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Abstract

Virus spreading in tissues is determined by virus transport, virus multiplication in host cells

and the virus-induced immune response. Cytotoxic T cells remove infected cells with a rate

determined by the infection level. The intensity of the immune response has a bell-shaped

dependence on the concentration of virus, i.e., it increases at low and decays at high infec-

tion levels. A combination of these effects and a time delay in the immune response deter-

mine the development of virus infection in tissues like spleen or lymph nodes. The

mathematical model described in this work consists of reaction-diffusion equations with a

delay. It shows that the different regimes of infection spreading like the establishment of a

low level infection, a high level infection or a transition between both are determined by the

initial virus load and by the intensity of the immune response. The dynamics of the model

solutions include simple and composed waves, and periodic and aperiodic oscillations. The

results of analytical and numerical studies of the model provide a systematic basis for a

quantitative understanding and interpretation of the determinants of the infection process in

target organs and tissues from the image-derived data as well as of the spatiotemporal

mechanisms of viral disease pathogenesis, and have direct implications for a biopsy-based

medical testing of the chronic infection processes caused by viruses, e.g. HIV, HCV and

HBV.

Introduction

Biological background

Human infections with viruses such as HIV, hepatitis B and C viruses, influenza A virus, pres-

ent enormous burden to public health worldwide. The defence against various pathogens

including viruses is a major function of the immune system [1–3]. It is generally accepted that
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the outcome of a virus infection results from the “numbers game” characterized by the kinetics

of virus growth in target cells, its spread across sensitive tissue and the strength of the antiviral

immune responses [4, 5]. Recent advances in imaging and visualizing virus-specific T cells,

cytokines and infected cells in living hosts [5–7] open new opportunities for developing a

mechanistic quantitative understanding of the general regularities of the spatiotemporal

dynamics of virus infections [8].

Viruses are obligatory parasites that need cells to replicate their genomes and produce prog-

eny. Depending on the mode of transmission, a virus will expand locally around its entry site

of a newly infected organism. From there it might subsequently spread to other tissues and

organs, and a new transmission event to a new host can be initiated.

Amongst the first quantitative descriptions of virus spread within an organism is the work

of Frank Fenner in the 1940ies who studied ectromelia virus infection of mice causing mouse-

pox [9]. The virus titres over time were bell-shaped curves with varying maximum titres and

widths within spleen, skin, and peripheral blood. This bell-shaped behavior is a reflection of

virus expansion in available target cells and virus restriction from concomitantly induced

immune responses. Elegant more recent work on Simian Immunodeficiency virus (SIV) in

monkeys and Lymphocytic Choriomeningitis virus (LCMV) in mice provide details on this

spreading process for these prototypes of non-cytopathic viruses [10, 11]. Virus infection and

expansion activates the proliferation of virus-specific cytotoxic T lymphocytes (CTL). These

cells recognize infected cells that present peptides from viral proteins in context with so-called

major histocompatibility complex proteins on their surface. Target cell recognition then trig-

gers the CTL to release lytic enzymes from intracellular granules. When infected cells are

exposed to such enzymes, they are induced to die and thus, the centers of virus production are

eliminated. Given this mechanistic scheme, it is obvious that the final outcome of an infection

will be determined by the dynamic properties of (i) virus replication and spread to new target

cells, and (ii) CTL-mediated target cell recognition and killing. In this context, Blancou et al

[10] analyzed the time frames of localized antigen-induced SIV production and SIV-specific

CTL infiltration demonstrating that the physiologically relevant window of virus spread to

new target cells in vivo may only be few hours until CTL may clear an infectious center. Li et al

visualized simultaneously virus-producing cells and CTL in tissue of SIV-infected Macaques

and LCMV-infected mice [11]. They observed a direct correlation of virus reduction with

increasing CTL effector to infected target cell ratios. Thus the extent of virus control seems

directly related to the timing and magnitude of the virus-specific CTL response [3, 11].

Spatiotemporal models of viral infections

Mathematical models have been extensively used to study the dynamics of viral infections and

antiviral responses mostly under the simplifying assumption of spatial homogeneity, i.e. the

host macro-organism is a well-mixed compartment or a small set of such compartments

[12–14], with a few models considering the spatial spread of the viruses in infected hosts. The

available spatially extended models of viral infection dynamics are briefly summarized in (S1

Table) and described below.

It was stated in [8] that viral propagation in HIV infection is a fundamentally local process

because the virus is inherently unstable and the infection occurs mainly in lymphoid tissues.

To study the spatiotemporal dynamics of HIV propagation, a three-dimensional stochastic cel-

lular automata model was formulated. It describes the viral spread among a cluster of CD4+ T

cells. The impact of biophysical parameters of the virus diffusion and inactivation on the basic

reproductive ratio are discussed in detail for a low-density and high density of target cells. The

model predicted the existence of distinct viral propagation regimes: a stable propagation as a
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traveling wave, a chaotic steady state in which infected, target and empty sites coexist, and

extinction of infection due to insufficient target cell replenishment. The viral spread at low cell

densities is limited by the stability of the free virus whereas at high densities it depends mostly

on the geometry of the lattice, i.e. on the cell radius. The model is considered to be too crude

to make detailed quantitative predictions for in vivo lymphoid tissues.

Data driven modelling of virus growth and spread is presented in [15]. The authors build a

reaction-diffusion model to analyze the spatiotemporal patterns of virus infection spreading.

The data characterize the vitro growth of vesicular stomatitis virus (VSV) in baby hamster kid-

ney cells (BHK) quantified via immunohistochemical labeling and digital imaging. The model

assumes a radial symmetry of the propagation and compares the description of virus produc-

tion in infected cells with- and without accounting for the infection age. The impact of diffus-

ible interferon (IFN) on the virus spread has also been examined. Data fitting was used to

estimate a number of virus-target cell interaction parameters. The model reproduces the

experimental data on the initial outward amplified propagation of the infection front followed

by stagnation due to antiviral IFN responses.

The effects of spatial heterogeneity of infected cells and immune cells on the viral infection

dynamics was examined in [16]. The development and outcome of influenza A virus infection

(IAV) was modelled via a two-dimensional cellular automation model. Numerical simulations

with the model were used to study the effect of the grouping of the infected cells as patches of

various sizes and the longevity of the immune responses on the dynamics of infection.

Depending on the rules of local vs global regeneration of epithelial cells, and the scenario for

immune cell addition at random sites or at the infection site (recruitment), different regimes

of the infection spread were predicted including the existence of circular waves of the infection

spread in the upper respiratory tract tissue and the possibility of a low level persistence of the

infection. A similar approach has been recently developed with a spatial consideration of the

virus growth in the lung modelled as a two-dimensional sheet of hexagonally-tilled epithelial

cells in [17].

The impact of spatial structure on the dynamics of virus infections has been studied in [18]

using a multi-compartment description of the organ tissue in which the infection takes place.

In fact the spatial organization of the organ was represented by two-dimensional square grid

with 21x21 sites in which target and infected cells were sessile. At each site the population

dynamics of the virus infection and the T cell response was described by a system of ODEs.

The tissue environment was called a homogeneous one when the parameter values were iden-

tical for each site. Otherwise, it was called heterogeneous. The local diffusion was modelled by

the possibility of the virus to randomly spread from site to site of the grid. The results of the

modelling suggest a number of important effects of the spatial extension of the model. For

example, the spatial coupling of the sites by local dispersal of the virus reduced the amplitude

of the oscillation in the viral load dynamics. This implied a more stable persistence of the infec-

tion in vivo and questioned the validity of the concept of the “dynamics elimination of patho-

gen”. Recently, a similar approach was used to study the dynamics of HIV infection in the

network of lymphoid tissues [19].

