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Abstract

Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental pollutant used worldwide

as a plasticizer and solvent in many formulations. Based on available toxicological data, it

has been classified as toxic for reproduction and as an endocrine disruptor. Despite this,

ecotoxicological studies in aquatic wildlife organisms are still scarce. In the present work,

the toxic molecular alterations caused by DEHP in aquatic larvae of the midge Chironomus

riparius have been studied, by analyzing the transcriptional activity of genes related to some

vital cellular pathways, such as the ribosomal machinery (rpL4, rpL13), the cell stress

response (hsc70, hsp70, hsp40, hsp27), the ecdysone hormone pathway (EcR), the energy

metabolism (GAPDH), and detoxication processes (CYP4G). Environmentally relevant con-

centrations (10−3 to 105 μg/L) and exposure conditions (24 to 96 h) have been tested, as

well as the toxic effects after DEHP withdrawal. Although the compound caused no mortal-

ity, significant changes were detected in almost all the studied biomarkers: e.g. strong

repression of hsp70; general inhibition of EcR; GAPDH activity loss in long exposures;

among others. Our data show a general transcriptional downregulation that could be associ-

ated with an adaptive response to cell damage. Besides, the activity of the compound as an

ecdysone antagonist and its delayed effects over almost all the biomarkers analyzed are

described as novel toxic targets in insects.

Introduction

Phthalates or phthalic acid esters (PAEs) are a family of man-made chemicals widely used

since 1930s as plasticizers in the manufacture and processing of plastic materials, and which

also appear in the composition of hundreds of consumer products, such as paints, detergents,

adhesives, solvents, lubricants, insecticides, cosmetics and personal care products, among oth-

ers [1,2]. World production of PAEs has grown rapidly in recent decades and, to date, 6–8 mil-

lion tons of these chemicals are consumed worldwide each year [3]. Among all of them, di
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(2-ethylhexyl) phthalate (DEHP) has been the most commonly used, with an approximate

annual consumption at present of 1–2 million tons [4,5].

Given that PAEs are not chemically bound to the polymeric matrix, they can gradually

enter the environment by losses during their manufacturing, storage, use, and disposal [6,7],

and can leach, migrate or evaporate into indoor air and atmosphere, soil, water, and a variety

of materials such as foodstuff or medical devices, among others [1,8–10]. These characteristics,

along with their physico-chemical properties, have turned PAEs into ubiquitous environmen-

tal pollutants that represent serious risks to human and environmental health.

Based on its toxicological profile and along with other phthalates, DEHP is blacklisted as a

priority substance by the European Union [11,12], and several international regulatory agen-

cies [3,8,13]. This chemical has also been included in different regulations concerning water

quality, in which agencies have established the highest concentrations in water that are not

expected to involve a significant risk to the majority of species in a specific environment, or to

people [12,14,15]. Moreover, the presence of DEHP or other PAEs in different consumer

products (e.g. toys, foodstuff) has been banned or restricted in recent years [16–18], and the

presence of DEHP in drinking water has been severely limited [19–21].

Because of the large variety of toxic effects described to date, DEHP is classified as toxic for

reproduction [22,23], Endocrine Disrupting Chemical (EDC) [24], and possibly carcinogenic

to humans [5]. The environmental fate and toxicokinetics of DEHP has been reviewed exten-

sively [1,3,8,25]. In its main degradation pathway, DEHP hydrolyzes to mono-ethylhexyl

phthalate (MEHP) and follows subsequent glucuronid conjugation, but the formation rate and

fate of MEHP in the environment is not known [26]. Differences in detoxication capabilities

among aquatic species lead to variable bioaccumulation rates, although it is known that inver-

tebrates are less able to break down DEHP [27]. MEHP reprotoxic effects have been reported

in studies on mammals, but there are no other data on ecotoxicological properties of MEHP

available [26]. Despite the increase in recent years in the amount of data available on the envi-

ronmental toxicity of DEHP, research on its ecotoxicological effects in aquatic invertebrates

and benthic wildlife organisms is still limited.

Since water constitutes the main vehicle for the dispersion of DEHP, aquatic ecosystems are

especially sensitive to the presence of the compound. Although the compound in water tends

to bind to sediments and suspended particles, a small amount persists dissolved in the water

column [27]. Sediments integrate time-space effects of surface water pollution and represent a

serious hazard to benthic and pelagic communities, so the ability of the compound to accumu-

late in such material makes it essential the evaluation of its toxic effects on species in that spe-

cific environment [26]. In this regard, among all freshwater benthic invertebrates, chironomid

larvae constitute one of the most ubiquitous and abundant, and represent an important link in

the food chain, capable of incorporating pollutants accumulated in sediments in which they

grow and feed on. In fact, Chironomus midges are internationally used as model organisms in

standardized environmental toxicity protocols [28–33], and have been selected as suitable

organisms for research on the capacity of xenobiotics to cause endocrine disruption [34].

