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Purpose: We developed a method to automatically locate and quantify graft detach-
ment after Descemet’s membrane endothelial keratoplasty (DMEK) in anterior segment
optical coherence tomography (AS-OCT) scans.

Methods: A total of 1280 AS-OCT B-scans were annotated by a DMEK expert. Using
the annotations, a deep learning pipeline was developed to localize scleral spur,
center the AS-OCT B-scans and segment the detached graft sections. Detachment
segmentation model performance was evaluated per B-scan by comparing (1) length
of detachment and (2) horizontal projection of the detached sections with the expert
annotations. Horizontal projections were used to construct graft detachment maps. All
final evaluationswere doneon a test set thatwas set apart during trainingof themodels.
A second DMEK expert annotated the test set to determine interrater performance.

Results: Mean scleral spur localization error was 0.155 mm, whereas the interrater
difference was 0.090 mm. The estimated graft detachment lengths were in 69% of the
cases within a 10-pixel (∼150 μm) difference from the ground truth (77% for the second
DMEK expert). Dice scores for the horizontal projections of all B-scanswith detachments
were 0.896 and 0.880 for our model and the second DMEK expert, respectively.

Conclusions: Our deep learning model can be used to automatically and instantly
localize graft detachment in AS-OCT B-scans. Horizontal detachment projections can be
determinedwith the same accuracy as a humanDMEK expert, allowing for the construc-
tion of accurate graft detachment maps.

Translational Relevance: Automated localization and quantification of graft detach-
ment can support DMEK research and standardize clinical decision-making.

Introduction

Descemet’s membrane endothelial keratoplasty
(DMEK) currently offers the greatest opportunity
of visual gain to patients suffering from endothelial
dysfunction.1,2 However, partial graft detachment
after DMEK remains a burden for patients and a
challenge for surgeons, with detachments requiring air
injection in 3% to 76% of cases.3,4

Anterior segment optical coherence tomography
(AS-OCT) allows for visualization of early graft
detachment and is therefore clinically useful in guiding
postoperative care.5 However, the quantification of
the detached area remains difficult because AS-OCT
typically consists of multiple radial B-scans, and a
physician must integrate several images to have an
overview of detached areas. Moreover, we found that
the degree of graft detachment can be ambiguous in
some regions when the graft is appositioned to the

Copyright 2020 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:f.g.heslinga@gmail.com
https://doi.org/10.1167/tvst.9.2.48
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantifying Graft Detachment after DMEK TVST | Special Issue | Vol. 9 | No. 2 | Article 48 | 2

Figure 1. Deep learning pipeline for quantification of corneal graft detachment. A scleral spur localization model is applied to a radial
B-scan of an AS-OCT (a). The scleral spur estimates are used to center the B-scan (b) and obtain crops. The crops (c) are processed through a
segmentation model, which was trained to output a map with detachment predictions (e) similar to expert annotations (d). Combining the
horizontal projections (f) of 16 B-scans, a graft detachment map can be constructed.

inner cornea yet not attached. No fast and objective
tool to visualize all detached areas currently exists.
We believe such a tool could aid in the postopera-
tive management of DMEK patients, including the
decision to rebubble or perform repeat DMEK.

We propose an automated image analysis method
(Fig. 1) that has the potential to improve clinical
decision-making by objectively detecting the areas of
DMEK detachment and providing an overview of all
detached areas at once.

Methods

Ethical Approval

This study was approved by the Capital Region
Committee on Health Research Ethics, Denmark, and
adhered to the tenets of the Declaration of Helsinki.
All participants provided written informed consent
before participation.

Data

Swept-source AS-OCT scans (CASIA2; Tomey
Corp. Nagoya, Japan) were collected as part of
a randomized controlled trial conducted at the
Department of Ophthalmology, Rigshospitalet,

Glostrup, Denmark. Briefly, the randomized study
included patients with Fuchs’ endothelial dystrophy or
pseudophakic bullous keratopathy eligible for DMEK
surgery and excluded re-DMEK procedures or prior
keratoplasty. The study was double-blinded and was
designed to compare patients randomized to either
air or sulfur hexafluoride (SF6) DMEK surgery.6
A DMEK expert (M.A.) annotated 80 scans from
68 participants, acquired either immediately after
surgery or postoperative day 7. Typically, because
of the presence of a large gas bubble supporting
most of the graft, little to no detachment is present
immediately after surgery. However, these scans were
included to help our model distinguish between graft
detachment and intraocular gas. Each scan consists
of 16 radial B-scans, corresponding to a total of
1280 images of 2133 by 1466 pixels. For each B-scan,
locations where the graft had detached were manually
annotated with point markings (image coordinates).
Additionally, the scleral spur was annotated when
clearly discernible in the inferior and superior part
of the B-scan, resulting in a maximum of two points
per scan. The data were randomly split on a partici-
pant level in a set for training and evaluation of our
models (n = 960 images) and a set for final testing
(n = 320 images). Details about the AS-OCT B-scans
are shown in Table 1. Participant characteristics are
shown in Table 2.
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Table 1. Data Sets Details

