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Abstract
In the “loud-tone” procedure, a series of brief, loud, pure-tone stimuli are presented in a

task-free situation. It is an established paradigm for measuring autonomic sensitization in

posttraumatic stress disorder (PTSD). Successful use of this procedure during fMRI

requires elicitation of brain responses that have sufficient signal-noise ratios when recorded

in a supine, rather than sitting, position. We investigated the modulating effects of posture

and stimulus spectral composition on peripheral psychophysiological responses to loud

sounds. Healthy subjects (N = 24) weekly engaged in a loud-tone-like procedure that pre-

sented 500 msec, 95 dB sound pressure level, pure-tone or white-noise stimuli, either while

sitting or supine and while peripheral physiological responses were recorded. Heart rate,

skin conductance, and eye blink electromyographic responses were larger to white-noise

than pure-tone stimuli (p’s < 0.001, generalized eta squared 0.073–0.076). Psychophysio-

logical responses to the stimuli were similar in the sitting and supine position (p’s� 0.082).

Presenting white noise, rather than pure-tone, stimuli may improve the detection sensitivity

of the neural concomitants of heightened autonomic responses by generating larger

responses. Recording in the supine position appears to have little or no impact on psycho-

physiological response magnitudes to the auditory stimuli.

Introduction
Stress sensitization of the nervous system is believed to play an important role in the develop-
ment of posttraumatic stress disorder (PTSD) after a traumatic event and may underlie symp-
toms such as hypervigilance and exaggerated startle [1]. Sensitization of the autonomic
nervous system in PTSD is evidenced by heightened cardiovascular and, less consistently, elec-
trodermal and electromyographic responses to startling sounds in trauma survivors who
develop PTSD [2–5]. Prospective and twin studies have indicated that increased autonomic
reactivity to startling sounds is an acquired PTSD sign rather than a pre-existing risk factor,
and may thereby serve as a measure of stress sensitization [4,6].
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The neural basis of autonomic stress sensitization is a largely neglected area in PTSD
research. The loud-tone procedure [7] involves presenting a series of 15, long-duration (500
msec), 1000 Hz, 95 dB sound pressure level (SPL), sudden onset pure tones in a task-free situa-
tion. It has become an established paradigm in PTSD research for investigating autonomic
stress sensitization. Successful use of this procedure during functional magnetic resonance
imaging (fMRI) requires the elicitation of brain responses that are of sufficiently large ampli-
tude to be detected against a background of physiological noise. Moreover, differences between
the psychophysiological laboratory and neuroimaging environments, such as background
noise and the subject’s postural position, require consideration.

In a previous study employing the loud-tone procedure during fMRI in healthy subjects, we
found a significant association between neural activity and skin conductance (SC), but not heart
rate (HR), responses to the pure tones [8]. However, our failure to detect neural concomitants of
HR responses may have reflected Type II error. The use of stimuli that are capable of generating
larger neural and psychophysiological responses may help to optimize fMRI detection sensitivity
and thereby reveal underlying neural mechanisms. Previous research has shown larger HR [9],
SC [10] and EMG [11] responses to white noise compared to pure tones, and a positive associa-
tion between the magnitude of these responses and stimulus intensity [11–16].

Although the background noise of the scanner can be partially reduced by the use of active
sound-cancellation systems, there is a potential effect of supine versus sitting position on
peripheral autonomic responses. Previous research has suggested that resting HR level is higher
in the sitting than supine position [17–19]. However, it is not clear whether HR responses to
stimuli such as loud sounds are influenced by posture. Moreover, we are not aware of research
that has examined the effect of posture on SC and eye-blink EMG responses.

In this study, we investigated modifications to the loud-tone procedure for optimizing the
procedure for use during fMRI. Specifically, we investigated how HR, SC and eye-blink (left
orbicularis oculi) EMG responses were influenced by stimulus spectral bandwidth (pure tone
vs. white noise) and subject’s posture (sitting vs. supine). We hypothesized that white noise sti-
muli would induce larger autonomic and eye blink responses than pure tones [11]. Given pre-
vious findings of higher resting HR level in the sitting position [17–19], we expected to observe
larger HR responses to the auditory stimuli in the sitting, compared to supine, position.

Methods

Subjects
Subjects were 24 medication-free individuals, recruited by advertisement. Demographic infor-
mation is presented in Table 1. All participants were free of a psychiatric, major medical or

Table 1. Demographic and Psychometric Sample Characteristics (N = 24).

Mean SD

Age (Years) 24.12 4.66

Education (Years) 15.38 2.90

BDI 6.04 2.88

BSI: Global Severity Index 0.30 0.20

STAI: Trait Anxiety 33.25 5.12

N %

Sex: Female 17 70.8

Marital Status: Single 24 100

SD: Standard deviation; BDI: Beck Depression Inventory; BSI: Brief Symptom Inventory; STAI: State-Trait

Anxiety Inventory.

doi:10.1371/journal.pone.0161237.t001
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neurological illness, including current or past traumatic brain injury and substance dependence
according to self-reports.