Complementary to other scientific works with more classical toxicity endpoints (e.g. survival,

growth, immobilization, life-cycle, etc.), the use of molecular targets for ecotoxicity assessments

(e.g. gene or enzyme activity) has increase in recent years in Chironomus riparius, as they have

demonstrated to be effective biomarkers for the early detection of cellular stress responses and

chemical toxicity, and constitute an important approach to achieve time and cost-effective tests

for larger-scale evaluations. As an example, in the last few years different Chironomus species have

served to assess transcriptional alterations caused by exposure to phthalates and other xenobiotics,

biocides, metals, and nanoparticles, among other environmental stressors (e.g. [35–40] and refer-

ences therein). It has been described the modulation of genes encoding ribosomal proteins, heat-
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shock proteins, hemoglobins, the ecdysone receptor, the estrogen-related receptor, alcohol dehy-

drogenase, calponin, and serine-type endopeptidase (e.g. [41–45] and references therein).

Although it has been shown that expression levels of some of these molecular biomarkers are

physiologically modulated throughout the development [42], available data demonstrate that gene

expression is more sensitive to toxicant exposure than life cycle endpoints, underlining that the

transcriptional changes can be harnessed to diagnose the exposure and effects of environmental

chemicals in ecotoxicity testing and environmental risk assessments [46–48].

To determine accurate responsive genes which could be used as reliable biomarkers in the

ecotoxicological risk assessment of DEHP, our objective in the present study was to analyze its

molecular effects on aquatic larvae of the model organism C. riparius. We selected environ-

mentally relevant concentrations and different exposure scenarios and evaluated the transcrip-

tional activity of genes related to several crucial cell systems: the ribosomal machinery (rpL4,

rpL13); the cell stress response (hsc70, hsp70, hsp40, hsp27); the ecdysone hormone pathway

(EcR); the energy metabolism (GAPDH); and detoxication processes (CYP4G). We also

assessed the enzyme activity of glutathione S-transferase (GST).

Materials and methods

Test animals

The experimental animals were aquatic larvae from the non-biting midge Chironomus riparius.
Larvae used were reared under standard laboratory conditions, according to toxicity testing

guidelines [32,33,49]. They were grown from egg masses in polyethylene tanks (500 mL) with

aqueous culture medium (0.5 mM CaCl2, 1 mM NaCl, 1 mM MgSO4, 0.1 mM NaHCO3, 0.025

mM KH2PO4, 0.01 mM FeCl3) supplemented with nettle leaves, commercial fish food, and cel-

lulose tissue. Cultures were maintained under constant aeration at 20˚C and standard light-

dark periods 16:8. Experiments were carried out using exclusively fourth instar larvae, and the

larval stage was determined based on the size of head capsule [49].

Exposure conditions and survival tests

Solutions of di(2-ethylhexyl) phthalate (DEHP, CAS No. 117-81-7) (Sigma-Aldrich, USA) were

dissolved in analytical grade ethanol to provide a stock concentration of 107 μg/L. The test solu-

tions were constructed in culture medium at 0.01% ethanol. This was the final percentage of etha-

nol present in the solvent controls used in the experiment and preliminary tests demonstrated that

induced no effects on the organisms in any of the selected endpoints. The nominal concentrations

of DEHP ranged from 10−3 to 105 μg/L, and included both higher and lower levels than those

described in the literature for drinking water resources and aquatic ecosystems [1,3,8,19,20,26].

Larval survival was studied in all DEHP concentrations for 24-h exposures, and at the four

lowest doses (10−3 to 1 μg/L) for longer experiments. The delayed toxicity (24+24 h), consisting

of 24-h exposure followed by DEHP withdrawal and additional 24 hours in fresh medium, was

also evaluated. Groups of 20 larvae were selected randomly and exposed to aqueous solutions

of DEHP, without sediment. Larvae were not fed during the experiments, and survival rates

were calculated after 24, 48, 72, or 96 h. For each experimental condition, four independent

experiments were performed and groups of five surviving larvae were randomly selected,

stored at -80˚C, and used for RNA or protein extraction.

RNA and protein isolation

TRIzol Reagent (Invitrogen, Germany) was used to extract total RNA from frozen larvae, fol-

lowing the manufacturer’s instructions. Samples were treated with RNase-free DNase (Roche,
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Germany) for 90 min, and an organic extraction with phenol-chloroform was completed. Fol-

lowing precipitation using isopropyl alcohol (0.5 v/v) and washing with 70% ethanol, RNA

was resuspended in DEPC water, quantified by absorption spectroscopy (BioPhotometer,

Eppendorf, Germany), and stored at -80˚C.