In the case of HIV infection two modes of virus propagation take place: the local spread of

HIV within lymphoid tissues, where target cells (CD4+ T lymphocytes) are densely packed

and the hematogeneous spread of virus to distant lymphoid tissues and organs. The implica-

tions of the two propagation processes for the dynamics of HIV-1 infection were studied using

mathematical models of cell-to-cell and cell-free viral spread [20]. They formulated a two-

dimensional model of cell-to-cell spread using a system of distributed delay differential equa-

tions (DDE) with the eclipse phase described by a gamma distribution. The analysis of the

model suggested that the delayed models of cell-to-cell spread produce sustained oscillations
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of infection for typical tissue culture parameters. This was in contrast to a typical ODE model

of HIV infection spread via cell-free virus which predicted a globally asymptotically stable

infection state. A positive link between the existence of latently infected cells and the persis-

tence of HIV infection was proposed. A recent study of the relative role of the two spreading

mechanisms of HIV-1 infection with a system of ODEs [21] suggests that an essential feature

of HIV infection progression is a combination of cell-free infection following fluid-phase dif-

fusion of viruses and direct cell-to cell-transmission at immune cell contacts (so called ‘hybrid

spreading mechanism’). The model based analysis of real patients data revealed that the hybrid

spreading of the virus is critical for the initial establishment of the infection whereas the cell-

to-cell dissemination is important for disease progression.

The early stage of sexual transmission of HIV through the epithelium is characterized by a

sporadic and irregular establishment of single foci of infection. To understand the possibility

of emergence of spatial heterogeneity in the spread of HIV infection due to diffusion and che-

motaxis of target cell rather than due to underlying spatial heterogeneity of the tissue, a reac-

tion-chemotaxis -diffusion model was proposed in [22]. This model was formulated for a two-

dimensional representation of the epithelial surface. Virus, target cell and infected cells were

assumed to follow a purely Brownian motion. The emergence of the hot spots of infection,

their spatial frequency and the speed of propagation were examined in relation to various

parameters of the model as well as the initial distribution of the target cells. The necessary con-

ditions for Turing instability were obtained analytically and further explored in numerical sim-

ulations. It was shown that HIV infection does not need a spatially heterogeneous tissue

structure for the formation of spatial patterns in the form of hot spots. Importantly, it was pro-

posed that the immune response to HIV may give rise to pattern formation. The modelling

results have implication for the application of microbicides against HIV.

Some infections are characterized by the transport of virus and immune cells to the inner

parts of susceptible solid organs through their surfaces. A mathematical model of viral infec-

tion inside a spherical organ was formulated in [23]. The model variables represent stationary

cell densities and transported quantities: viruses, humoral factors and immune cells. The

model assumes that the mobile quantities penetrate from the organ surface from an external

source via diffusion. The population dynamics of the viral infection is formulated by a system

of reaction-diffusion equations with boundary conditions specified at the surface of the sphere

and its center (radial symmetry). Numerical simulations were used to explore the effect of bio-

physical parameters on the distribution of viruses, immune cells and antiviral drugs inside the

organ. It was shown that spatial heterogeneity of the organ leads to a gradient in the steady

state distribution of the virus inside the organ and to a damped oscillations in the viral load

assuming that immune cells proliferate outside the organs. The model extensions were formu-

lated to include latently infected cells and diffusion of antiviral drugs inside the organ. These

were used to examine the dependence of the viral distribution on the diffusivity parameters of

the mobile components and compared to some data from HIV infections.

To identify the mechanism and parameters underlying the local growth of hepatitis C virus

(HCV) in vitro a data-driven approach was developed in [24]. The kinetics of the infected

cells in foci was quantified by immunohistochemical staining over a period of 72 hours. The

model for the cell-to-cell transmission of the virus was formulated as a master equations sys-

tem. The data on HCV focus expansion were best described by a model assuming a focus size-

dependent growth rate. Finally, there exist few hybrid approaches that model the immune

response in lymph nodes using an agent-based framework for cell dynamics and the spatio-

temporal description of cytokines and antigens via reaction-diffusion equations [25–28]. A

two-dimensional lattice approximation of the permissive organs is used. Although the descrip-

tive potential of hybrid models is high, their practical applications are still to come due the

Spatiotemporal Dynamics of Virus Infection
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enormous computational complexity and uncertainty in the parameter values. The later aspect

creates a danger of generating modelling artefacts whereas the complexity of the models limits

their applicability in providing a global view of the spatiotemporal dynamics of viral infections

in the face of antiviral immune responses.

The models reviewed above have one feature in common: the antiviral immune reaction is

considered (if any) following the predator-prey framework, in the sense that immune cells

multiply due to the presence of infection and eliminate it. However, it is broadly accepted now

that viruses can downregulate the specific immune cells via their physical or functional exhaus-

tion mechanisms thus leading to the establishment of chronic infectious diseases. Hence prey

is not only consumed by predators but it can also hunt predators [2, 29, 30]. Straightforward

examples are provided by HIV, HBV and HCV infections in humans [31–33] and experimen-

tal LCMV infection in mice [34–37]. In this paper we propose a model of spatiotemporal virus

infection dynamics which considers a non-linear bell-shaped regulation of the cytotoxic T

cells response with a time lag needed for their clonal expansion. The model is used to provide

an analytical insight into the regulation of various patterns of viral infection dynamics. Numer-

ical experiments are conducted to link the predicted spatiotemporal regimes with empirical

observations. Finally, we discuss the modelling results and make conclusions.

Mathematical model

To formulate the equation of the virus dynamics, we follow the view that antigen dose, time

period during which it is available and its “geographical” distribution within this host influ-

ence the duration and extent of the immune responses [38]. The underlying regulation implies

a bell-shaped relationship between viral load and the magnitude of the antiviral T cell response

so that high antigen amount leads to exhaustion of T cells [39, 40]. The biological scheme of

the model and the relevant processes are shown in Fig 1(a). To make the model analytically

tractable, we do not consider explicitly the population dynamics of the antiviral T cell

response. The magnitude of the clonal expansion is assumed to be a non-linear function of the

Fig 1. Schematic representation of virus infection dynamics regulation (left) and qualitative forms of the function f(v) (right). Low level infection

stimulates immune response while high level infection down-regulates it. The former corresponds to the growing branch of the function f(v) while the latter to

its decreasing branch.

doi:10.1371/journal.pone.0168576.g001
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viral load with a time lag. The common practice of using time delay in the life sciences is when

there are some hidden variables and processes which are not well understood but are known

to take some time to react. Although the model is general enough, we develop it with a particu-

lar interest to study non-, or weakly cytopathic infections such as LCMV, SIV and HIV-1.

We consider the following equation for the concentration of virus v in lymphoid organs

such as the spleen or lymph nodes or in any other permissive tissues:

@v
@t
¼ D

@
2v
@x2
þ kvð1 � vÞ � f ðvtÞv: ð1Þ

Here v = v(x, t), vτ = v(x, t − τ), the function f(vτ) will be specified below. The first term in the

right-hand side of this equation describes virus diffusion, the second term its production and

the last term its elimination by CTL cells. The parameter D is the diffusion coefficient (or diffu-

sivity) and k stands for the replication rate constant. The parameterized function f(vτ) charac-

terizes the virus induced clonal expansion of T cells, i.e. the number and function of these cells

generated after some time-delay τ, i.e. it depends on the concentration of virus some time

before. The qualitative form of this function is shown in Fig 1(b) [41].

Eq (1) is a quasi-linear functional reaction-diffusion equation. The fundamentals of the

general theory of these equations can be found in [42, 43]. It is worthwhile to note that for

t 2 [t0, t0 + τ] each solution of Eq (1) satisfies the usual non-autonomous reaction-diffusion

equation

vt ¼ vxx � aðt; xÞv þ kvð1 � vÞ; t � t0 ð2Þ

with some boundary conditions and with the initial condition v(t0, x) = v0(t0, x), where v0(s, x),

s 2 [t0 − τ, t0] is the prescribed initial function for Eq (1) and a(t, x) = f(v0(t − τ, x)). After solv-

ing Eq (2) on [t0, t0 + τ] we can again apply the same argument to (1.1) for t 2 [t0 + τ, t0 + 2τ]

and so on. This procedure is known as the method of steps [44], it is simple and efficient but it

works only on finite time intervals. Consequently, other approaches should be applied in order

to study global in time behaviour of solutions to Eq (1). One can expect (and this is confirmed

analytically, cf. [44]) that the small delays are “harmless” in the sense that the asymptotic prop-

erties of solutions of delay differential equations varies continuously as τ! 0+. However, if τ
becomes large, the delayed nonlinearity might trigger essential qualitative changes in the

dynamics of the system. It also presents a considerable technical complication from the mathe-

matical point of view.

