CKD (eGFR <60 mL/min/1.73 m2) and Risk of Primary and Secondary Outcomes
(Regardless of the SBP Intervention)

Outcome

Baseline eGFR Subgroups

<60 mL/min/1.73 m2

(n=474)
≥60 mL/min/1.73 m2

(n=2543) Unadjusted Adjusted*

Events N (%)
Incidence (95% CI)
Per 100 PY Events N (%)

Incidence (95% CI)
Per 100 PY HR (95% CI) P Value aHR (95% CI) P Value

Stroke, MI, or death 113 (23.8) 6.6 (5.5, 8.0) 361 (14.2) 3.9 (3.5, 4.4) 1.7 (1.4, 2.1) 1.4E-6 1.4 (1.1, 1.7) 4.4E-3

Stroke 58 (12.2) 3.4 (2.6, 4.4) 213 (8.4) 2.3 (2.0, 2.7) 1.5 (1.1, 2.0) 0.01 1.5 (1.1, 2.0) 0.01

Acute MI 11 (2.3) 0.6 (0.4, 1.2) 52 (2.0) 0.6 (0.4, 0.7) 1.1 (0.6, 2.2) 0.70 1.0 (0.5, 1.9) 0.92

All-cause death 44 (9.3) 2.6 (1.9, 3.5) 96 (3.8) 1.0 (0.9, 1.3) 2.5 (1.7, 3.5) 8.3E-7 1.4 (0.9, 2.0) 0.10

IC hemorrhage 7 (1.5) 0.4 (0.2, 0.9) 15 (0.6) 0.2 (0.1, 0.3) 2.5 (1.0, 6.2) 0.04 1.8 (0.7, 4.8) 0.22

aHR indicates adjusted hazard ratio; CKD, chronic kidney disease; HR, hazard ratio; IC hemorrhage, intracerebral hemorrhage; MI, myocardial infarction; PY, person-years.
*Adjusted for age, sex, treatment assignment, study sites, and baseline diabetes mellitus, hypertension, statin use, angiotensin-converting enzyme inhibitor or angiotensin-receptor blocker
use, systolic blood pressure, and history of coronary artery disease.

DOI: 10.1161/JAHA.119.013098 Journal of the American Heart Association 5

eGFR, Recurrent Stroke and Blood Pressure Agarwal et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



within the non-CKD group (P interaction=0.57; Figure 3).
Furthermore, there was no evidence of an interaction
between SBP intervention and baseline CKD for any of
the outcomes, including the primary composite outcome,
all recurrent stroke, all-cause death, acute MI, or
intracerebral hemorrhage events (Figure 3).

We further examined the consistency of the SBP interven-
tion effect on the primary and secondary outcomes across

4 strata of baseline eGFR (<45, 45 to <60, 60 to <90, and
≥90-mL/min/1.73 m2). The beneficial effect of lower-target
SBP intervention on all-cause death was attenuated with
increase of eGFR (P interaction=0.04), whereas eGFR did not
modify the effect on the primary composite outcome
(P interaction=0.66), all recurrent stroke (P interaction=0.22),
acute MI (P interaction=0.47), or intracerebral hemorrhage
(P interaction=0.33; Figure S2).

Figure 2. Cumulative incidence of the composite outcome and all recurrent stroke for those with and without CKD. A, Composite outcome. B,
All recurrent stroke. CKD indicates chronic kidney disease; eGFR, estimated glomerular filtration rate HR, hazard ratio.

Figure 3. Forest plots with hazard ratios for the effect of SBP intervention on the events of primary and secondary outcomes by 2 baseline
eGFR subgroups. *The interaction test for each outcome compared HRs below and above eGFR value of 60 mL/min/1.73 m2. Composite CV
indicates composite cardiovascular outcome; HR, hazard ratio; IC hemorrhage, intracerebral hemorrhage; MI, myocardial infarction; SBP, systolic
blood pressure.
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After adjustment for the linear form of baseline eGFR (each
10 mL/min/1.73 m2 increase), intensive SBP control
remained beneficial for the primary and secondary outcomes
when compared with standard SBP control, with no significant
modification by baseline eGFR on this effect (Table 3). The HR
of intracerebral hemorrhage remained significantly reduced
(HR, 0.37; 95% CI, 0.14–0.93; P=0.04) with adjustment for
baseline eGFR. There was no evidence of interaction between
SBP intervention and linear form of baseline eGFR for the
primary composite outcome (P interaction=0.62), all recurrent
stroke (P interaction=0.78), acute MI (P interaction=0.42), all-
cause death (P interaction=0.16), or intracerebral hemorrhage
(P interaction=0.30; Table 3).