Total protein content was obtained after homogenization in 0.5 mL of Tris–EDTA buffer

(40 mM Tris, 1 mM EDTA, pH 7.8) with 7x complete EDTA-Free protease inhibitor (Roche)

with a subsequent centrifugation [42], and was quantified with BCA Protein Assay Reagent

(Thermo Fisher Scientific, USA), according to the manufacturer’s instructions. Protein sam-

ples were stored at -20˚C.

Reverse Transcription Polymerase Chain Reaction (RT- PCR)

Gene expression analyses were carried out only at low DEHP doses (10−3 to 1 μg/L). Semi-

quantitative RT-PCR was used to evaluate the mRNA expression profile of selected genes.

Reverse transcription was performed with 1 μg of the isolated RNA. Oligo(dT) primer (Invi-

trogen) was used with the M-MLV enzyme (Invitrogen) following the manufacturer’s instruc-

tions. Suites of primers were selected to specifically target selected genes (Table 1). PCR was

performed in a MiniOpticon Thermocycler (Bio-Rad, USA), according to [42]. For all samples,

the initial cDNA content and the amplification curves were adjusted in the PCR protocols,

to prevent the ulterior saturation of DNA bands and subsequent quantification errors. The

amplified PCR products were run in a 9% acrylamide gel at 60 V for 3 hours in 1x TGE buffer

(40 mM Tris-Cl (pH 8.5), 200 mM glycine, and 2.5 mM EDTA), visualized after ethidium bro-

mide staining and quantified with Chemigenius3 (Syngene, USA), using GeneSnap 6.05 and

Table 1. Primers used for RT-PCR amplification of the genes studied in C. riparius. Forward (F) and reverse (R) sequences, base pair (bp) length of

the obtained fragments and origin of sequences are provided. References to the original published sequences can be found in [38,42].

Gene Description DNA sequence (50-30) Fragment size (bp)

actin Actin protein F GATGAAGATCCTCACCGAACG 201

R CGGAAACGTTCATTACCG

26S 26S ribosomal ribonucleic acid F TTCGCGACCTCAACTCATGT 220

R CCGCATTCAAGCTGGACTTA

rpL4 Ribosomal protein L4 F AACGCTTCAGAGCTGGACGTGG 149

R ATTCATCTTGTGTACGCTCATTG

rpL13 Ribosomal protein L13 F AAGCTGCTTTCCCAAGAC 351

R TTGGCATAATTGGTCCAG

hsc70 70 kDa heat-shock cognate protein F CGTGCTATGACTAAGGACAA 239

R GCTTCATTGACCATACGTTC

hsp70 70 kDa heat-shock protein F CATGTGAACGAGCCAAGAGA 274

R TTGCCACAGAAGAAATCTTG

hsp40 40 kDa heat-shock protein F TACGTGACGCTAGAGGAAA 131

R TTCCAGCCCGGCTT

hsp27 27 kDa heat-shock protein F TCCTCGTGCTTGCC 202

R CAAGGATGGCTTCCA

EcR Ecdysone receptor F AGACGGTTATGAACAGCC 240

R CGAGCCATGCGCAACATC

GAPDH Glyceraldehyde 3-phosphate dehydrogenase F GGTATTTCATTGAATGATCACTTTG 110

R TAATCCTTGGATTGCATGTACTTG

CYP4G Cytochrome p450 family 4 subfamily G F GACATTGATGAGAATGATGTTGGTG 340

R TAAGTGGAACTGGTGGGTACAT

doi:10.1371/journal.pone.0171719.t001
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GeneTools 3.06 software. Actin and 26S were used as reference genes to normalize the fluores-

cence of bands, and a second normalization was carried out to calculate the expression levels

of DEHP-exposed samples in relation to control conditions. To minimize technical errors,

three replicates were carried out for each experiment.

Glutathione S-Transferase (GST) activity

Two representative DEHP concentrations were selected to evaluate the GST activity: 1 and 103

μg/L. For each experiment, five control larvae and five treated larvae were collected after

DEHP treatments. Three replicates were performed and each sample was run in duplicate

wells. Total protein was quantified with BCA Protein Assay Reagent (Thermo Fisher Scien-

tific), and 25 μg of total protein were used for the enzyme assay. The GST activity was assessed

spectrophotometrically with the kit GST (Sigma-Aldrich) in a JASCO V-530 spectrophotome-

ter (JASCO, Japan), following [42].