In this respect, the delayed reaction-diffusion equations whose reaction term g is either of

logistic type (i.e. g is as in (1.1), when v is not separated multiplicatively from vτ) or of the

Mackey-Glass type (when v is separated multiplicatively from vτ, i.e. g = −kv + b(vτ)) are

between the most studied ones. It is an interesting point of discussion whether the Mackey-

Glass type models reflect more adequately the biological reality than the logistic models, see

e.g. [45] and especially [44] for further details. In any case, in many regards both models

exhibit similar types of qualitative behaviour of solutions. In particular, this can be seen from

the existence, uniqueness and stability results describing travelling waves (both monostable

and bistable) for various subclasses of the logistic type and the Mackey-Glass type equations,

see [1, 46–52] among many other references. We note that the investigation of delayed logistic

models is more difficult and technically involved than the studies of the Mackey-Glass type

systems, precisely because of the multiplicative non-separateness of v and vτ. For example, so

far no analytical results on the existence and uniqueness of monostable (or even bistable, cf.

[53–58]) waves in the delayed Eq (1) with non-monotone nonlinear response f were available in

the literature. This work presents the first contribution in this respect: below, we propose a

Spatiotemporal Dynamics of Virus Infection
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novel approach to the both aforementioned problems. This approach combines the phase

plane method with simple fixed points arguments.

We will also study nonlinear dynamics of reaction-diffusion waves described by Eq (1).

Travelling waves in populations dynamics are extensively studied in ecology and epidemiology

(see [59–61] and the references therein). In the case of reaction-diffusion systems they can be

accompanied by pattern formation and spreading [59, 62–65]. Pattern formation and wave

propagation in the case of delay reaction-diffusion equations are discussed in [66–68].

Virus spread without time delay

The above model is used to identify and characterize some fundamental types and patterns of

the spatiotemporal dynamics of virus infections in tissues. We start the analysis of the model

with a simplifying assumption of τ = 0. In this case, virus distribution in the tissues such as

spleen or lymph node can be described by the reaction-diffusion equation

@v
@t
¼ D

@
2v
@x2
þ kvð1 � vÞ � f ðvÞv: ð3Þ

The above model governs a spatio-temporal dynamics of the virus infection resulting from a

balance of the diffusion, replication, and elimination by the cytotoxic T cell response. The T

cell response depends in a bell-shaped way on the viral load. In contrast to Eq 1, the time

needed for the cells to expand and migrate to the site of infection is assumed to be taken into

account indirectly via the characteristics of the function f(�) rather that explicit time delay τ.

Here v = v(x, t) is the dimensionless normalized virus concentration, x 2 R+, t 2 [0, +1). By a

re-scaling of variables this equation can be reduced to the same equation with D = 1, k = 1. We

will consider this equation on the whole axis, i.e., in O = ((x, t): −1< x< +1, 0� t< +1)

with a non-negative initial condition u(x, 0) = u0(x).

For what follows it is convenient to introduce the function

FðvÞ ¼ v 1 � v � f ðvÞð Þ: ð4Þ

Depending on the form of the function f(v) we will get different behavior of solutions. Let us

note that F(0) = 0. This function can have other zeros for v> 0. We will also suppose that the

function f(v) is non-negative, it is continuous together with its second derivatives.

Under the above assumptions, this model of virus infection implies a natural description of

the spatiotemporal dynamics of the virus in terms of travelling- or standing waves. The travel-

ling wave represents a pattern in the viral density that travels across the tissue in an uninter-

rupted fashion. Another possibility represented by a standing wave would be a viral density

pattern that appear to be confined to some region and standing still. Note that standing waves

are the partial case of traveling waves correspond to a zero velocity of the wave front. Hence,

we do not consider them as a separate case.

We will study the conditions for the existence and properties of travelling wave solution of

Eq (3), that is solutions of the form v(x, t) = w(x − ct) that moves at a constant speed c in the

positive x-direction. The function w(x) (we keep the same notation x for the argument of w(�))

satisfies the equation

w00 þ cw0 þ FðwÞ ¼ 0 ð5Þ

with appropriate conditions at infinity equal one of the steady state, i.e., limx! −1 w(x) = vi,
limx! +1 w(x) = vj i, j = 0, 1, 2, 3, i 6¼ j. The constant c here is the wave speed and its relation-

ship to original model parameters will be established by the analytical treatment. The value of c
is a solution to the above eigenvalue problem.

Spatiotemporal Dynamics of Virus Infection
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As shown in Fig 2, the model admits the existence of three types of regimes: (i) a small

amplitude wave corresponding to a low-level infection spreading at constant c0 through the tis-

sue, (ii) a large amplitude wave corresponding to a high-level infection spreading at constant

c1 through the tissue, and (iii) a large amplitude two-wavefront solution corresponding to a

low-level infection followed by a hight level one evolving at different wave speeds c1 and c0,

respectively.

Existence of waves

In this section we outline the conditions of the existence of three types of propagating solutions

shown in Fig 2. Suppose that the equation

f ðvÞ ¼ 1 � v ð6Þ

has three positive solutions vi, i = 1, 2, 3 as shown in Fig 1. Then the function F(v) has four

zeros: v0 = 0, and v1, v2, v3 which are positive and ordered: v1 < v2 < v3.

1. The small amplitude monotonically decreasing solution of Eq (5) with the limits

wð� 1Þ ¼ v1; wð1Þ ¼ 0 ð7Þ

Fig 2. Schematic representation of the spatial patterns of virus infection dynamics as travelling waves. Typical wavefront solutions taking a steady

state value vi at the left end and another steady state vj, i 6¼ j at the right end. The travelling waves evolve with the speed c. A qualitative relationship between

the initial viral load and the emerging pattern on the spatiotemporal pattern of virus spread is sketched.

doi:10.1371/journal.pone.0168576.g002
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is known to exist for all values of c� c0, where c0 is a positive minimal wave speed [69, 70].

Non-monotone solutions can also exist for c< c0. However they are not positive and hence

are not practically relevant.

2. The large amplitude solutions of Eq (5) with the limits

wð� 1Þ ¼ v3; wð1Þ ¼ v1 ð8Þ

exist for a unique value c = c1.

3. The existence of two-wave solutions with the limits

wð� 1Þ ¼ v3; wð1Þ ¼ 0 ð9Þ

depends on the values c0 and c1. If c0� c1, then such solutions do not exist, if c0 < c1,

then they exist for all c such that c� � c< c1 with some c� � c0. In the first case, there are

two consecutive waves propagating with different speeds (two-wave front or system of

waves).

Convergence to waves and systems of waves

In this section we address the question of how the travelling wave- or system of waves solutions

of Eq (3) evolve from the specific initial conditions. Behavior of solutions of Eq (3) is described

by travelling waves or by systems of waves if the waves do not exist [69]. We consider Eq (3)

on the whole axis with the initial condition v(x, 0) = v0(x), where v0(x) is a step monotone func-

tion, v0(x)� 0 for x� 0 and v0(x)� v� > 0 for x< 0. Although much more general initial con-

ditions can be considered, we restrict ourselves here to this particular case for simplicity of

presentation.

For the initial values specified above the following conditions determine the evolution of

solutions.

Convergence to the wave with the minimal speed. If 0< v� < v2, then solution of Eq (3)

with initial condition v(x, 0) = v0(x) converges to the travelling wave with the minimal speed as

follows:

sup
x2R
jvðx þm0ðtÞ; tÞ � w0ðxÞÞj ! 0; t !1; ð10Þ

where m0
0
ðtÞ ! c0, w0(x) is a solution of Eq (5) with c = c0 and limits Eq (7) at infinity. The

convergence holds both for the shape and speed of the solution pattern.

If v� > v2 and c1 > c0 (the waves with the limits Eq (9) exist), then the solution also con-

verges to the wave with the minimal speed c�. Note that behavior of solutions is different if

v� = v2. However this case is not a generic one and we will not consider it here.