Training / Validation Data Test Data Total

Participants 50 18 68
Hospital visits 60 20 80
AS-OCT B-scans 960 320 1280
AS-OCT B-scans without graft detachment 232 (24.2%) 104 (32.5%) 336 (26.3%)
Scleral spur points annotated 847 (44.1%) 276* (43.1%) 1123 (43.9%)
Both scleral spur points annotated in an AS-OCT B-scan 288 (30.0%) 81 (25.3%) 369 (28.8%)

Overview of image data and annotations. Data in the training and validation columnwas used to design, train and optimize
the deep learning models. Test data was used for the final model evaluation. *out of 276 scleral spur points annotated by the
first DMEK expert, 232 points were also annotated by a second DMEK expert to evaluate inter-rater agreement.

Table 2. Participant Characteristics

Characteristics
Participants in Training
and Validation Set

Participants
in Test Set P Value

Age, mean years (SD) 70.2 (7.47) 73.3 (6.10) 0.09
Sex (male/female) 27 / 23 6 / 12 0.17
Diagnosis (FED/PBK) 50 / 0 17 / 1 0.26
Laterality (R/L) 26 / 24 10 / 8 1.00
Tamponade (air/SF6) 28 / 22 9 / 9 0.78
Visit (immediately after surgery/postoperative day 7) 10 / 50 2 / 18 0.72

Values are presented as mean (SD) or ratio. P values were determined with t-test for continuous variables and Fisher’s test
for categorical variables. FED, Fuchs’ endothelial dystrophy; PBK, pseudophakic bullous keratopathy.

Deep Learning Pipeline

For the analysis of the AS-OCT data, we used deep
learning methodology,7 which has successfully been
used for many medical image analysis tasks,8 including
ophthalmology.8–12 In this article we present a frame-
work with a four-step approach: (1) localization of
the scleral spur using a deep learning-based regression
model to center each AS-OCT B-scan, (2) fit of an
ellipse to the scleral spur points of all radial B-scans
to refine localization and centering, (3) segmentation
of the detached areas with a deep learning segmenta-
tion model, and (4) extraction of DMEK biomarkers
from the segmentation maps. Each step is described
in more detail in the following sections. An overview
of the deep learning pipeline is shown in Figure 1.
Models were implemented in Keras,13 using a Tensor-
Flow backend.14

Scleral Spur Localization

For a clinical evaluation of graft detachment, and to
study detachment progression, it is important to find
the detached areas with respect to the center of the
cornea. The center of the cornea is difficult to locate—
especially when corneal edema is present, which is why

we used the center of the fitted scleral spur ellipse
instead. The scleral spur’s morphology and position
have been proven to stay unaltered after surgery, and
therefore it has been chosen as a landmark for quanti-
tative measurements in the anterior chamber.15,16 It
is visible in only 70% to 78.9% of all of the radial
B-scans,17 because of image artifacts from eyelids or
anatomic variations.18 The localization model is there-
fore only trained on B-scans for which the scleral spur
could be annotated in both the superior and inferior
segment (n = 288). Training was done using batches of
10 image crops and reducing the mean squared error.
Basic data augmentation (rotation and translation) was
used to increase the variability of the training data.19

AS-OCT B-scan images (2133 by 1466 pixels) were
reduced to 512 × 352 pixels for and converted to
grayscale. A well-known deep learning architecture,
ResNet-50,20 was modified to match the input dimen-
sions and output four values that represent the coordi-
nates of two scleral spur locations per B-scan. The
localization model was trained with batches of 10
images by reducing the least-square error between the
model outputs and the targeted coordinates. A grid
search was used to find the optimal set of model hyper-
parameters and select the best-performing model. This
model was then used to process all B-scans in the test
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set. Note that scleral spurs locations were estimated
even in B-scans that were not annotated.