Data analysis

SPSS1 Statistics 22 software (IBM, USA) was used for statistical analysis. Normality (Shapiro-

Wilk’s test) and homoscedasticity (Levene’s test) of data were checked. The normalized levels

of transcripts and the GST enzyme function were analysed with ANOVA, followed by Games

Howell’s or Bonferroni’s post hoc tests, when appropriate. The Kruskal-Wallis’ test was used

when data were not homogeneous or normally distributed, and the differences between pairs

were stablished using Mann-Whitney’s tests. Significant differences were stablished at

p< 0.05.

Results

Larval survival

A wide range of concentrations (10−3 to 105 μg/L) was selected to assess larval mortality after

24-h exposure to DEHP. Within this range, levels found in natural exposure scenarios and

also exposure concentrations evaluated in laboratory studies were tested [2,9,26,27,50,

51]. For longer treatments (48 to 96 h), the four lowest concentrations were selected. Larval

survival was not affected under any of the conditions analyzed. Although in 24-h exposures

no significant mortality was observed, reaching survival rates very close to 100%, all experi-

ments in these conditions showed a generalized loss of mobility and coloring of individuals

in concentrations above 1 μg/L. These effects were not observed in longer exposures to lower

concentrations.

Expression profile of ribosomal genes

The ability of DEHP to alter the ribosomal machinery was evaluated by means of transcrip-

tional analysis of genes encoding ribosomal proteins L4 and L13. As shown in Fig 1A–1C, no

effects were detected for the rpL4 gene in none of the studied conditions. However, the rpL13
gene was affected by the xenobiotic in all exposure scenarios, confirming the slight downregu-

lation (not significant) detected in 24 and 72 h (Fig 1D and 1G) as statistically significant at 48

and 96 h (Fig 1E and 1H). Particularly relevant was the clear upregulation of rpL13 in the

delayed toxicity experiments (24-h exposure to DEHP plus 24 h in fresh culture medium) (Fig

1F), showing the ability of DEHP to stimulate the transcriptional activity of this gene time

after removal from culture medium.
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Alteration of the heat-shock transcriptional response

The expression profile of constitutive (hsc70) and inducible (hsp70, hsp40, and hsp27) heat-

shock genes were analyzed to evaluate the interactions of DEHP on the cellular stress response.

Fig 1. Effects of DEHP treatments on the relative expression of genes coding for ribosomal proteins: rpL4 (A-C), and rpL13 (D-H). Each bar is the

mean ± SE obtained from three independent experiments, each with three replicates. Values are expressed as fold changes with respect to the control. X-axis

values range from 10−3 to 1 μg/L. *Significant differences (p� 0.05) as compared to control cultures.

doi:10.1371/journal.pone.0171719.g001
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Although no significant changes were detected for the heat-shock cognate gene hsc70, as

shown in Fig 2A–2C, significant transcriptional alterations caused by DEHP were found for all

inducible heat-sock genes. The compound induced a clear dose- and time-dependent downre-

gulation of the hsp70 gene in exposures over 24 h, reaching values of 70% below control in

96-h treatments (Fig 2E, 2G and 2H). Earlier effects were detected in the genes coding for the

40 and 27 kDa proteins, with a repression of hsp40 at the highest dose (Fig 2I) and the overex-

pression of hsp27 at the lowest ones (Fig 2L). For these two genes, 48-h exposures led to

increased transcriptional levels comparing with control samples (Fig 2J and 2M), unlike that

observed for hsp70. Delayed toxicity tests revealed a strong overexpression of hsp70 (up to

5-fold) (Fig 2F), and a slight but steady transcriptional induction of hsp40 (Fig 2K).

Modulation of the ecdysone receptor levels

The endocrine disrupting effect of DEHP and its ability to behave as a hormone antagonist was

evaluated by means of the analysis of the transcriptional levels of the gene encoding the ecdy-

sone receptor (EcR). Like the effects previously described for the hsp70 gene, DEHP exposures

led to a time-dependent downregulation of EcR, with significant reductions of the transcrip-

tional activity in each exposure time (48 to 96 h) for all the studied concentrations (between

30% and 70% below control, respectively), as shown in Fig 3A, 3B, 3D and 3E. However, con-

trary to that observed for the hsp70 gene, it is noteworthy that the withdrawal of the compound

after 24-h treatments triggered a significant repression of the EcR gene 24 h later (Fig 3C), thus

reaching transcriptional values about 40% below control in the delayed toxicity studies.