Convergence to systems of waves. If c1� c0 and v� > v2, then solution v(x, t) converges to

the system of two waves propagating one after another with different speeds. This means that

there are two functions m1(t) and m2(t) such that

sup
x2Rþ
jvðx þm0ðtÞ; tÞ � w0ðxÞÞj ! 0; t !1; ð11Þ

sup
x2R�
jvðx þm1ðtÞ; tÞ � w1ðxÞÞj ! 0; t !1; ð12Þ

where w0(x) is a solution of Eq (5) with c = c0 and limits Eq (7), w1(x) is a solution of Eq (5)

with c = c1 and limits Eq (8), m0
0
ðtÞ ! c0, m0

1
ðtÞ ! c1, Rþ ¼ fx � xþg, R− = {x� x−}. Here x+
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and x− are arbitrary real numbers, such that convergence Eq (11) occurs on an arbitrary (but

fixed) right-half axis, and convergence Eq (12) on an arbitrary left-half axis.

Determination of wave speeds

As it is indicated in the above section, existence of waves and behavior of solutions of Eq (3)

depend on the values c0 and c1 of wave speeds. In this section we derive parameterized esti-

mates of the wave speeds.

To find c0, consider the function F(w) on [0, v1]. The following inequality is true:

F0ðwÞ � F0ð0Þ; 0 � w � v1 ð13Þ

since f 0(w)� 0 on this interval. Therefore, the following expression is valid for

c0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF0ð0Þ

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f ð0Þ

p
(we recall that D = 1, k = 1).

Next, we derive the equation for estimation of c1. It admits an analytical formula for some

particular forms of the function F(w), and there is a minimax representation of the wave speed

for more general functions [69]. We aim to specify a simple condition for positivity of the

wave speed and an analytical approximation for its value.

Multiplying Eq (5) by w0 and integrating, we obtain

c ¼
Z v3

v1

FðwÞdw=
Z 1

� 1

ðw0ðxÞÞ2dx : ð14Þ

This formula does not allow us to find the wave speed since w0(x) is unknown. However we

can determine the sign of the wave speed. It is positive (zero, negative) if and only if the inte-

gral in the numerator is positive (zero, negative). Positiveness of the wave speed is important

from the biological point of view because it signifies that infection propagates in the tissue. If it

is negative, infection does not propagate.

Set IðFÞ ¼
R v3

v1
FðwÞdw. Then the positivity condition I(F)>0 is equivalent to the condition

Z v3

v1

vf ðvÞdv <
Z v3

v1

vð1 � vÞdv ¼
1

2
ðv2

3
� v2

1
Þ �

1

3
ðv3

3
� v3

1
Þ: ð15Þ

Let us further approximate the function F(w) by a piece-wise linear function:

FðwÞ ¼
aðv1 � wÞ ; v1 � w � w�
bðv3 � wÞ ; w� < w � v3

; ð16Þ

(

where a and b are some positive constants. Since solution of Eq (5) is invariant with respect to

translation in space, then we can set w(0) = w� and write this equation for x> 0 and x< 0 as

follows:

w00 þ cw0 þ aðv1 � wÞ ¼ 0 ; x > 0

w00 þ cw0 þ bðv3 � wÞ ¼ 0 ; x < 0
: ð17Þ

Therefore we find:

wðxÞ ¼ v1 þ ðw� � v1Þe
� lx ; x � 0; wðxÞ ¼ v3 � ðv3 � w�Þe

mx ; x � 0; ð18Þ

where

l ¼
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a

r

; m ¼ �
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ b

r

: ð19Þ
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From the condition that the first derivative of the solution is continuous at x = 0, we obtain the

following equation with respect to c:

lðw� � v1Þ ¼ mðv3 � w�Þ ð20Þ

or

�ðcÞ ¼ b
v3 � w�
w� � v1

; where �ðcÞ ¼
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a

r !
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ b

r !

: ð21Þ

Let us recall that the large amplitude travelling waves with the limits Eq (9) exist if c1 > c0

and do not exist if c1� c0. Since c1 satisfies equality Eq (21) and c0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f ð0Þ

p
, then the

critical condition c1 = c0 for the travelling wave existence can now be written as follows:

�ðc0Þ ¼ b
v3 � w�
w� � v1

: ð22Þ

This equality represents a hypersurface in the model parameter space, i.e, a, b, w�, v1, v3, sepa-

rating the regions of existence and non-existence of travelling waves with large amplitude. For

all other parameters fixed, it determines the critical value a0 as a solution of this equation such

that the waves exist for a< a0 and they do not exist for a� a0.

Regimes of spatiotemporal propagation

Under the simplifying assumption of no delay in the development of the immune response,

which can be reasonable for slowly replicating viruses, the virus infection spreading is

described by Eq (3). There are different spatiotemporal regimes of its propagation depending

on the value v�, which can be interpreted as the initial virus load, and on the values c0 and c1 of

the wave speeds, which in turn are determined by the model parameters. Depending on the

initial dose of infection and on the intensity of immune response (function f(v)) the model pre-

dicts three different regimes of infection spreading (see also Fig 2).

Low dose infection. If v� < v2 then infection spreads through the organ with the speed c0

and establishing the final level of viral load v = v1. Similar scenario holds for v� > v2 and I(F)�

0 although the regime of propagation is different. In the first case, the infection front spreads

resulting in the low level virus persistence in the organ. There is no transition from the low

level to the high level infection with v> v1. In the second case, the low viral load infection

front spreads, but there is a transition from the low level infection to the high level infection.

This second front retreats (negative speed), and the region of low value infection expands in

both directions.

High dose infection. If the initial viral infection load is high (v� > v2) and the parameters

of the model are such that c1 > c0, then infection front propagates establishing a persistent

infection with a high level of viral load v = v3. Its speed of propagation is greater than the speed

of the low viral load infection. The condition on the critical wave speeds can be approximated

analytically (Section “Determination of wave speeds”).

Two step propagation. Finally, if the initial infection load is high (v� > v2), c1� c0 and

I(F)> 0, then there are two consecutive infection fronts. First, there is a front with low infec-

tion level behind it. This first front is followed by transition from the low level infection to the

high level infection. It propagates with a lesser speed than the first one.

Let us note that increase of the parameter a (which corresponds to the increase of immune

response) leads to the transition from the regime with high infection value to the regime with

two step propagation and then to the regime with low infection value.
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Model problems with time delay

A qualitative analysis of the behaviour of solutions of the delay reaction-diffusion model for a

general bell-shaped immune response function f(�) presents a formidable challenge. We pro-

ceed using simplifying approximations to it.

In this section we consider Eq (3) with a piece-wise constant function f(v):

f ðvÞ ¼
a ; v � w0

b ; v > w0

; ð23Þ

(

where a, b� 0 and w0 > 0 are some constants. If a< b, then it is an approximation of the

growing branch of the function f(v) in Fig 1, if a> b, of its decreasing branch. We look for con-

ditions of the existence of a travelling wave solution v(x, t) = w(x − ct), which satisfies the equa-

tion

w00ðxÞ þ cw0ðxÞ þ wðxÞ 1 � wðxÞ � f ðwðx þ ctÞÞð Þ ¼ 0 ð24Þ

with the following boundary conditions

wð� 1Þ ¼ 1 � b ; wðþ1Þ ¼ 0: ð25Þ

We further assume that w0 < 1 − b. We look for a solution of problem Eqs (24) and (25). Since

it is invariant with respect to translation in space, we suppose that the discontinuity of the

function f(w(x + cτ)) occurs for x = 0, that is w(cτ) = w0. Hence instead of Eq (23) we can write

w00ðxÞ þ cw0ðxÞ þ wðxÞð1 � wðxÞ � bÞ ¼ 0 ; x � 0

w00ðxÞ þ cw0ðxÞ þ wðxÞð1 � wðxÞ � aÞ ¼ 0 ; x > 0
: ð26Þ

(

These equations should be completed by the relations

wð� 0Þ ¼ wðþ0Þ; w0ð� 0Þ ¼ w0ðþ0Þ; wðctÞ ¼ w0 ð27Þ

and by condition (25). Since eq (26) do not contain delay, we will use the phase space analysis

to find the trajectories which satisfy condition (27).

Bistable case

We begin with the case where 0< b< 1< a in which the piece-wise constant function (23)

approximates decreasing branch of the function f(w) in Fig 1 where immune response

decreases with the increase of infection level. Under these assumptions the stationary points

w = 0 and w = 1 − b of the corresponding equation dw/dt = F(w) are stable. Instead of the sec-

ond-order equations in Eq (26) we will consider two systems of the first-order equations:

w0 ¼ p; p0 ¼ � cp � kwð1 � b � wÞ ; w0 ¼ p; p0 ¼ � cp � kwð1 � a � wÞ: ð28Þ

Analysis of the trajectories of these systems allows one to formulate the following statement.