Discussion
We found that in patients with well-defined previous lacunar
stroke, baseline eGFR of <60 mL/min (versus ≥60 mL/min)
was significantly associated with an increased risk of all
recurrent stroke and the composite outcome of stroke, acute
MI or all-cause death. Risk of recurrent stroke increased by 50%
(and by 40% for the composite outcome) in patients with
baseline CKD (eGFR <60 mL/min/1.73 m2) versus those
without CKD even after adjusting* (*Adjusted for age, gender,
treatment assignment, study sites and baseline diabetes
mellitus, hypertension, statin use, ACE inhibitor or ARB use,
systolic blood pressure, and history of coronary artery disease.)
for other baseline variables. However, we found no evidence
that baseline eGFR significantly modifies the effects of lower
SBP target (<130 mm Hg) on either recurrent stroke or the
composite outcome, or on any of the secondary outcomes of
acute MI, all-cause death, or intracerebral hemorrhage.

This post hoc analysis of SPS3 is the first to report a clear
association between CKD and recurrent stroke in patients with
confirmed and well-defined previous lacunar stroke. Several
previous studies show that renal dysfunction increases risk of
cardiovascular events, and incident stroke,19–21 but do not
show clear associations of renal dysfunction with recurrent
stroke. This may be because there are few RCTs that have
enrolled patients with a well-characterized history of previous
stroke. The SPS3 trial, however, included patients with well-
characterized magnetic resonance imaging–defined lacunar
infarctions that occurred within 6 months before entry to the
trial and thus presented an opportunity for accurately defining
the association of CKD with recurrent stroke. In the previous
RCTs that enrolled patients with previous stroke (PROGRESS
[Perindopril pROtection aGainst REcurrent Stroke Study]22 and
PRoFESS [Prevention Regimen for Effectively Avoiding Second
Strokes]23 trials), previous stroke was not as well defined as in
the SPS3 trial; nevertheless, post hoc analyses of these
trials24,25 did report increased risk of recurrent stroke with
baseline CKD. Our study clarifies and defines the independent
association of CKD with a 50% increase in risk of recurrent
stroke in patients with a history of well-defined previous lacunar
stroke. A widely cited meta-analysis by Lee et al published in
2010 found that an eGFR of <60 mL/min/1.73 m2 is associ-
ated with a 43% higher risk of primary incident stroke.16 Our
results show a similar increase in risk of recurrent stroke in
patients with an eGFR of <60 mL/min/1.73 m2.

This study is also the first to report whether baseline kidney
function modifies the effects of BP control in patients with
previous stroke. Although greater absolute risks magnify treat-
ment benefits, previous data suggest that CKD attenuates the
benefits of intensive BP control.10,12 However, no such data

Table 3. Effects of the SBP Intervention, Baseline eGFR, and the Linear Interaction Between the SBP Intervention and Baseline
eGFR for the Primary and Secondary Outcomes

Model 1* Model 2†

Lower-Target vs Higher-Target
Change in Each 10 mL/min/1.73 m2

Increase in Baseline eGFR

Interaction Term (Change in Lower-
Target vs Higher-Target HR for Each
10 mL/min/1.73 m2 Increase in
Baseline eGFR

HR (95% CI) P Values HR (95% CI) P Values HR (95% CI) P Values

Stroke, MI, or death 0.89 (0.75, 1.07) 0.22 0.89 (0.85, 0.93) 7.7E-7 1.02 (0.93, 1.13) 0.62

Stroke 0.83 (0.66, 1.06) 0.14 0.95 (0.89, 1.01) 0.12 1.02 (0.90, 1.16) 0.78

Acute MI 0.95 (0.58, 1.56) 0.84 0.92 (0.81, 1.05) 0.22 0.90 (0.69, 1.17) 0.42

Death (all-cause) 0.98 (0.71, 1.37) 0.93 0.76 (0.69, 0.83) 1.7E-9 1.14 (0.95, 1.36) 0.16