Detoxication and energy metabolism

The expression pattern of the CYP4G gene, as well as the enzyme activity of GST, provided us

data related to the detoxication activities in C. riparius, whereas the transcriptional levels of

GAPDH showed the possible toxic interaction between DEHP and the energy metabolism of

exposed larvae. The xenobiotic clearly repressed the activity of CYP4G, even in the lowest con-

centrations at the shortest exposure time (24 h) (Fig 4A), and this decline remained significant

for longer experiments (Fig 4B and 4D), with values close to 50% below control in 96-h treat-

ments (Fig 4E). It is important to note that the repression produced by DEHP after 24 h was

not only completely reverted after its removal but turned into a significant overexpression in

the delayed toxicity assays (Fig 4C). The other detoxication pathway analyzed, represented by

the GST enzyme (Fig 5), showed no effects in the 24-h acute exposures but was reduced after

48 h in the concentrations studied (1 and 103 μg/L), with identical effects in both 48-h continu-

ous exposure experiments and delayed toxicity tests.

Finally, DEHP had a time-dependent effect on the transcriptional activity of the GAPDH
gene (Fig 4F–4J), leading to a significant reduction in 72-h treatments (Fig 4I) and an almost

absolute repression in 96-h exposures (Fig 4J), with values of about 90% below the control. No

delayed toxicity was detected for this gene (Fig 4H) in none of the studied conditions.

Discussion

DEHP is by far the most commonly used plasticizer. Its high production volume and its many

applications worldwide make this chemical a ubiquitous pollutant, allowing the emergence of

numerous possible exposure scenarios. The scientific community has frequently discussed the

ability of the compound to produce adverse effects in humans. Its toxic and carcinogenic

effects have been well described in experimental animals (especially rodents) [5,26,50] and

plants [52]; however, its ability to induce similar effects in humans is still controversial [53]. In

contrast to the abundance of studies focused ultimately on human health, there is much less
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information in scientific literature concerning the ecotoxicological profile of DEHP, particu-

larly in invertebrates.

MEHP is the primary biodegradation product of DEHP and has proven to be toxic in stud-

ies with mammals. It is therefore reasonable to believe that MEHP could cause toxic effects

also to other species like birds, fish, frogs etc. [26] However, very scarce information is avail-

able and, particularly in invertebrates, there are no previous works assessing the toxic effects of

this DEHP metabolite. In this sense, further research is needed to evaluate the consequences of

MEHP exposure on invertebrate species.

Survival analysis

Exposures to DEHP spanned from 24 to 96 hours and comprised a wide range of concentra-

tions (10−3 to 105 μg/L), although the five highest concentrations were tested only for short-

term (24h) survival experiments. This conditions include DEHP levels both above and

Fig 2. Effects of DEHP treatments on the relative expression of different heat-shock genes in C.

riparius fourth instar larvae: hsc70 (A-C), hsp70 (D-H), hsp40 (I-K), and hsp27 (L-N). Each bar is the

mean ± SE obtained from three independent experiments, each with three replicates. Values are expressed as

fold changes with respect to the control. X-axis values range from 10−3 to 1 μg/L. *Significant differences

(p� 0.05) as compared to control cultures.

doi:10.1371/journal.pone.0171719.g002

Fig 3. Effects of DEHP treatments on the relative expression of the ecdysone receptor gene (EcR) in C. riparius fourth instar larvae. Each

bar is the mean ± SE obtained from three independent experiments, each with three replicates. Values are expressed as fold changes with respect to

the control. X-axis values range from 10−3 to 1 μg/L. *Significant differences (p� 0.05) as compared to control cultures.

doi:10.1371/journal.pone.0171719.g003
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(especially) below those described in other scientific works concerning drinking water

resources or aquatic environments [8,9,26,51]. Interestingly, the survival rate of C. riparius lar-

vae was not significantly affected in any of the conditions tested, which contrasts with the sig-

nificant mortality caused by butyl benzyl phthalate (BBP) in experiments performed under

identical conditions, where the LC50 was established at 2.7�104 μg/L [42]. These results are in

accordance with the lack of significant mortalities detected for other invertebrate species (Hya-
lella azteca, Chironomus tentans, Lumbriculus variegatus) [54,55], even in long-term toxicity

tests (Dahpnia magna, Chironomus plumosus, Palamonetes pugio, Mytilus edulis) [56–62].

Although no mortality was detected under any exposure condition, 24-h exposure to con-

centrations above 1 μg/L led to a generalized loss of mobility and coloring of individuals, pro-

portionally to increased DEHP concentrations. Though not the subject of our study, larval

mobility is considered a parameter equivalent to death rate in some ecotoxicological assays

[63]. Similarly, larvae discoloration could be used as an early indicator of the toxicity of a com-

pound [64], given that loss of red pigmentation, typically associated with hemoglobin, is a rep-

resentative characteristic of larvae exposed to hypoxia-induced stress conditions [65]. The

ability of DEHP to reduce the transcriptional activity of different hemoglobin genes has been

previously described in C. tentans [44,45]. Although these genes were not included among the

biomarkers selected for this work, the observed effects bring an interesting target for future

studies regarding the toxicity of the xenobiotic.