Proposition 1. Let a> 1, 0< w0 < 1 − b and

3ða � bÞw2

0
< ð1 � bÞ3 ð29Þ

Then for any τ> 0 there is a unique positive value of c for which there exists a solution of problem
Eqs (25)–(27).

The proof of this statement is given in (S1 Appendix). Condition (29) ensures the positive-

ness of the wave speed c. It can be shown that the wave speed decreases if τ increases. To this

end we consider the following approximate model obtained via linearization of system (26)
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about the boundary values at infinity:

w00ðxÞ þ cw0ðxÞ þ ð1 � bÞð1 � wðxÞ � bÞ ¼ 0 ; x � 0

w00ðxÞ þ cw0ðxÞ þ ð1 � aÞwðxÞ ¼ 0 ; x > 0
: ð30Þ

(

This approximating system admits an analytical solution and allows one to find the speed of

infection wave propagation as a function of the model parameters. We have from Eq (30):

1 � b � wðxÞ ¼ k1e
lx ; x � 0; wðxÞ ¼ k2e

� mx ; x > 0; ð31Þ

where

l ¼ �
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ 1 � b

r

; m ¼
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a � 1

r

: ð32Þ

From condition (27) we get the following equations:

1 � b � k1 ¼ k2; k1l ¼ k2m; k2e
� mct ¼ w0: ð33Þ

From these equations we obtain the following relationship between the wave speed and time

delay in immune response. We can write it as an explicit analytical dependence of τ on c:

t ¼
1

mc
log

ð1 � bÞ3=2

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
4
þ 1 � b

q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
4
þ a � 1

q� �
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
4
þ 1 � b

q� � : ð34Þ

Fig 3 shows an example of wave propagation and comparison of the analytical and numerical

results for the wave speed (see S2 Appendix for details). The wave speed decreases with time

delay. From the biological point of view, this means that infection wave propagates slower if

the delay in the clonal expansion of the antiviral immune response gets longer.

Monostable case

As above, we consider problem Eqs (24) and (25) with function (23) and reduce it to problem

Eqs (25)–(27). We will assume in this section that 0< a< b< 1 and 0< w0 < 1 − b. Then the

Fig 3. Wave propagation in the bistable case (left) for Eq (1) with function f(v) given by formula (23) (a = 1.1, b = 0.1, w0 = 0.1, D = 10−4). The

curves show the function v(x, t) at successive moments of time. The wave speed dependence on time delay (right). The lower curve shows the results of

numerical simulations, the upper curve is the analytical approximation by formula (34).

doi:10.1371/journal.pone.0168576.g003
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first system in Eq (28) has two stationary points for 0� w� 1, (0, 0) is a a node or a focus,

depending on the value of c, and (1 − b, 0) is a saddle point. The second system in Eq (28) has

only one stationary point (0, 0), which is a node or focus. We suppose that c � 2
ffiffiffiffiffiffiffiffiffiffiffi
1 � a
p

. Then

the point (0, 0) is a stable node for both systems.

Proposition 2. Suppose that 0< a< b< 1 and 0< w0< 1 − b. Then for any c � 2
ffiffiffiffiffiffiffiffiffiffiffi
1 � a
p

and τ> 0 there exists a solution of problem Eqs (24) and (25) with function (23).

The proof of this proposition is given in (S1 Appendix). It can be verified that the solution

becomes non-monotone for τ sufficiently large.

We now provide an analytical approximation to the solution of the system. Solution of eq

(30) changes if a< 1 since there are two bounded exponentials for x> 0:

1 � b � wðxÞ ¼ k1e
lx ; x � 0; wðxÞ ¼ k2e

� m1x þ k3e
� m2x ; x > 0; ð35Þ

where

l ¼ �
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ 1 � b

r

; m1;2 ¼
c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a � 1

r

; ð36Þ

Representation of solution Eq (35) holds if μ1 6¼ μ2. From condition (27) we get the following

equations:

1 � b � k1 ¼ k2 þ k3; k1l ¼ k2m1 þ k3m2; k2e
� m1ct þ k3e

� m2ct ¼ w0: ð37Þ

Expressing k1 from the first equation, we obtain the system of two equations with respect to k2

and k3:

ðm1 þ lÞk2 þ ðm2 þ lÞk3 ¼ ð1 � bÞl; k2e
� m1ct þ k3e

� m2ct ¼ w0: ð38Þ

Since μ1 > μ2 > 0, λ> 0, τ> 0, then, assuming that c> 0, we have

ðm1 þ lÞe� m2ct > ðm2 þ lÞe� m1ct : ð39Þ

Therefore the determinant of system (38) is positive, and it has unique values of k2, k3 for any c
and τ.

We obtain below an analytical representation of the approximate solution for the minimal

speed c0. Instead of Eq (35) we now have:

1 � b � wðxÞ ¼ k1e
lx ; x � 0; wðxÞ ¼ k2e

� mx þ k3xe
� mx ; x > 0; ð40Þ

where μ = c/2, and from Eq (27) it follows that

1 � b � k1 ¼ k2; k1l ¼ k2m � k3; ðk2 þ k3ctÞe
� mct ¼ w0: ð41Þ

Hence we get

k1 ¼ 1 � b � k2; k2 ¼
w0emct þ ð1 � bÞlct

1þ ðlþ mÞct
; ð42Þ

which suggest that the solution is increasing for x< 0 if k1 < 0. Therefore the travelling wave

is non-monotone for τ sufficiently large (Fig 4).

Solution w(x) is positive and monotonically decreasing for x> 0 if μ1 and μ2 are real and

positive. This condition is satisfied for c � 2
ffiffiffiffiffiffiffiffiffiffiffi
1 � a
p

. Hence we consider the values of speed

greater than or equal to the minimal speed c0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 � a
p

. Numerical simulations with the

reaction-diffusion model presented in Fig 4 show that, similar to the case without delay,

solution v(x, t) with the initial condition v(x, 0) such that v(x, 0)� 0 for all x, v(x, 0)¬� 0 and
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v(x, 0)�0 for x sufficiently large, approaches the travelling wave with the minimal speed. The

details of the numerical solution of the delay reaction-diffusion model are given in S2

Appendix.

Time oscillations

In this section we analyse the emergence of travelling wave solutions with a periodic structure

established after the wave propagation. We do not assume here that the function f(v) is given

by equality Eq (23). Let the following equality hold f(v0) = 1 − v0 for some v0, and f 0(v0)> 0.

Then v(x, t) = v0, x 2 (−1, +1), t 2 (−1, +1) is a stationary solution of Eq (1). In order to

study its local asymptotic stability with respect to small perturbations, we look for the solution

of this equation in the form

vðx; tÞ ¼ v0 þ �e
ltþiax ; ð43Þ

where a, � are real numbers, � is a small parameter, and λ is an eigenvalue. Substituting the

above function in Eq (1) and equating the terms with the first power of �, we get the following

characteristic equation:

l ¼ � Da2 � v0 1þ f 0ðv0Þe
� lt

� �
ð44Þ

(we do not assume here that D = 1). The stability boundary of the steady state solution can be

computed by considering the characteristic roots in the form of purely imaginary eigenvalues

λ = iϕ. Then we have

i� ¼ � Da2 � v0 1þ f 0ðv0Þe
� i�tð Þ: ð45Þ

Fig 4. Propagating wave in the monostable case is monotone for small time delay (τ = 1, left) and non-monotone for large time delay (τ = 8, right).

The values of other parameters are a = 0.1, b = 0.3, w0 = 0.1, D = 10−4.

doi:10.1371/journal.pone.0168576.g004
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Therefore the following equalities must hold for the real and imaginary parts:

Da2 þ v0 þ v0f
0ðv0Þ cos ð�tÞ ¼ 0; ð46Þ

v0f
0ðv0Þ sin ð�tÞ ¼ �: ð47Þ

Set z = ϕτ. Then from Eqs (46) and (47) we obtain

cos z ¼ �
Da2 þ v0

v0f 0ðv0Þ
; t ¼

z
ðv0f 0ðv0Þ sin zÞ

: ð48Þ

The first equation has a solution if the right-hand side is greater than −1. In particular, if D = 0,

then the condition reduces to f 0(v0)� 1. Using z determined from the first equation, we find τ
from the second equation.