The anatomic structure of the scleral spur can be
approximated by an ellipse in the 3D AS-OCT volume.
Since the scleral spur is not clearly discernible in each
B-scan, we included an extra step that exploits this
ellipsoid structure and makes the localization model
robust for all B-scans. First, we fitted an ellipse through
the 32 scleral spur point estimates (two scleral spur
points for each of the 16 AS-OCT B-scans). Then,
for each scleral spur point estimate, we updated the
estimate with the location of the ellipse through that
slice.

Detachment Segmentation

We created binary masks from the point markings
that represent locations along the detached graft.
Examples of the masks can be seen in Figure 4
and Figure 5. The width of the detached lines was set
to 15 pixels. Based on the scleral spur point estimates
of the scleral spur localization model, B-scans were
cropped such that the cornea was centered (1920 × 768
pixels). Taking advantage of the anatomical symme-
try of the anterior chamber, the crops were split into
an inferior half and a vertically reflected superior half.
This step halved the detachmentmodel input size, while
doubling the number of training examples. The crops
were down-sampled by a factor of two to obtain the
final size of 480 × 384 pixels.

As a data augmentation technique, we added
random uniform noise to the locations of the scleral
spurs (−60 to +60 pixels in the horizontal and vertical
coordinate) prior to cropping, resulting in translated
and slightly rotated crops. The same cropping proce-
dure and data augmentation was applied to the masks,
ensuring that the OCT crops and masks remained
aligned.

To localize the image pixels that illustrate graft
detachment, we employed a semantic segmentation
approach. A deep learning model with a U-Net archi-
tecture,21 was implemented to output a mask similar
to the input. The model was trained using batches of
eight image crops, using a weighted cross-entropy loss.
We experimented with the weight factor of foreground
pixels on the loss, and found that a factor of 2 provided
the best results on the validation set. The best perform-
ing model was applied to the test set to obtain mask
predictions.

Biomarkers Extraction and Evaluation

For each mask prediction in the test set, length
of detachment was determined using a skeletonization

method.22 This skeletonization method is a morpho-
logic procedure that involves shrinking the regions in
the binary image until they are one pixel wide. The
remaining pixels were counted as a proxy measure
for length of detachment. After processing the test
set crops with the detachment segmentation model,
the skeletonization method was applied to the outputs
of the segmentation model, as well as the annotated
masks. Evaluation of length of detachment was done
by comparing the model predicted detachment length
with the annotated length. Although length of detach-
ment is our primary outcome measure, it does not
provide information about the relative location of
detachment. To enable the construction of a 2D-map
of detachment, we projected the detached locations on
the horizontal axis of each cropped radial B-scan. The
16 projections can then be combined to create a two-
dimensional map giving an overview of all detached
areas in a single image (Fig. 1). Performance of the
projection of the detached sections on the horizontal
axis was evaluated using Dice score.23 The Dice score
was determined for the overlap between the projections
and perfect overlap would result in a Dice score of 1.

Additionally, an interrater analysis was performed
where a second DMEK expert (J.C.) annotated the B-
scans in the test set. These annotations were processed
similarly as the annotations of M.A. and assessed for
scleral spur localization error, length of detachment,
and overlap in horizontal axis projection of detached
graft sections.

Results

Scleral Spur Localization

The scleral spur localization model with the ellipse
fit was applied to the downscaled B-scans of the test
set. The mean Euclidean distance between the annota-
tions of Expert 1 and the model predictions was 4.97
pixels (0.155 mm). Moreover, 95% of these errors were
within 8.79 pixels (0.275 mm). In comparison, the
Euclidean distance between the two experts was 2.87
pixels (0.090 mm). Only scleral spur points that were
annotated by both experts were used for the final evalu-
ation. Figure 2 provides a visual interpretation where
we show an example case and the mean error of the
scleral spur localization model. We also tested for the
effect of the ellipse fit. Without ellipse fit the mean
Euclidean distance between the localization model and
Expert 1’s annotations was found to be slightly smaller:
4.48 pixels (0.140 mm). Additional discussion of our
motivation to use the ellipse fit can be found in the
discussion section.



Quantifying Graft Detachment after DMEK TVST | Special Issue | Vol. 9 | No. 2 | Article 48 | 5

Figure 2. Example result of scleral spur localization model for a test case. Left: B-slice with original resolution (2133 × 1433 pixels). Right:
Enlarged version of the blue box in the left image. The circle boundary represents themean error between Expert 1 and themodel prediction
(0.155 mm).