Transcriptional changes on the expression of ribosomal protein genes

Genes encoding ribosomal proteins have evidenced to be sensitive biomarkers in C. riparius
larvae exposed to different stressors ([38] and references therein). The stability shown by both

rpL4 and rpL13 in 24-h exposures, confirms that the ribosomal machinery does not seem to be

an early target of the toxic effect of low doses of the xenobiotic, in accordance with the results

described by [66] for the ribosomal genes rpS3, rpS6, rpL11, rpL13, and rpL15 in a higher

DEHP concentration. Our results demonstrate the capacity of DEHP to alter the activity of

Fig 4. Effects of DEHP treatments on the relative expression of genes involved in the detoxication metabolism in C. riparius

fourth instar larvae: CYP4G (A-E), and GAPDH (F-J). Each bar is the mean ± SE obtained from three independent experiments, each

with three replicates. Values are expressed as fold changes with respect to the control. X-axis values range from 10−3 to 1 μg/L.

*Significant differences (p� 0.05) as compared to control cultures.

doi:10.1371/journal.pone.0171719.g004

Fig 5. Glutathione S-transferase activity in C. riparius fourth instar larvae after exposure to DEHP (1

and 103 μg/L) for 24, 48, and 24+24 hours. Each bar is the mean ± SE obtained from three independent

experiments, each with three replicates. Values are expressed as fold changes with respect to the control.

*Significant differences (p� 0.05) as compared to control cultures.

doi:10.1371/journal.pone.0171719.g005
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genes encoding ribosomal proteins by means of a slight but significant downregulation of

rpL13, similarly to that observed in a previous work with the phthalate BBP [38]. It should be

noted that removal of the compound resulted in a clear overexpression of the rpL13 gene,

which could indicate that the organism increases its ribosomal activity (protein synthesis) try-

ing to compensate for the damage induced previously by the xenobiotic, as described previ-

ously under other stressful conditions (e.g. [67]).

Alterations on the cellular stress response

The 70 kDa gene family includes both constitutive (hsc70) and inducible (hsp70) members,

which share many common structural characteristics but present quite different expression

patterns. While the constitutive forms are expressed at stable and relatively high levels under

any condition, inducible heat-shock genes present a very low transcriptional profile under nor-

mal conditions, but their expression and subsequent translation of their products increase rap-

idly in response to a plethora of stress signals [68,69]. Our results showed no effects in hsc70 or

hsp70 transcriptional levels after 24-h exposure to DEHP concentrations up to 1 μg/L. A previ-

ous work in C. tentans [45] found a clear induction of both genes after 24 h, at concentrations

from 5�102 μg/L. This was partially consistent with another research in C. riparius [41] where

DEHP led to the upregulation of hsp70 at concentrations between 103 and 105 μg/L, although

hsc70 remained unaltered. In our study, longer exposures to the xenobiotic induced time and

dose-dependent changes in the transcriptional profile of hsp70, with a strong and significant

downregulation for all DEHP concentrations at 72–96 hours (up to 70% below control). It has

been described that downregulation of hsp70 levels leads to increased sensitivity towards apo-

ptosis-inducing agents, induces differentiation and cell death in cancer cells [70], and dimin-

ishes cell survival [71], although the strong repression detected in our study (together with

those detected for rpL13, EcR, CYP4G, and GAPDH) could be the result of a general protective

cell response consistent in maintaining a general low transcriptional profile in the presence of

a sustained damage [72]. It is important to note the absence of changes in the activity of hsc70
in our experimental conditions, which reinforces the idea of its constitutive presence and con-

firms the toxic role of DEHP in the specific transcriptional alterations observed for the other

genes.

The HSP40 protein is important for protein folding/unfolding, translation, translocation,

and degradation, as it stimulates the ATP-ase activity of the HSP70 proteins [73]. In addition,

the HSP40/HSP70 chaperone complex controls specific processes at distinct locations within

the cell (e.g. cell cycle, cell differentiation, or apoptosis), including the progression of certain

pathologies (e.g. oncogenesis, viral infections) [70]. Thus, the slight repression of hsp40 gene

after 24-h exposure could compromise the effective course of HSP70 role, while in 48-h treat-

ments the gene was slightly overexpressed, therefore promoting this chaperone activity. Our

results clearly contrast with previous data [74] in which short-term exposures to three con-

centrations of DEHP (1, 10, and 30 μg/L) induced significant increases (up to 4-fold) in the

expression of hsp40 and hsp90.