Subjects completed the Beck Depression Inventory (BDI) [20,21], Brief Symptom Inventory
(BSI) [22,23], and the Trait portion of the State-Trait Anxiety Inventory (STAI) [24,25]. All
measures had been previously translated into German and validated. Psychometric informa-
tion is presented in Table 1. The study protocol was approved by the Institutional Review
Board of the Canton of Zurich, Switzerland. All participants provided written informed con-
sent according to the Helsinki Declaration.

Task Procedures
Experimental procedures were similar to those used in previous studies of PTSD [2–4,6,26–
31]. An audiometric test was performed monaurally using a Midimate 602 Diagnostic audiom-
eter (Madsen Electronics, GN Otometrics A/S, Denmark) and included 125, 250, 500, 1000,
2000, 4000, and 8000 Hz tones. In order to be enrolled in the study, subjects were required to
detect 25 dB hearing level tones in both ears and to show an observable change in SC level to a
startling sound or psychological stressor (calculation task). Stimuli were created using Audacity
software (http://audacity.sourceforge.net) and consisted of 500 msec, 95 dB SPL, pure tones
(1000 Hz) or white noise (5 – 22K Hz). The rise and fall times of stimulus onset and offset were
set to 0 msec according to the selected software setting. Actual rise and fall times as measured
from the amplifier were 1 msec, and less than 1 msec, respectively. The inter-trial interval var-
ied between 27 and 52 sec. Stimuli were presented binaurally through circumaural earphones
(PD-81, Novitronic Inc., Zurich, Switzerland).

Subjects underwent four experimental conditions that varied with respect to stimulus type
(pure tone or white noise) and posture (sitting or supine). The four conditions were pseudo-
randomized and counter-balanced across subjects. Each experimental condition was separated
by 4–16 days (median inter-session interval = 7 days, interquartile range = 1.00). During the
laboratory assessment, subjects were instructed to keep their eyes open and not to move while
listening to the sounds. The auditory stimuli were presented following a 5 min resting baseline
period.

In a separate task, the perceived loudness and valence of the sounds were investigated using
magnitude estimation, which is an established procedure to measure perceived loudness of
sounds [32]. Subjects were asked to assign an individual number to a 65 dB SPL pure tone pre-
sented as reference. Then, 35, 50, 65, 80, or 95 dB SPL pure tones or white noise sounds were
presented in randomized order and subjects were asked to assign a rating for each sound rela-
tive to the value of the initial reference sound reflecting perceived loudness (higher = louder)
and valence (higher = more aversive). Each combination of sound type and sound level was
presented three times. Sound loudness and valence were estimated in separate runs. Sound
pressure levels were determined using a Voltcraft SL-100 sound level meter (Conrad Electronic
AG, Wollerau, Switzerland) and measured at the headphone’s output. The procedure was
implemented using E-Prime Professional 2.0 (Psychology Software Tools, Inc., Sharpsburg,
PA).

Data Acquisition
Psychophysiological data were obtained with a Biopac modular instrument system (Biopac
Systems, Inc., Goleta, CA). Cardiac interbeat intervals were recorded with a biopotential ampli-
fier (EOG100C) using pre-gelled Biopac electrodes (EL503). The tachometer output was
updated with each successive heartbeat and provided a continuous measure of HR (in beats per
minute, BPM) that reflected the immediately preceding interbeat interva and. SC was recorded
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with an MRI-compatible electrodermal activity amplifier (EDA100C-MRI) using disposable
radiotranslucent Biopac electrodes (EL509) filled with isotonic gel placed on the hypothenar
surface of the participant's nondominant hand. Eye-blink EMG was recorded by an electro-
myogram amplifier (EMG100C) using silver-silver chloride electrodes (EL254). For EMG, the
skin was swabbed with an alcohol pad, and electrodes were filled with electrolytic gel and
placed over the right orbicularis oculi. Psychophysiological analog signals were digitized at
1000 Hz by an analog-to-digital converter (MP150). Analog amplifier cut-off frequencies were
1 Hz for the EDA100C-MRI, 0.05Hz high-pass and 35 Hz low-pass for EOG100C, and 100 Hz
high-pass and 500 Hz low-pass for the EMG100C. Gain was 10uOhm/V for EDA100C-MRI
and 2000 for EOG100C and EMG100C.

Scoring of psychophysiological data
Psychophysiological data processing followed previously published methods [4]. Although
alternative methods may be reasonable, there is a strong precedent given the extensive litera-
ture regarding measuring autonomic sensitization in PTSD using these parameters [2–4,6,26–
31].

