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The organization of genomic sequences is dynamic and undergoes change during the process of evolution.
Many of the variations arise spontaneously and the observed genomic changes can either be distributed
uniformly throughout the genome or be preferentially localized to some regions (hot spots) compared to
others. Conversely cold spots may tend to accumulate very few variations or none at all. In order to identify
such regions statistically, we have developed a method based on Shewhart Control Chart. The method was
used for identification of hot and cold spots of single-nucleotide variations (SN'Vs) in Mycobacterium
tuberculosis genomes. The predictions have been validated by sequencing some of these regions derived
from clinical isolates. This method can be used for analysis of other genome sequences particularly
infectious microbes.

enomic variations, such as single nucleotide variations (SNVs), insertion/deletion, copy number changes
and changes in synteny are some of the major causes of genetic divergence and phenotypic differences
among different strains and species'. Though the identification of these variants has become much easier
and the underlying molecular mechanisms are getting revealed, it is still not clear if there is a pattern by which
genomic changes occur’. Hot spots and cold spots are regions that display either higher or lower SNV respect-
ively, compared to the predicted normal frequencies’. Traditionally hot spots have been studied with respect to
recombination frequencies and specific octamer DNA sequences (e.g. Chisites 5'-GCTGGTGG-3") were thought
to be associated with these spots*. Most of the mutational analyses have been done with either individual genes
such as p53>7 and some kinases®, small genomes such as viruses’ "', or extra chromosomal DNA elements like
mitochordria'? and chloroplast'®. In general hot spots have been defined in terms of frequencies of variants arising
ata single nucleotide position or a single amino acid. The frequencies are known to vary across genomes. Selection
pressure, such as drug or immune pressure'* plays an important role in determining which genomic regions that
are likely to harbor the hot spots. Moreover, sites/genes that are hyper variable may be governed by evolution and
are a result of the intricate relationships among genes, networks and environment'. Since identification of hot
and cold spots can be highly useful in defining drug and vaccine targets it is important to develop tools that can
identify these regions systematically. Of the few computational approaches available for identification of hot and
cold spots, mutation spectrum analysis is one approach’®. A mutation spectrum is a distribution of frequencies of
every type of mutation along nucleotide sequences of a target gene. This is then transformed into distribution of
observed mutational frequencies and compared with expected frequencies. However, these methods are designed
for finding hotspot sites in a gene but not for scanning entire genomes in a short period of time. Moreover, there
are a number of methods that can be used for mutational frequency analysis and it has been suggested that a
combination of methods are needed to accurately identify hot spot sites'®. Here we describe an approach based on
“Shewhart Control Chart” for analysis of whole genome sequences of different strains of Mycobacterium tuber-
culosis, the causative agent of tuberculosis. Shewhart control chart is widely used in statistical quality control'’. It
has also been used in quality estimation in healthcare industries'®"”.The predictions we have made by using this
method were validated by sequencing the putative regions amplified from clinical isolates.
Tuberculosis continues to be a major public health problem of the world®. It is an air borne infection and
manifests predominantly as a pulmonary disease. Besides pulmonary tuberculosis, it can also occur, though less
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frequently at extra-pulmonary sites. The strains isolated from both
these clinical conditions have been investigated in the present study.
In addition to variation in gene expression patterns during infection,
intra-genomic variation among pathogenic strains has been recog-
nized as a critical feature in pathogenesis of microorganisms.

Results

Hot & cold spots prediction using Shewhart Control Chart.
Shewhart Control Chart (SCC) is one of the most popular tech-
niques for maintaining process control in the field of statistical
process control'’. This chart is routinely used to monitor one or
more variables that are directly or indirectly associated with the
production process. This chart may instantly detect a large shift
in the process level. Regardless of how carefully a process is
maintained, a certain amount of natural variability does always
exist. A process is said to be statistically “in control” when the
amount of natural variability is within a certain limit. On the other
hand, if the variability exceeds a certain limit, then the process is
statistically “out of control”. This chart graphically displays the
quality of product or process based on characteristics of a sample
in relation to sample number or time. Basic characteristics of these
charts are Center Line (CL), the Upper Control Limit (UCL) and
Lower Control Limit (LCL). In effect the use of Shewhart Control
Chart in statistical process control mainly ensures that the statistical
attributes of the process lie within the UCL & LCL. In our case SNV
frequencies in the genome falling outside the control limit will satisfy
hot spots. (see “Methods” for details)