Intracerebral hemorrhage 0.37 (0.14, 0.93) 0.04 0.76 (0.61, 0.96) 0.02 0.76 (0.45, 1.29) 0.30

eGFR indicates estimated glomerular filtration rate; HR, hazard ratio; MI, myocardial infarction; SBP, systolic blood pressure.
*The second to fifth columns under model 1 display the results of Cox regression analyses relating the primary and secondary outcomes to the randomized SBP intervention (HRs in the
second column) and to the level of baseline eGFR at each increase of 10 mL/min/1.73 m2 (HRs in the fourth column).
†

The sixth and seventh columns display the proportional change in the HR comparing the intensive and standard SBP interventions for each 10 mL/min/1.73 m2 increase in baseline eGFR
under model 2, which includes main effects for the randomized SBP intervention and linear form of baseline eGFR, plus linear interactions between the randomized SBP intervention and
baseline eGFR. The linear interactions were evaluated by likelihood ratio tests.
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existed for patients with previous stroke. A cohort study of US
veterans with prevalent CKD (eGFR of <60 mL/min/1.73 m²)
suggested increased mortality when treated to an SBP of
<120 mm Hgversus120 to139 mm Hg.26A secondary analysis
of 2 community-based, longitudinal studies (ARIC27 [Athero-
sclerosis Risk in Communities Study] and Cardiovascular Health
Study28) including data from 20 358 individuals showed an
increased risk of stroke with an SBP of <120 mm Hg in patients
with CKD (eGFR<60 mL/min/1.73 m2), but not in thosewithout
CKD.29

TheSPRINT trial did show cardiovascular benefits of intensive
SBP control (<120 versus <140 mm Hg), but was not designed
to assesswhetherCKDmodified theeffects of SBPcontrol. Post-
hoc analyses of SPRINT report conflicting results. Benefits of
intensive SBP control were observed to persist in patients with
CKD when baseline eGFR was used as a dichotomous variable
(<60 versus ≥60 mL/min/1.73 m2).8,30 However, another post
hoc analysis of SPRINT suggested that in the subset of
participants with moderate-to-advanced CKD (defined as eGFR
of <45 mL/min/1.73 m2), intensive SBP control provided little
or no cardiovascular benefit.12 Given that SPRINT excluded
patients with a history of stroke, these analyses could not
examine how renal dysfunction may modify the effects of
intensive SBP control in patients with previous stroke. Another
large BP target trial, the Action to Control Cardiovascular Risk in
Type 2 Diabetes (ACCORD) trial, looked at the effects of similar
SBP targets (<120 versus <140 mm Hg); however, it had a
relatively small proportion (9%) of participantswith baselineCKD
and a poorly defined cohort of participants with previous
stroke.31 In contrast, all participants of SPS3 had previous
stroke, and almost 16% had baseline CKD; thus, a post hoc
analysis of SPS3 data presented an opportunity for assessing
how renal dysfunction may modify the effects of intensive SBP
control in patients with previous stroke.

It is also important to point out that elucidation of optimal
BP targets in patients with previous stroke and CKD is
important. Hypertension is the most prevalent risk factor for
cardiovascular disease and stroke.32 BP is an important
determinant of cardiovascular disease,33 and lowering of BP
prevents initial33,34 and recurrent22,35,36 stroke. Lacunar or
small subcortical strokes account for around 25% of all
ischemic strokes and may have a stronger association with
hypertension than other types of strokes.37

As noted above, we did not find any evidence that baseline
CKD or eGFR modified the effects of lower (<130 mm Hg)
versus higher (130–149 mm Hg) SBP targets in patients with
previous lacunar stroke. This may be either because eGFR
does not modify the effects of SBP control in patients with
previous stroke or because our study lacked power to detect
small effects. The number of participants with low eGFR was
relatively low (474 with <60 versus 2543 with ≥60 mL/min/
1.73 m²), and that was the main limitation of our study. Given

that it is possible that attenuation of the benefits of SBP
control is observed only with moderate-to-advanced CKD,12

we also assessed the effects of SBP intervention across 4
baseline eGFR strata (<45, 45 to <60, 60 to <90, and
≥90 mL/min/1.73 m2). This helped to assess possible
effects of more-advanced CKD, but reduced the number of
participants in each eGFR strata, further limiting the statistical
power. Using these 4 categorical strata, we found a borderline
significant interaction with all-cause death, but not with any
other outcome. This could be because of the small sample
size for the eGFR <45 mL/min/1.73 m2 category; categoriz-
ing continuous variables like eGFR may impair the statistical
power to detect meaningful differences.