The HSP27 protein belongs to the small molecular weight heat shock proteins (sHSPs)

family, and plays two major roles in response to stressful stimuli: (1) preserves the regular

functioning of cells through remodelling and stabilization of the cytoskeleton, as well as facili-

tating the proper refolding or removal of defective proteins; and (2) prevents apoptosis by

interfering with caspase activation in both mitochondrial dependent and independent path-

ways, and also lowering the levels of reactive oxygen species [75]. The chaperone activity of

HSP27 prevents the formation of aggregates of denatured or improperly folded proteins [76],

which can serve as a pro-apoptotic signal [77]. Such misfolded forms are processed by the
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endoplasmic reticulum (ER), which is responsible for the structural maturation of proteins by

means of two different mechanisms that try to avoid ER stress: the unfolded protein response

(UPR), which increases the folding capacity; and the ER-associated degradation (ERAD),

which leads to protein removal [78]. It has been recently described that DEHP can trigger the

ER stress response [79], leading to an adaptive response (inhibition of cell proliferation, cell

cycle delay) rather than a pro-apoptotic one [80]. Previous works in C. riparius have detected a

variety of hsp27 transcriptional responses under temperature or xenobiotic-induced stress

([42,81] and references therein). In the present study, the hsp27 gene tended to a significant

overexpression in treatments from 24 to 48 hours, that could counteract the apoptotic signals

derived from hsp70 downregulation.

Thereby, taken together, our results could suggest that DEHP is somehow altering protein

folding and thus activating an adaptive response that slows down metabolism, trying to buy

enough time to correct errors before progressing with normal cell cycle. Additionally, in verte-

brates the HSPs are involved in stabilizing and activating the steroid hormone receptor [82],

so if similar functions are performed in arthropods, changes in the transcriptional activity of

these genes, particularly hsp70, could result in the alteration of the ecdysone-mediated hor-

mone pathway by affecting the hormone receptor [83].

Effects over the ecdysone hormone pathway

Phthalates have been identified as EDCs in humans and also in mammalian models [84], caus-

ing adverse effects on reproduction and development. Although it has been described that EcR
transcriptional peaks occur naturally during larval development [85,86], different studies have

demonstrated the ability of some xenobiotics to modulate the expression levels of the receptor,

working as ecdysone agonists/antagonists and ultimately influencing the development of the

organism (e.g. [42,87,88]). Moreover, although endocrine systems in invertebrates differ dras-

tically from vertebrates, it is worth mentioning that ecdysteroid hormones in insects belong to

the family of steroid hormones, and that the ecdysone receptor belongs to the superfamily of

nuclear hormone receptors that includes estrogens, androgens, thyroid hormone, retinoic acid

and glucocorticoid receptors, among others [41]. Consequently, the ability of the EcR gene to

detect endocrine disrupting activities in invertebrates may be a useful tool in an attempt to pre-

vent environmental risks derived from EDCs, and also in predicting possible interferences

with the vertebrate hormone system. In a previous work in C. riparius [41], 24-h exposure to

DEHP did not alter the transcriptional levels of EcR in concentrations up to 104 μg/L, although

a slight significant repression was detected at 105 μg/L. Results obtained in the present work

demonstrate that longer exposures (48 to 96 hours) also lead to a significant downregulation of

this gene, although at concentrations that are up to eight orders of magnitude below than

those reflected in that previous study. Therefore, our data suggest that DEHP interferes with

the endocrine function acting as an ecdysone antagonist, both at short exposures to high

doses, or at long exposures to low doses. Data obtained for 48-h exposures are similar to those

obtained with BBP [42], which could indicate that under certain conditions this antagonistic

effect could be common to several members of the phthalate family.

Variations in energy and xenobiotic metabolism

Classic targets in ecotoxicity testing (e.g. survival, growth, reproduction rate) ultimately reflect

changes in the energy metabolism of organisms [89]. Under this assumption, the transcrip-

tional profile of the gene encoding GAPDH enzyme has been studied in the present work, as

this protein plays a key role in energy production throughout glycolysis, although it is also

involved in other functions at multiple subcellular compartments [90]. Precisely because of its
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many functions and its constant expression, GAPDH has been widely used as a reference gene

in RT-PCR quantification, although it is known that it can be unstable under various experi-

mental conditions (e.g. [91]). This fact makes necessary to check the stability of GAPDH under

every experimental condition, thus avoiding errors caused by incorrect normalization. Our

results show a stable behavior of the gene up to 48-h exposure to DEHP, but a significant drop

in its transcriptional levels after 72 hours. It should be emphasized the almost total absence of

GAPDH activity in 96-h experiments (up to 99% below control), which could be consistent

with the hypothesis about the ability of the xenobiotic to slow down metabolism as an adaptive

response to DEHP toxic effects.