We have defined hot and cold spots as regions of genomes (win-
dows of 2000 nucleotides) that either display higher or lower than
expected number of SNVs respectively in a population of isolates/
strains. We have used ABWGAT (Anchor Based Whole Genome
Analysis Tool) to carry out pair wise comparison of fully sequenced
M. tuberculosis genomes in order to identify SNVs*'. The distribution
of SNVs identified by comparing M. tuberculosis CDC1551 and M.
tuberculosis H37Rv strains across the genome is shown in Fig. 1. M.
tuberculosis H37Rv strain was used as a reference strain. SNV counts
were plotted using non-overlapping segment of 2000 nucleotides.

We have also generated random SNVs and the positions of these
are also depicted in Fig. 1. It is clear from the figure that the distri-
bution of natural SNVs was non-uniform in comparison to ran-
domly generated ones. The number of SNVs in a segment of 2000
is estimated to have a Poisson distribution with mean 0.4954. This
was verified statistically by a Kolmogorov-Smirnov* test which
yielded a D-statistic of 0.0337. (see Fig. 2).

SNVs generated by comparing two M. tuberculosis strains (see
Fig. 1) were used to derive SCC(Fig. 3). The chart shows UCL, CL
and LCL as dotted lines. The red color indicates out-of-control pro-
cesses, that is, the genomic regions with high SNV frequencies. We
have identified cold spots as those that show very few or negligible
SNVs. In order to extend the studies to clinical isolates of M. tuber-
culosis, we have used two different strategies. In the first one we
identified putative hot and cold spots from pair wise comparison
of different strains and isolates using SCC and then mapped these
with respect to each other in order to identify the common regions
based on sequence. Only those regions that showed hot and cold
spots in all the strains were considered for further analysis. In the
second strategy, we considered all SNVs in all strains and isolates and
mapped these to H37Rv sequence (reference sequence). This facili-
tated the generation of an average number of SNVs in each bin in the
context of H37Rv. SCC of the binned average SNVs permitted the
identification of hot and cold spots, (Supplementary Table 1, 2). Our
results showed a total of 44 hot spots and 32 cold spots in M. tuber-
culosis genome. Some of the genes, in the hot spot regions, such as
Rv0064 and Rv0095¢ have been functionally characterized; however a
large number of genes with unknown function are also located in
these regions (hypothetical proteins). Rv0064 has been annotated as a
probable transmembrane protein based on sequence similarity with
integral membrane proteins. A homolog of Rv0064, (ML0644) has
been described as a conserved hypothetical transmembrane protein
in M. leprae ( http://www.ncbi.nlm.nih.gov/gene/909429).

In our analysis we did not consider those nucleotide variations of
the reference strain H37Rv that are absent in all other strains and
isolates. We also did not consider SN'Vs that mapped to multigene
families, such as PPE/PGRS, and repetitive regions as these can skew
SNV count.
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Figure 1| Distribution of SNVs across whole genome. Pink dots indicate frequency of SNVs identified by comparison between M. tuberculosis CDC1551
and M. tuberculosis H37Rv were mapped on H37Rv genome using a bin size of 2000 nucleotides. Blue dots indicate distribution of randomly generated
SNVs on H37Rv genome. X-axis represents whole genome position. Y-axis represents SNV frequency.
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Figure 2 | Kolmogorov-Smirnov test to check if SNV distribution follows Poisson distribution. The function F1 is the empirically observed cumulative
distribution of the SNVs and the function F2 is the cumulative distribution of a Poisson random variable with parameter 0.4954.