HR and SC response scores were calculated for each stimulus presentation by subtracting
the mean level during the 1 sec interval preceding stimulus onset from the highest level within
the 1–4 sec interval following stimulus onset. EMG response scores were calculated by sub-
tracting the average EMG level for the 1-sec interval preceding stimulus onset from the maxi-
mum level within 40 to 200 msec of stimulus onset. The raw EMG signal was rectified and
integrated using a 10-msec time constant. Artifactual HR and SC responses were excluded by
visual inspection of each subject’s data. Square root transformations were performed for all
responses to reduce heteroscedasticity.

For HR, SC and EMG, an averaged response score was calculated for each subject for the
transformed responses to the 15 stimulus presentations within each condition. A measure of
relative habituation for HR, SC and EMG responses was calculated from the slope of the regres-
sion equation Y = a + bX for trials 2–15, where Y represented the square root of the response
score and X represented the log trial number. Locally weighted scatter plot smoothing (LOESS)
was used for fitting nonlinear, piecewise polynomial curves for SC and HR responses, as we
have previously done [8].

Statistical analysis
The influence of bandwidth and subject's posture on averaged psychophysiological response
scores and slope scores (the measure of relative habituation) were analyzed with a series of
repeated measures analyses of variance (ANOVAs) with bandwidth (pure tone, white noise)
and subject’s posture (sitting, supine) as within-subject factors. An average magnitude estima-
tion score was calculated for each sound type and sound pressure level across the three presen-
tations. We used a linear mixed-effects model design to analyze the effect of sound pressure
level (dB) and sound spectral bandwidth (pure tone, white noise) on log-transformed sound
loudness and valence estimation scores. Sound pressure level and sound bandwidth were
treated as fixed effects and subject as random effect.

The critical threshold was p< 0.05. We used R V.2.14.1 for statistical analyses [33].

Results
HR, SC, and EMG responses to 95 dB SPL white noise stimuli were larger than to 95 dB SPL
pure-tone stimuli as evidenced by significant main effects for bandwidth (p’s< 0.001,
η2G’s� 0.073; Fig 1, Table 2). Posture did not have a significant effect on psychophysiological
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responses (all p’s� 0.082; Table 2). As can be seen in Table 2, HR and SC resting levels were
higher when subjects were in sitting, compared to supine as evidenced by significant main
effects of posture for pre-tone HR and SC levels (p’s� 0.014, all η2G’s� 0.035). Posture had
no effect on EMG pre-tone level (p = .174).

Relative habituation of HR responses to the white noise stimuli was observed for the supine
position (t(23) = -3.21, p = .004; Fig 1A) and for SC and EMG responses for both bandwidths
and postures (p’s� .001; Fig 1B and 1C).

Subjects experienced sounds of higher sound pressure levels as louder (t(135) = 14.66, p<
.001) and more aversive (t(150) = 9.27, p< .001; Fig 1A). There was no significant main effect
of sound type or a sound type by sound pressure level interaction effect for perceived loudness
(t(135) = -0.14, p = .888 and t(135) = 0.04, p = .970) and aversiveness (t(150) = 0.59, p = .555
and t(150) = -0.23, p = .821; Fig 2).

Fig 1. Group means for time course of HR (A), SC (B), and eye blink EMG (C) responses to sound presentations by stimulus bandwidth and subject’s
posture.

doi:10.1371/journal.pone.0161237.g001

Table 2. Peripheral Physiological Responses to Sound Presentations by Stimulus Bandwidth and Subject’s Posture (N = 24).

95 dB SPL Pure Tone 95 dB SPLWhite Noise ANOVAa

Sitting Supine Sitting Supine Bandwidth Posture Bandwidth x
Posture

HR Mean SD Mean SD Mean SD Mean SD F p η2G F p η2G F p η2G

Pre-Tone Level (BPM) 73.73 12.19 68.08 9.59 70.95 11.19 65.41 9.58 6.64 .017 0.017 17.37 .000 0.067 0.004 .949 0.000

Mean Response (
p

BPM) 1.31 0.59 1.45 0.56 1.79 0.62 1.63 0.64 16.58 .000 0.074 0.002 .969 0.000 2.614 .120 0.016

Response Slope 0.01 0.10 -0.03 0.08 -0.05 0.12 -0.06 0.09 7.89 .010 0.044 0.964 .336 0.009 0.439 .514 0.004

SC

Pre-Tone Level (μS) 14.19 7.92 10.20 9.27 14.96 8.99 12.69 7.31 1.61 .217 0.010 7.129 .014 0.035 0.376 .546 0.003

Mean Response (
p

μS) 0.84 0.67 0.55 0.71 1.08 0.59 1.10 0.83 14.92 .000 0.076 1.741 .200 0.010 2.264 .146 0.012