Figure 3. Bland-Altman plot of length of detachment determined
by the segmentation model versus the annotations of Expert 1.
Length is measured as the number of pixels after applying a skele-
tonization method to the mask. The horizontal axis describes the
mean of the length of detachment as determined by Expert 1 and
the segmentation model. The vertical axis is the difference between
Expert 1 and the segmentation model. ±1.96 standard deviations
describes the 95% confidence interval. A positive difference means
that the segmentation model underestimates detachment length
compared with the expert annotations. One pixel corresponds to
15.0 μm.

Length of Graft Detachment

The main results of the segmentation model are
shown in Figure 3, where length of detachment is
displayed in a Bland-Altman plot.24 The original field
of view of the B-scan was 16 × 11 mm, for 2133 ×
1466 pixels, so after down-scaling with a factor two,
one pixel corresponds to 15.0 μm. The bias (6.04 pixels)
is relatively small compared with the mean length of
detachment, and 69%of cases arewithin a difference of

10 pixels (∼150 μm). Some outliers are found for cases
with a larger length of detachment, and these mostly
represent underestimations of the length of detach-
ment. In comparison, the bias in detachment length
between Expert 1 and Expert 2 was −0.9, with 1.96
standard deviations between −33.56 and 31.44. For
77% of cases, the difference in annotated length of
detachment is within 10 pixels.

The numbered green dots in Figure 3 refer to specific
B-scans that are shown in Figures 4 and 5. Green
dots 1-3 are examples of successfully segmented scans,
while numbers 4-6 correspond to B-scans for which the
segmentation model outputs show substantial devia-
tions from the expert annotations.

The test set included two OCT scans that were
acquired immediately after surgery. In all 32 B-scans,
the edge of the intraocular gas bubble was visible to the
human observer, but no graft detachment was present.
The detachment model provided false-positive regions
in two of the 32 B-scans.

Projection Results

When all B-slices were included, the Dice score
was found to be 0.906 (±0.190), compared to 0.916
(±0.160) for the inter-rater performance. When empty
masks were excluded from this analysis, the Dice scores
for the segmentation model and the inter-rater perfor-
mance were found to be 0.896 (±0.149) and 0.880
(±0.172), respectively.

The detachment projections of 16 B-scan can then
be plotted on a grid similar to the radial grid of
the AS-OCT scan. Since all B-scans were previously
centered with respect to themiddle of the cornea (using
the scleral spur estimates), the detached sections can
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Figure 4. Examples of successful segmentations. Top row: OCT B-slices from the test set. Middle row: mask annotations by a DMEK expert.
Bottom row: Output of the segmentationmodel. For the predictions, yellow indicates high confidence that a section is detached, while green
indicates lower confidence. The numbers in the top left corner correspond to the green dots in Figure 3.

Figure 5. Examples of segmentations that deviate from the expert annotations. For more details, see the description of Figure 4.

directly be mapped on the radial grid. Three examples
of such detachment maps are shown in Figure 6,
in which the red structures represent the detachment
segmentationmodel estimates and the green dotted line
the expert annotations on AS-OCT images.

Discussion

Our results demonstrate that a deep convolu-
tional neural network can accurately and automati-
cally identify DMEK graft detachment. We believe
that our deep learning pipeline has the potential to
improve and standardize clinical decision making and
can similarly be used as an objective and operator-
independent outcome to improve DMEK research and
reporting.

The number of DMEK procedures performed is
rising rapidly driven by the superior visual results.25,26

In 2018, 41.2% more DMEKs were performed
in the United States, while the total number of
endothelial keratoplasty procedures increased only
4.6% in comparison with the year before.27 This
invariably increases the need for DMEK detach-
ment management, such as the decision to await
spontaneous clearance, rebubble, or perform repeat
DMEK.28–30 Studies agree that management depends
on the degree of detachment yet report diverging
opinions for when to rebubble and varying definitions
of partial detachment, including visually significant
graft detachment,31 20% detached area,32 more or less
than one-third detached.28 In current practice, the
amount of detachment after DMEK is estimated by
a clinician/surgeon over a succession of scans on a
screen, rather than measured objectively. Thus the
surgeon has to make a decision with regard to treat-
ment without seeing all detached areas in a single
image or accurately being able to quantify the total
amount of detachment.
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Figure 6. Graft detachment maps of three AS-OCT scans, connecting the detached sections of 16 radial B-scans. The red line and surface
indicates the model predictions, whereas the green dotted line represents the expert annotations.