In addition to having relatively few participants with CKD,
especially moderate-to-advanced CKD, our study had some
other limitations. The SPS3 trial evaluated recurrent stroke
only in patients with previous lacunar stroke; thus, the results
may not be generalizable to other types of stroke. In addition,
the SPS3 trial had lower than anticipated event rates. The
post hoc nature of our analyses could only detect association,
not causality. On the other hand, our study had certain
strengths. Magnetic resonance imaging confirmation and
characterization of previous lacunar stroke ensured homo-
geneity of the study population, unlike any previous study. The
SPS3 was a well-designed and well-conducted trial, and we
studied effects of contemporaneously relevant SBP targets of
<130 mm Hg (the target SBP recommended by the 2017
American College of Cardiology/American Heart Association
guidelines for patients with previous stroke) versus a higher
target of 130 to 149 mm Hg.

In conclusion, we found an independent 50% increase in risk
for recurrent stroke in patients with CKD (eGFR <60 mL/min/
1.73 m2). Clinicians treating patients with previous stroke
should be aware of this increased risk with CKD, take measures
to reduce the risk of recurrent stroke, and have a low threshold
for clinical suspicion for recurrent stroke in patients with CKD. It
remains possible that renal dysfunction modifies the effects of
BP control in patients with previous stroke, but we found no
definitive evidence of that. We need large-scale BP target trials
for those with moderate-to-advanced CKD.
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SUPPLEMENTAL MATERIAL



Table S1. Baseline data for the four eGFR subgroups. 

Baseline eGFR subgroups 

< 45  
mL/min/1.73 m2 

45 - < 60  
mL/min/1.73 m2 

60 - < 90  
mL/min/1.73 m2 

≥ 90  
mL/min/1.73 m2 

SBP target intervention 
(mm Hg) 

Higher 
130-149

Lower 
<130 

Higher 
130-149

Lower 
<130 

Higher 
130-149

Lower 
<130 

Higher 
130-149

Lower 
<130 

N (number) 49 46 178 201 773 750 517 503 

Age, mean (SD), year 69.10 
(11.62) 

70.24 
(11.04) 

69.44 
(10.68) 

69.07 
(11.49) 

64.91 
(10.23) 

64.13 
(10.64) 

56.88 
(8.59) 

57.45 
(7.72) 

Female, N (%) 19 (38.78) 24 (52.17) 72 (40.45) 101 (50.25) 264 (34.15) 283 (37.73) 174 (33.66) 181 (35.98) 

Race/ethnicity, N (%) 

 Non-Hispanic white 25 (51.02) 24 (52.17) 103 (57.87) 110 (54.73) 408 (52.78) 404 (53.87) 222 (42.94) 234 (46.52) 

 Black 12 (24.49) 5 (10.87) 24 (13.48) 28 (13.93) 111 
(14.369) 

112 (14.93) 104 (20.12) 96 (19.09) 

 Hispanic 8 (16.33) 14 (30.43) 48 (26.97) 59 (29.35) 231 (29.88) 216 (28.80) 181 (35.01) 164 (32.60) 

 Other/multiple 4 (8.16) 3 (6.52) 3 (1.69) 4 (11.76) 23 (2.98) 18 (2.40) 10 (1.93) 9 (1.79) 

Region, N (%) 

 North America 34 (69.39) 31 (67.39) 100 (56.18) 133 (66.17) 512 (66.24) 487 (64.93) 336 (64.99) 325 (64.61) 

 Latin America 8 (16.33) 12 (26.09) 47 (26.40) 45 (22.39) 174 (22.51) 173 (23.07) 123 (23.79) 112 (22.27) 

 Spain 7 (14.29) 3 (6.52) 31 (17.42) 23 (11.44) 87 (11.25) 90 (12.00) 58 (11.22) 66 (13.12) 

SBP, mean (SD), mmHg 144.65 
(21.00) 

142.96 
(18.63) 

147.44 
(20.97) 

148.32 
(21.47) 

144.47 
(19.09) 

142.36(18.
45) 

140.79 
(17.97) 

140.18 
(16.74) 

DBP, mean (SD), mmHg 76.35 
(12.59) 

73.63 
(10.71) 

78.33 
(11.29) 

77.64 
(11.11) 

79.24 
(11.09) 

77.35 
(10.48) 

79.22 
(9.96) 

78.48 
(9.97) 

History of CAD, N (%) 6 (12.24) 7 (15.22) 23 (12.92) 21 (10.45) 75 (9.70) 57 (7.60) 34 (6.58) 29 (5.77) 