In addition to their detoxication functions, P450 enzymes are also involved in the synthesis

of ecdysteroids and juvenile hormones, with key roles in insect growth, development, and

reproduction [92]. Thus, the response of some cytochromes seems to establish relations

between exposure to some chemicals and the endocrine function [93]. Alterations in the tran-

scriptional activity of different CYP genes have been described previously in Chironomus lar-

vae exposed to a variety of xenobiotics ([42] and references therein). Our experiments let us

detect a significant repression of the CYP4G gene in all the tested concentrations, even at the

shortest DEHP exposures. This downregulation was concomitant with the significant low lev-

els detected for EcR after 48 to 96-h exposure to DEHP, which could reflect the previously

described association between the enzyme activity, the ecdysone synthesis and, by extension,

the hormone receptor levels.

In many species, the expression levels of GST genes and the GST enzyme activity can be

boosted significantly following exposure to xenobiotics, suggesting that they are involved in

adaptive responses to chemical stress. Studies on the insect GSTs have focused primarily

on their role in conferring resistance to insecticides [94]. As an example in chironomids,

there have been described GST alterations in the gene activity [95] or the enzyme function

[42,96,97] in response to the presence of xenobiotics. In this work, we have evaluated only two

representative DEHP concentrations (1 and 103 μg/L) and it was found that this phthalate

inhibits GST enzyme activity to about 50% at both doses in 48-h experiments, similarly to that

observed for CYP4G transcriptional rates. This could suggest that DEHP restricts the ability of

C. riparius larvae to maintain normal detoxication rates, decreasing the biotransformation

capacity of both phase I and phase II metabolism enzymes.

Delayed toxicity studies

These experiments showed that the compound can cause adverse effects to the selected targets

even after its withdrawal. Although some biomarkers that were not altered in 24-h exposures

remained unchanged after 24 h of recovery (rpL4, hsc70, GAPDH), other genes showed a sig-

nificant upregulation once the compound was removed from the culture medium (rpL13,

hsp70, CYP4G). It could be hypothesized that the end of the DEHP injury allows the organism

to recover normal metabolic rates, therefore being necessary to reinforce the ribosomal

machinery and the protein folding/checking systems. Moreover, in the knowledge that high

hsp70 levels lead to increased resistance against apoptosis [70], its upregulation could be com-

pensating this protective role, implemented during the presence of the xenobiotic by high lev-

els of the hsp27 gene. It is also possible that the significant rise in hsp40 levels is directly related

to the increased activity of the HSP40/HSP70 chaperone complex. It should be highlighted

that the removal of DEHP revealed surprising findings about the endocrine disrupting capac-

ity of this phthalate. Although the transcriptional activity of the EcR gene was not altered in

24-h exposures to DEHP, its removal led to a significant repression of this gene when larvae

were maintained an additional 24 h in fresh culture medium. This behavior differs from the
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rest of genes analyzed in this work and appears to confirm a specific effect of the xenobiotic on

the endocrine system of C. riparius, acting as an antagonist of the insect steroid hormone.

Conclusions

The present study indicates that DEHP, the most commonly used plasticizer in the world,

induces transcriptional alterations in exposed larvae of C. riparius. These toxic effects occur

after short acute exposures, even at concentrations lower than those detected in environmental

samples or permitted by different international regulations for drinking water. The use of bio-

marker genes constitutes a useful tool for the early detection of toxic effects, especially for

those cellular pathways that have been evolutionary-conserved across different species. It is of

particular interest to see how some of the toxic effects are detected long after the larvae have

ceased to be exposed to the compound, which makes some of the DEHP toxic properties usu-

ally go unnoticed in the acute exposures of classical toxicity tests. Given the importance of this

non-biting midge in the trophic chains of aquatic ecosystems, and the ability of the compound

to bioaccumulate, it is advisable to continue investigating the different toxic effects of this

xenobiotic, especially in natural populations. In addition, the appearance of effects at such low

concentrations poses a potential worldwide risk to human and environmental health.

Supporting information

S1 Fig. Graphical abstract of the presented work. Acute exposures (24 to 96h) to a wide

range of DEHP concentrations (1 ng/L to 0.1 g/L) caused no mortality in C. riparius larvae but

led to a loss of mobility and coloring, and to a general decrease in the transcriptional activity of

the studied genes.
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