The high Dice scores for the projection results
are similar to a human DMEK expert and indicate
that accurate detachment maps can be constructed.
Visual evaluation of some examples of these maps
(Fig. 6) indeed shows a strong similarity with the expert
annotations. Since the center of the detachment map
corresponds with the center of the cornea, the sever-
ity of the detached sections can be evaluated with their
respective distance to the center. Moreover, follow-
up OCT scans can be overlaid to assess detachment
progression.

The Bland-Altman plot in Figure 3 also indicates
that the segmentation model works well for most
individual B-scans. Examples 1 to 3 in Figure 4 repre-
sent the results for the majority of the segmenta-
tions and show high segmentation accuracy, even
when a graft is torn (Example 2). For some cases,
the predicted detachment length differed substantially
from the expert annotations (Fig. 5). Part of the
disagreement could originate in the inherent uncer-
tainty of some graft sections that are difficult to
annotate. Indeed, the DMEK experts do not always
agree, but the 95% confidence interval for the inter-
rater study is roughly half the size of the model predic-
tion confidence interval. Moreover, we also found that
the model makes a few substantial mistakes that are
obvious to the human observer (e.g., Example 6).
After visual inspection of the outliers, we noticed that
most of the sizeable underestimations were B-slices
of one specific OCT scan with a lot of detachment
in the center. These errors are likely due to the lack
of training examples with a large central detachment.
The model might confuse some large center detach-
ments for intraocular gas, which is only present in
scans directly after surgery or rebubbling. Although

the effect of these type of mistakes might be limited
since they are obvious and will easily be spotted by
the ophthalmologist, it could be addressed by adding
more training data encompassing more variations,
especially cases with center detachments. Furthermore,
the current segmentation model did not take into
account information from neighboring B-slices, as the
DMEK expert did. Finally, some inaccuracy might
result from the loss of information due to down-
sampling the B-slices by a factor two before process-
ing the scans with the graft segmentation model. Given
the horizontal line-like structure of the graft and
the down-sample factor, the horizontally most distant
pixels could be misclassified. However, this error will
be small compared to the whole length of the graft
detachment.

Apart from missegmenting some cases with a lot of
detachment in the center, it was sometimes challeng-
ing to distinguish remnant host Descemet’s membrane
from the DMEK graft. Furthermore, the presented
models were trained and evaluated on a single data set
collectedwith one type of AS-OCTdevice. For general-
ization toward multiple-sources, the models have to be
retrained either with some images from other scanner
types or with the use of other domain generalization
techniques.33

Prior image analysis work within the realm of
DMEK detachment has only focused on binary classi-
fication; i.e. whether detachment is present or not34 and
whether rebubbling was performed.35 We believe our
detachment model is of clinical value as it provides
quantitative measures about length and location of
graft detachment. The segmentation accurately locates
detachment in most AS-OCT B-scans and is much
faster than a human rater. In clinical practice an
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ophthalmologist would not have time to annotate the
detachment regions in detail, whereas our deep learn-
ing pipeline could provide an instant evaluation aiding
the decision.

Although our aim was to develop a model for
quantifying DMEK detachment, we also developed a
scleral spur locating model as an intermediate step.
Having this scleral spur localization model aided our
AS-OCT B-scan preprocessing by cropping all images
uniformly prior to the DMEK detachment model
evaluation. This cropping step also provided practical
benefits, as we did not have to reduce the standard U-
net model size or the resolution of the B-scans further
to fit within Graphics Processing Unit (GPU) memory.
However, locating the scleral spur is valuable in and of
itself. Potential applications include determining limbal
chamber depth parameters such as angle-opening
distance and trabecular-iris space area, relevant in
glaucoma. Furthermore, it may also be a valuable tool
for aligning AS-OCT scans between patient visits (e.g.,
to compare pachymetry map changes).

The refinement of the scleral spur estimates by
fitting an ellipse resulted in a slightly bigger localiza-
tion error. However, we could only evaluate for scleral
spur points that were well discernable, since those were
annotated by both experts. Our model also outputs an
estimate for the scleral spur when the region itself is not
visible (e.g., hidden behind the eyelid).13 We believe
that the ellipse fit step makes the localization more
robust for these cases and reduces outliers. Whether
our scleral spur model can be applied to other disease
entities, such as acute angle-closure glaucoma, is a
topic of future research.

In summary, we have introduced a deep learn-
ing pipeline based on AS-OCT that allows automatic
and accurate quantification of graft detachment after
DMEK.Our future research efforts will focus on evalu-
ating the value of our algorithm for improving clinical
decision making and clinical outcomes after DMEK.
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