Proposition 3. If f 0(v0)> 1 + Da2/v0, then for all τ> z/(v0 f 0(v0)sinz) the solution v0 of Eq

(1) is unstable. Here z is determined from the first equation in Eq (48).

Our analysis suggests that if the initial condition v(x, 0) does not depend on the space vari-

able, then the solution v(x, t) of Eq (1) is also homogeneous in space. In this case, depending

on the values of parameters, the solution of the model either convergence to the stationary

solution v0 or to stable periodic time oscillations both being spatially homogeneous.

However, this behavior can be different in the case of travelling wave propagation. If we ful-

fil the linear stability analysis of the homogeneous in space stationary solution v0 in the moving

coordinate frame attached to the wave, we obtain the same stability conditions as before. It fol-

lows from the first equation in Eq (48) that the onset of stability depends on the wave number

a of the spatial perturbation and on the diffusion coefficient. The steady-state solution v0

appears to be more stable with respect to spatially non-uniform perturbations (a 6¼ 0) than

with respect to perturbations which are homogeneous in space (a = 0). The frequency of the

spatial perturbations depends on the ratio of wave speed and the frequency of the time oscilla-

tions, a = ϕ/c.
Hence the model predicts the existence of three spatiotemporal regimes of travelling wave

propagation summarized in Fig 5 in the case of the linear function f(v) = rv. In the first one,

both types of perturbations, i.e., the spatial perturbations and time perturbations homoge-

neous in space, decay with time. They manifest themselves as decaying spatial oscillations

Fig 5. Numerical simulations of eq (1) with the function f(v) = rv (r = 2, D = 10−4). Wave propagation for three different values of time delay, τ = 1.4, 2, 4,

respectively. For small time delay (left) space and time oscillations decay, for intermediate time delay (middle) space oscillations decay while time oscillations

persists, for large time delay (right) both of them persist.

doi:10.1371/journal.pone.0168576.g005
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behind the wave front followed by a spatially constant solution (Fig 5, left). Another regime of

wave propagation is characterized by the decaying spatially heterogeneous perturbation and

the persisting homogeneous in space perturbations (Fig 5, middle).

Finally, if the spatial perturbations persist, then the travelling wave propagation takes place

with a (moving) periodic structure established behind the wave front (Fig 5, right). Note that

the wave speed in all these cases equals c0.

Full-scale viral regulation of immune response

We proceed with the analysis of the spatiotemporal pattern formation for model 1. In the pre-

vious section we studied analytically and numerically three distinct reduced complexity mod-

els that correspond to various specific modes of immune response regulation, i.e. activation,

suppression. The first one models the virus-driven activation of the immune response with a

growing function f(v), the second variant corresponds to the down-regulation of immune

response with a decreasing function f(v). In both of the above cases we considered step func-

tions in order to get some analytical results about the generic behavior of solutions. The third

model problem considers a growing function f(v) similar to the first version but with a contin-

uous function for which we analyzed emergence of time oscillations. We consider now a

full-scale viral regulation of the immune response described by Eq (1), i.e. the whole function

f(v), v� 0 as shown in Fig 1. The corresponding behavior of solutions will be assessed using

numerical numerical simulations and insight gained via the analyses of the simplified model

problems.

Let us recall that equation f(v) = 1 − v has three roots (solutions), v1, v2 and v3. In the model

without delay (Section “Virus spread without time delay”), Eq (3) has wave solutions with the

limits w(−1) = v1, w(1) = 0 for all values of the speed greater than or equal to the minimal

speed c0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1 � f ð0ÞÞ

p
. Similar result holds for the model problem in the monostable case

(Section “Model problems with time delay”) when the delay τ> 0. Suppose that the stationary

point v1 is stable (cf. Section “Time oscillations”), and the initial condition has limits 0 and

v1 at ±1. Numerical simulations show that solution of Eq (1) converges to the wave with the

minimal speed. If the time delay is sufficiently large, then the wave is not monotone, similar to

the model problems considered in Sections “Monostable case” and “Time oscillations”.

The travelling wave with the limits w(−1) = v3, w(1) = v1 corresponds to the bistable case.

It exists for a unique value c1 of wavefront speed in the case without delay τ = 0 and for the

model problem with non-zero delay τ> 0.

Let us consider the case where c1 < c0. Then in the case without delay (τ = 0) the wave with

the limits w(−1) = v3, w(1) = 0 does not exist. The behavior of solutions of Eq (1) is described

by a system of two waves propagating one after another with the speeds c0 and c1. A similar

behavior is observed when the delay is present in the regulation of the immune response but is

sufficiently small (Fig 6). The solution can be monotone behind the second wave or non-

monotone at all depending on the value of τ.

Contrary to the case considered in Section “Bistable case”, the speed of the bistable traveling

wave increases with time delay. This increase occurs because the bistable wave is preceded by

the a monostable wave characterized by a lower level of infection. Therefore the values of the

function f(v) at the bistable wave also decrease due to time delay. Hence the speed c1 increases

as a function of τ, while the speed c0 of the monostable wave does not depend on τ. For τ
sufficiently large the two waves merge and form a single wave with the limits w(−1) = v3,

w(1) = 0 (Fig 6). This effect does not exist in the model problems considered in Section

“Model problems with time delay”. It is specific for the system of waves where the bistable
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wave follows the monostable one. If τ is large enough, this resulting wave becomes non-

monotone.

If f 0(v1) is sufficiently large, i.e., the sensitivity of the T cell activation to the antigen is high

then the stationary point v1 becomes unstable (Section “Time oscillations”). The spatiotempo-

ral regimes of infection spreading show a broad spectrum of dynamic patterns. The mono-

stable wave becomes non-monotone with decaying or persisting oscillations behind it (Fig 7).

One type of patterns is characterized by a transition zone between decaying space oscillations

and the bistable wave with perturbed time oscillations of the homogeneous solution v1. Space

oscillations become more complex for larger values of τ which represent a second type of the

spatial dynamics. If time delay is sufficiently large, then the two travelling waves merge, as

before, forming a single stable non-monotone wave.

Fig 8 shows the last series of simulations in which the slope (sensitivity) of f0(v1) is larger

than in the above set of simulations and the instability of the steady state solution v1 is more

pronounced. In this case, we observe the existence of a monostable wave with spatial

Fig 6. Numerical simulations of different regimes of infection spreading depending on time delay, τ = 0.4, 0.95, 1.5, 10;D = 0.0001. For small time

delay (two left figures: τ = 0.4, 0.95), there are two consecutive waves of infection propagating with different speeds. The first wave can be non-monotone. For

large time delay (two right figures: τ = 1.5, 10), the second wave propagates faster and they finally merge forming a single wave which can be either monotone

or non-monotone.

doi:10.1371/journal.pone.0168576.g006

Fig 7. Spatiotemporal regimes of infection spreading. The monostable wave becomes non-monotone with decaying or persisting oscillations behind it.

The type of patterns on the left is characterized by a transition zone between decaying space oscillations and the bistable wave with perturbed time

oscillations of the homogeneous solution v1. Space oscillations become more complex for larger values of τ which represent a second type of the spatial

dynamics. If time delay is sufficiently large, then the two travelling waves merge, as before, forming a single stable non-monotone wave. The values of time

delay are, respectively, τ = 0.7, 1, 1.5, 2;D = 0.0001.

doi:10.1371/journal.pone.0168576.g007
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oscillations behind it. This wave can be separated from the bistable wave by a zone of irregular

oscillations. Further increase of the delay results in a qualitative change of the spatial patterns

of the infection spread. The two travelling waves do not merge any longer and the monostable

wave is not followed by steady space oscillations. Aperiodic oscillations are observed behind

the wave front which propagates, as before, at a constant speed c0.

We summarize the analysis of the existence of various dynamical regimes of infection wave

propagation on the parameter plane representing the strength of the immune response, char-

acterized by parameter fm and the time delay, representing the duration of the clonal expansion

of the virus-specific T cells in Fig 9. For small delays and weak immune responses the infection

spreads as a stationary wave (region 1, left low domain). An increase in the strength of the

immune response leads to the emergence of two consecutive waves propagating with different

speeds (region 2). Strong immune responses cause the infection spread in the form of two

waves with spatiotemporal patterns between them for delays which are not too large (region

3). However, if the time needed for the immune response to develop exceeds a certain thresh-

old (region 1) then the infection propagates, as before, as a stationary wave.