History of CHF, N (%) 2 (4.08) 1 (2.17) 1 (0.56) 6 (2.99) 7 (0.91) 7 (0.93) 3 (0.58) 5 (0.99) 

Diabetes Mellitus, N (%) 18 (36.73) 20 (43.48) 56 (31.46) 73 (36.32) 234 (30.27) 217 (28.93) 191 (36.94) 192 (38.17) 

Hypertension, N (%) 45 (91.84) 41 (89.13) 151 (84.83) 177 (88.06) 598 (77.36) 567 (75.60) 341 (65.96) 342 (67.99) 

eGFR, mean (SD), 
mL/min/1.73m2 

40.04 
(4.47) 

39.71 
(4.04) 

53.92 
(4.15) 

53.65 
(4.31) 

75.95 
(8.35) 

75.83 
(8.43) 

100.89 
(8.64) 

101.25 
(8.68) 

Total cholesterol, mean (SD), 
mg/dL 

171.52 
(68.01) 

186.21 
(55.50) 

174.65 
(53.53) 

172.54 
(51.41) 

173.11 
(57.29) 

174.11 
(55.54) 

183.49 
(57.61) 

177.99 
(55.81) 

Smoking, N (%) 



    Current 9 (18.37) 2 (4.35) 23 (12.92) 25 (12.44) 123 (15.91) 132 (17.60) 152 (29.40) 150 (29.82) 

    Past 24 (48.98) 18 (39.13) 76 (42.70) 95 (47.26) 331 (42.82) 314 (41.87) 167 (32.30) 181 (35.98) 

    Never 16 (32.65) 26 (56.52) 79 (44.38) 81 (40.30) 319 (52.12) 304 (40.53) 198 (38.30) 172 (34.19) 

Plasma glucose, mean (SD), 
mg/dL 

117.81 
(42.26) 

132.54 
(68.44) 

119.21 
(45.93) 

126.43 
(58.86) 

122.85 
(52.00) 

120.59 
(48.71) 

132.99 
(60.65) 

131.62 
(61.74) 

Statin use, N (%) 34 (69.39) 37 (80.43) 118 (66.29) 138 (68.66) 523 (67.66) 503 (67.07) 367 (70.99) 359 (71.37) 

Aspirin use, N (%) 26 (53.06) 25 (54.35) 104 (58.43) 104 (51.74) 431 (55.76) 407 (54.27) 300 (58.03) 300 (59.64) 

BMI, mean (SD), kg/m2 29.22 
(7.19) 

27.79 
(5.56) 

28.72 
(5.44) 

28.48 
(5.51) 

28.83 
(5.91) 

28.91 
(6.14) 

29.98 
(9.83) 

29.33 
(6.31) 

No. of antihypertensive drugs, 
mean (SD) 

2.3 (1.34) 2.00 (0.94) 1.81 (1.11) 2.03 (1.21) 1.66 (1.15) 1.64 (1.11) 1.42 (1.12) 1.41 (1.06) 

Alcohol, N (%) 11 (22.45) 8 (17.39) 38 (21.35) 48 (23.88) 237 (30.66) 213 (28.40) 138 (26.69) 154 (30.62) 

 

Values for categorical variables are presented as number (percentage); values for continuous variables, as mean (standard). 

eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; DBP, diastolic blood pressure, CAD, coronary artery disease; CHF, congestive heart 

failure. 



Figure S1. Achieved blood pressures by randomized SBP intervention and four baseline eGFR subgroups.  

 

 

The boxplots display the median, 25th and 75th percentiles of the patients’ follow-up values at 1-year for systolic blood pressure (SBP; A), diastolic blood pressure 

(DBP; B) by randomized SBP intervention and four baseline eGFR groups. 123 of 3017 subjects (4.1%) (68 in the higher-target group and 55 in the lower-target 

group) had missing blood pressure measurements at 1-year and were not included. 

 

 



Figure S2. Forest plots with hazard ratios for the effect of SBP intervention on the events of primary and secondary outcomes by four eGFR subgroups. 

 

A. Composite

 
B. Stroke 

 
C. Death 



 

D. Acute MI 

 
E. IC Hemorrhage

 

*The interaction test for each outcome compared HRs between the four baseline eGFR groups. 
Composite CV, composite cardiovascular outcome; MI, myocardial infarction; IC Hemorrhage, intracerebral hemorrhage; HR, hazard ratio; CI, confidence 
interval.  
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