Response Slope -0.10 0.07 -0.06 0.06 -0.08 0.05 -0.09 0.07 0.358 .556 0.002 2.003 .170 0.025 5.904 .023 0.038

Eye Blink EMG

Pre-Tone Level (μV) 0.67 0.05 0.77 0.36 0.70 0.09 0.68 0.07 0.937 .343 0.010 1.97 .174 0.024 6.275 .020 0.048

Mean Response (
p

μV) 2.04 1.14 2.34 1.35 2.91 1.72 3.09 1.63 25.64 .000 0.073 3.297 .082 0.007 0.173 .682 0.000

Response Slope -0.07 0.09 -0.06 0.06 -0.09 0.10 -0.05 0.05 0.254 .619 0.002 4.79 .039 0.039 1.865 .185 0.008

df’s = 1, 23. All mean values are significantly different from zero (p < .005), except for HR response slopes for pure tones in sitting and supine position (p’s�
.144) and slope of HR responses to white noise in sitting position (p = .058). SD: Standard deviation; HR: Heart rate; SC: Skin conductance; EMG:

Electromyogram; BPM: Beats per minute; μS: Micro Siemens; μV: Micro Volt.

doi:10.1371/journal.pone.0161237.t002
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Discussion
In this study, we investigated the effect of two important modifications to the loud-tone proce-
dure, for their potential impact on recording during fMRI. In line with our predictions, we
observed larger HR, SC and eye blink EMG responses to the white noise, compared to pure
tone, stimuli. Physiological responses to the sounds were found to be comparable in the sitting

Fig 2. Magnitude estimation of loudness and valence of pure tones and white noise relative to a reference stimulus (65 dB SPL pure
tone). Higher scores represent louder and more aversive perception. Relative loudness of sounds (as represented by the slope of the curves)
did not differ between stimulus types. The ribbon represents standard errors. Data were available from 15 subjects.

doi:10.1371/journal.pone.0161237.g002
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and supine position, contrary to our expectations. The finding of larger responses to the white
noise, compared to pure tone, stimuli is in agreement with previous studies that found larger
HR [9], SC [10], and EMG [11] responses to white noise stimuli. These findings confirm the
proposition that the magnitude of autonomic and startle responses are influenced by stimulus
spectral bandwidth [34]. Using white noise, rather than pure tone, stimuli in the “loud-tone”
procedure during fMRI may enhance the detection sensitivity for future investigations of neu-
ral correlates of autonomic sensitization in PTSD.

There is ample evidence for higher resting HR in the sitting, compared to supine, position
[17–19], which is in line with our results. However, in contrast to the different HR levels, we
observed comparable HR response magnitudes to the stimuli when subjects were tested in the
sitting and supine positions. This suggests that HR responses associated with the immediate
reaction toward a sudden environmental change [34,35], as assessed and scored in this study,
are not substantially influenced by hydrostatic pressure, sympathetic tone changes or other fac-
tors that change with body posture.

Participants in this study had higher resting SC levels while sitting, compared to supine.
This finding is consistent with characteristics of palmar activity of sweat glands, i.e., greater
spontaneous sweat release in sitting versus supine position [36]. Sweat secretion is correlated
with electrodermal activity [37].

Our study has several limitations. First, the results are based only on healthy subjects;
consequently, we do not know whether the suggested modifications of the “loud-tone” pro-
cedure would reliably discriminate individuals with PTSD from trauma-exposed healthy
controls, because the white-noise stimulus may be sufficiently potent to obscure reactivity
differences because of ceiling effects. Alternatively, the more provocative white-noise stimu-
lus may serve to enhance previously observed group differences. Second, other characteris-
tics of the fMRI environment such background noise and confinement stress were not
investigated in this study, which was not conducted in a scanner. Third, although active
noise-cancellation systems can reduce scanner noise by approximately 30 dB SPL, auto-
nomic responses to sound stimuli might still be confounded by background noise. Finally,
we did not control internal factors such as body temperature and climatic conditions (e.g,
ambient air temperature, humidity and pressure), which have been shown to influence SC
[34].

In conclusion, our results indicate that supine positioning, as currently necessary for MRI,
does not substantively change the characteristics of autonomic responses during the loud-tone
procedure. Using broadband sounds, such as white noise instead of pure tones, will serve to
increase autonomic response magnitudes and thereby could enhance our ability to detect sig-
nificant associations with neural responses. A modified version of the loud-tone procedure
might be suitable for future fMRI studies investigating autonomic sensitization in PTSD, and
possibly other disorders.

Supporting Information
S1 Dataset. The psychometric data.
(SAV)

S2 Dataset. The psychophysiological data.
(CSV)

S3 Dataset. The magnitude estimation data.
(CSV)
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