Discussion

Viral propagation in host organisms during infection includes two processes, the local spread-

ing inside permissive tissues and organs, and the global propagation between different organs.

The target organs for HIV and SIV infections are lymphoid tissues such as GALT, lymph

nodes, spleen, etc., whereas most other viruses replicate outside organized lymphoid organs,

e.g., the hepatitis viruses (B and C) primarily infect and spread in the liver cells. In this study

we suggest a novel mathematical model for the spatiotemporal dynamics of virus infection in

the face of an antiviral immune response. The model is formulated with a 1D reaction-diffu-

sion equation for the spatially distributed viral population. The reaction term considers the

immune response regulated by a bell-shaped dose-response relationship with viral load. It

takes into account the time-lag between the activation of the virus-specific T cells and the elim-

ination of the virus by clonally expanded CTLs. The model was used to gain insights into plau-

sible regimes of the viral spread in tissues. To this end a combination of analytical studies of

the simplified versions of the model and numerical simulations were conducted to elucidate

the role of key infection parameters such as dose, diffusion coefficient characterizing the

Fig 8. Existence of a monostable wave with spatial oscillations behind it. This wave is separated from the bistable wave by a zone of irregular

oscillations. Increase of the delay value results in a qualitative change of the spatial patterns of the infection spread. The two travelling waves do not merge

and the monostable wave is not followed by steady space oscillations. Aperiodic oscillations are observed behind the wave front which propagates at a speed

c0. The values of time delay are, respectively, τ = 1, 2, 3, 4;D = 0.0001.

doi:10.1371/journal.pone.0168576.g008
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efficacy of the cell-to-cell or free virus-to-cell spread, and delay in the establishment of the anti-

viral immune response.

Our mathematical model is based upon the following general phenomenology of virus

infections. Viruses reproduce inside host cells and transport to new cells either by direct cell-

cell contact or through the extracellular matrix. Infected cells are killed by CTLs. Thus, infec-

tion spreading in the tissue is determined by virus multiplication, virus transport and immune

responses. The intensity of the immune response depends on the infection level. It has a spe-

cific bell shape as shown in Fig 1. The form of the function f(v) shows that the immune

response intensifies with the infection level up to some critical value where this function

attains its maximum. However, for greater virus levels, it decreases because viruses affect the

cells that participate in immune response. Moreover, the immune response is not

Fig 9. Different regimes of infection wave propagation on the parameter plane (fm is the maximum of the function f(v), and τ is the time needed for

the development of immune response), see Supplementary materials: 1—stationary wave propagation (cf. Fig 6, two right images, Fig 7, right

image), 2—two consecutive waves with different speeds (cf. Fig 6, two left images), 3—two waves with spatiotemporal patterns between them (cf.

Fig 7, three left images and Fig 8).

doi:10.1371/journal.pone.0168576.g009
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instantaneous, but requires some time for cell proliferation and maturation. Hence, in order to

describe virus multiplication, transport and death we consider reaction-diffusion equations

with a time delay. Further extensions of the model include the shift towards larger spatial

dimensions, i.e, 2D- or 3D spatial models of viral spread and explicit consideration of the spa-

tial-temporal dynamics of the immune responses in tissues [71, 72]. As the number of studies

in the field is still rather limited as outlined in S1 Table, there is a number of challenges in

terms of the modelling approaches and their computational treatment.

Although the proposed mathematical model is a one-dimensional non-linear PDE model

with a time lag, the behavior of the model solutions is already quite complex. It depends on the

intensity of immune response (function f(v)), the initial virus load (initial condition) and the

growth rate of the virus in accordance with the existing view of the regulation of virus infec-

tions [1, 2, 4, 11, 29, 33, 34, 38]. We assume that the maximal intensity of the immune response

is sufficiently high to overcome virus growth and spread in a low-dose infection. Under this

assumption, the reaction-term equation f(v) = 1 − v has three positive solutions v1 < v2 < v3.

The steady state solution v1 can be either asymptotically stable or unstable, i.e. exhibit an oscil-

latory regime, the steady state v2 is always unstable, v3 is always asymptotically stable.

The model predicts the existence of a diverse spectrum of spatiotemporal patterns of virus

dynamics. The initial infection can convert the virus free steady-state v = 0 into one of the fol-

lowing infection states: a low level infection v1, a high level infection v3 or in oscillatory

regime.

1. If the initial virus load is sufficiently low, then the model predicts the existence of a mono-

stable wave propagating with the speed c0 determined by the diffusion coefficient D and by

the immune response f0(0). The wave propagation depends on the value of the time delay τ.

The wave front can be followed by either a constant low level infection v1 or a spatially peri-

odic viral distribution moving through the tissue with the same speed c0.

2. If the initial virus load is sufficiently high, then the regimes of travelling wave propagation

depend on the speed of the bistable wave c1. If it is negative, then the initial infection evolves

to a low level spatially homogeneous infection. If this speed is positive but less than c0, then

the infection spreads as a combination of two travelling waves. The first one, a low level

travelling wave is followed by a transitory region of spatially heterogeneous or irregular

infection finally replaced by a high level spatially homogeneous infection.

3. Finally, if c1 is sufficiently high, then there is only one travelling wave establishing a high

infection level v3. This transition can be non-monotone as far as the viral distribution is

concerned. Note that the speed of the bistable wave c1 increases with the increase of the

time delay of the immune response.

The predicted patterns of virus infection spread admit the following biological interpreta-

tion. The traveling wave solution corresponds to an infection of the target organ spreading at

some tempo resulting in a homogeneous or spatially periodic distribution of the virus in the

organ. Depending on the parameters of the immune response and the virus diffusion, oscil-

latory dynamics can emerge indicating that the virus distribution in the organ can be spatially

non-homogeneous and time-dependent. This could manifest as oscillations of the virus den-

sity with the amplitude different in different parts of the target organ. It should be noted, that

oscillatory dynamics of the virus infection is considered to provide an evolutionary advantage

to the virus by allowing it to evade the control by the immune response and to establish virus

persistence [73]. In addition, the alternating phases of high- and low-virus replication levels

allow the target cells to recover consumed resources and to circumvent cell death. Overall, the

oscillatory dynamics seems to increase the robustness of virus persistence in face of the
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immune response. Virus distribution in lymph nodes can be highly inhomogeneous even if

the tissue itself is homogeneous. A clear example is provided by HIV infection. Clinical and

experimental studies of HIV and SIV infections indicate that the virus growth occurs in multi-

ple local bursts reflecting local non-equilibrium interactions between HIV and immune acti-

vated cells [31]. It was further discussed in [32] that in chronic HIV infection efficient

transmission of the virus is limited to microscopic clusters of T cell in lymphoid tissues sug-

gesting that the continuity of virus production is a result of spatially separated bursts. Mathe-

matically, this would correspond to an oscillatory or irregular spatially inhomogeneous

distribution of virus revealed in our study.

Spatial aspects of virus replication and the impact of the immune response on virus dynam-

ics were thoroughly studied for SIV infection of monkeys [10]. Viral replication in skin patches

of monkeys was clearly shown to be spatially heterogeneous (Fig 2c and 2d) and dependent on

the time needed for CTLs to reach the site of local virus replication (i.e., the delay between acti-

vation of antigen-specific CTLs and in situ infiltration). It was proposed that the spatial

spreading of the virus underlies the dynamical escape from the immune response. A series of

latest studies on HIV visualized in cerebellum and lymph node tissues [74, 75] showed differ-

ent patterns of virus distribution. HIV infected cells were clustered in cerebellum but were dis-

persed in lymph node tissues. The studies conclude that a high variability in the amount of

HIV in tissues within an individual deserves further experimental analysis with a special atten-

tion to precise location of tissue sampling as factor affecting the amount of HIV recovered

(non-homogeneity). In vivo studies of virus distribution and spreading in target tissues are

complemented by the analysis of the impact of virus infection parameters on the infection

spread between cells in in vitro systems [76].

The above findings concerning the spatiotemporal dynamics of the virus spread have direct

implications for experimental and clinical studies of the biology of infections. The invention of

imaging and visualization technologies provided a novel type of spatial information on the

infection-host interaction process [7, 11, 77–79]. To interpret the data and gain a quantitative

understanding of the determinants of the infection process from the image-derived data, the

application of mathematical models is needed [80]. Indeed, the spatial patterns of pathogen

dynamics can be complex and far from being uniform [7], and require the invention of appro-

priate concepts, patterns and parameters for their analysis. The major work in this direction

remains to be done. Our analysis suggests that viral spreading in tissues can proceed as a trav-

elling wave (characterized by either a low- or a high viral load), spatially periodic or irregular

oscillations, and a combination of those. The evidence for the existence of spatially heteroge-

neous patterns, called multifocal infection, of virus spread in HIV infection in lymphoid tissue

has been published recently [7]. The images of the tissues with fluorescently labelled HIV RNA

[7] allow a range of interpretations depending on the choice of the cross-section: a bistable

travelling wave (see Fig 1A), monostable low-level infection Fig 1B, or oscillatory mode

(Fig 1D).

The possibility that the infection spreads as waves differing in their amplitude suggests the

existence of spatiotemporal mechanisms of disease pathogenesis. Indeed, due to a delay τ in

the development of the immune response, the magnitude of the immune reaction at time t will

be consistent with the level of stimulation at time t − τ. If the level of infection at time t is con-

siderably different from that at the earlier time of the immune stimulation, then the magnitude

of the response might appear to be out of consistency with the current level of infection in situ.

This in turn would result either in a higher destruction of the infected tissues (which would be

otherwise protected by exhaustion mechanisms) or in an insufficient response favoring virus

persistence, depending on the kinetics. Therefore, the immune response and the infection

kinetics should be highly coordinated to ensure a proper clearance of the infection.
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If the virus is not eliminated from the infected host then a chronic or persistent virus infec-

tion is established. To diagnose chronic infections with respect to the presence and extent of a

disease, and to assess the results of therapeutic interventions, the quantification of the infection

process is necessary. A biopsy-based medical testing may be performed involving extraction of

tissues for examining the distribution and intensity of the infectious process. A recent example

of the study of viral reservoirs in HIV infection based on examination of lymph node and

GALT biopsies from subjects under antiretroviral therapy is provided in [7]. It is of note that

the sections represent 3 × 10−4% of the lymph node tissue and the pinch biopsy area is 3 × 10−6

m2 compared to the area of the intestine in an adult human being *300 m2. This enormous

difference in scale rises the issue of how to ensure that the biopsy is informative if the viral

infection spread can be spatially essentially heterogeneous as discussed above. Obviously this

calls for the need to coordinate interdisciplinary studies of virologists and clinicians with

mathematicians in order to clearly define in quantitative terms the spatial patterns of infection.

Today infections in tissues are solely classified as diffuse, zonal, patchy, spotty, confluent, etc.

Further insights into the virus infection spreading will require extension of the one-dimen-

sional model to the two-dimensional consideration.

As “space” becomes a frontier in immunology [72, 77], further multidisciplinary research is

needed towards a mechanistic explanation of these types of pathology signs on a firm basis of

the virus ontogeny, the function of specific cells, mediators, and tissue responses analyzed

from small blood and tissue samples using computational models with a final aim of identify-

ing the right targets and design more efficient therapies [81].
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2014.

71. Su B, Zhou W, Dorman KS, and Jones DE. Mathematical Modelling of Immune Response in Tissues.

Computational and Mathematical Methods in Medicine. 2009; 10(1):9–38. doi: 10.1080/

17486700801982713

72. Qi H, Kastenmueller W, Germain RN. Spatiotemporal basis of innate and adaptive immunity in second-

ary lymphoid tissue. Annu Rev Cell Dev Biol. 2014; 30:141–67. doi: 10.1146/annurev-cellbio-100913-

013254 PMID: 25150013

73. Likhoshvai VA, Khlebodarova TM, Bazhan SI, Gainova IA, Chereshnev VA, Bocharov GA. Mathemati-

cal model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of

oscillatory dynamics in the synthesis of viral components. BMC Genomics. 2014; 15 Suppl 12:S1. doi:

10.1186/1471-2164-15-S12-S1 PMID: 25564443

74. Rose R, Lamers SL, Nolan DJ, Maidji E, Faria NR, Pybus OG, et al. HIV Maintains an Evolving and Dis-

persed Population in Multiple Tissues during Suppressive Combined Antiretroviral Therapy in Individu-

als with Cancer. J Virol. 2016; 90(20):8984–93 doi: 10.1128/JVI.00684-16 PMID: 27466425

75. Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB, et al. HIV DNA Is Frequently

Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated

Patients with Undetectable Viral Loads. J Virol. 2016; 90(20):8968–83 doi: 10.1128/JVI.00674-16

PMID: 27466426

76. Boulle M, Muller TG, Dahling S, Ganga Y, Jackson L, Mahamed D, et al. HIV Cell-to-Cell Spread

Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell. PLOS Pathogens,

2016; 12(11):e1005964. doi: 10.1371/journal.ppat.1005964 PMID: 27812216

77. Mandl JN, Torabi-Parizi P, Germain RN.Visualization and dynamic analysis of host-pathogen interac-

tions. Curr Opin Immunol. 2014; 29:8–15. doi: 10.1016/j.coi.2014.03.002 PMID: 24705104

78. Pulverer JE, Rand U, Lienenklaus S, Kugel D, Zietara N, Kochs G, et al. Temporal and spatial resolution

of type I and III interferon responses in vivo. J Virol. 2010; 84(17):8626–38. doi: 10.1128/JVI.00303-10

PMID: 20573823

79. Tang J, van Panhuys N, Kastenmüller W, Germain RN.The future of immunoimaging–deeper, bigger,

more precise, and definitively more colorful. Eur J Immunol. 2013; 43(6):1407–12. doi: 10.1002/eji.

201243119 PMID: 23568494

80. Medyukhina A, Timme S, Mokhtari Z, Figge MT. Image-based systems biology of infection. Cytometry

A. 2015; 87(6):462–70. doi: 10.1002/cyto.a.22638 PMID: 25641512

81. Germain RN, Schwartzberg PL. The human condition: an immunological perspective. Nat Immunol.

2011; 12(5):369–72. doi: 10.1038/ni0511-369 PMID: 21502986

Spatiotemporal Dynamics of Virus Infection

PLOS ONE | DOI:10.1371/journal.pone.0168576 December 20, 2016 27 / 27

http://dx.doi.org/10.1016/j.jtbi.2016.02.016
http://www.ncbi.nlm.nih.gov/pubmed/26921467
http://dx.doi.org/10.1080/17486700801982713
http://dx.doi.org/10.1080/17486700801982713
http://dx.doi.org/10.1146/annurev-cellbio-100913-013254
http://dx.doi.org/10.1146/annurev-cellbio-100913-013254
http://www.ncbi.nlm.nih.gov/pubmed/25150013
http://dx.doi.org/10.1186/1471-2164-15-S12-S1
http://www.ncbi.nlm.nih.gov/pubmed/25564443
http://dx.doi.org/10.1128/JVI.00684-16
http://www.ncbi.nlm.nih.gov/pubmed/27466425
http://dx.doi.org/10.1128/JVI.00674-16
http://www.ncbi.nlm.nih.gov/pubmed/27466426
http://dx.doi.org/10.1371/journal.ppat.1005964
http://www.ncbi.nlm.nih.gov/pubmed/27812216
http://dx.doi.org/10.1016/j.coi.2014.03.002
http://www.ncbi.nlm.nih.gov/pubmed/24705104
http://dx.doi.org/10.1128/JVI.00303-10
http://www.ncbi.nlm.nih.gov/pubmed/20573823
http://dx.doi.org/10.1002/eji.201243119
http://dx.doi.org/10.1002/eji.201243119
http://www.ncbi.nlm.nih.gov/pubmed/23568494
http://dx.doi.org/10.1002/cyto.a.22638
http://www.ncbi.nlm.nih.gov/pubmed/25641512
http://dx.doi.org/10.1038/ni0511-369
http://www.ncbi.nlm.nih.gov/pubmed/21502986