Sequencing of hot and cold spots of clinical isolates. Our iden-
tification of hot and cold spots is based on completely sequenced
genomes. Though we have also taken into consideration sequences
from M. tuberculosis isolates that have not been assembled, it is still
likely that the changes observed by us may be present only in these
selected isolates and not relevant in a global context. We tested the
methodology for its reliability and robustness to predict hyper and
hypovariable regions by sequencing two representative predicted hot
and cold spot regions from a large number of clinical isolates. While
the hot spot regions displayed 38 and 4 SNV in Rv0095c and Rv0064
respectively per 500 nucleotides in 40 isolates, no SNV was detected
in the cold spots of any isolate, validating the strategy used in the
present study for prediction of hot and cold spots. Multiple sequence
alignments of a part of the sequenced regions of one of the hot spots
and cold spots of clinical isolates are shown in Fig. 4. We have also
analyzed published data on SNP distribution in 89 individual genes
from 99 human adapted M. tuberculosis strains®. GyrB, that falls in a
hot spot was among the genes sequenced and displayed 15 SNPs. On
the other hand there were 3 SNPs in one of the cold spot genes PstS1.
These results validate predictions made using SCC.

Discussion

Genome sequence divergence facilitates organisms to adapt to
varying environmental conditions®. Periodic alternation and fluc-
tuations in the host milieu are acknowledged features which patho-
genic microorganisms encounter following infection. For example,
the transition in microenvironment of the infectious tubercle
bacilli, from the droplet state (free living) to the intracellular envir-
onment of the host macrophage is demanding, requiring efficient
adaptation. Elucidating patterns in genome variations can help in
establishing comprehensive strategies in formulating appropriate
vaccines and therapeutics against pathogens®. Development of
new sequencing technologies has made available genome sequences
from a large number of organisms, particularly different species/
strains and isolates. These provide major resources for deriving
patterns of genome variations. Genome sequencing also provides
a simple way to map mutations and this has tremendous potential
in mapping drug resistance®. Identification of the regions that
either have SNV clusters (hot spots) or lack any SN'Vs (cold spots)

can lead to knowledge about rapidly evolving or conserved regions
of genomes. In this article we have described a simple computa-
tional method which can be used to identify hot and cold spots in
sequenced genomes. For this, we have analyzed fully assembled
genomic sequences of laboratory strains and non assembled next
generation sequence data of twenty isolates from a recent study to
derive a composite prediction”. We provide experimental evidence
to support our predictions.

SCCs are used routinely for quality control in manufacturing
processes and to our knowledge this is the first example of its use
in computational and comparative genomics. It is highly useful
to find outliers from large sequential data and we have exploited
that to find hot and cold spots which are also essentially outliers
in genomes. In this analysis we have identified two genes Rv005
and Rv006 that map to hot spot regions and encode the gyrase
gene. Gyrase genes are known to be associated with drug resist-
ance, and mutations are often found in these genes in drug res-
istant strains®. Our results suggest that this gene is in hyper
variable region and is likely to undergo variations leading to drug
resistant phenotype. We have also found Rv3919c, a gene involved
in resistance to streptomycin in the hot spot region®. We did not
find any gene associated with drug resistance in the cold spots. On
the other hand Rv2986¢, a housekeeping gene encoding a histone
like-DNA binding protein was found in the cold spot region. This
protein is a conserved protein which is required for survival of the
organism (http://www.tbdb.org)*®. Our prediction and validation
strategy involved sequencing only the protein coding genes that
fall within selected and predicted hyper and hypovariable regions
from a number of clinical isolates. This was done to see if the
selected regions computed on the basis of sequenced genomes
were also outliers in terms of presence of SNVs in Indian clinical
isolates. The experimental results supported our predictions.

There are many reasons why hot and cold spots exist in genomes'°.
While mutations occur more or less randomly, SN'V's appear as clus-
ters because of positive selection in some regions due to adaptive
advantage. It is also possible that these regions have unusual struc-
tural features that promote errors of different types®. It is also
likely that SNVs may occur more commonly around pre-existing
mutations as a result of DNA repair system®'. Whatever the reason,
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Figure 3 | Shewhart Control Chart: (a) Chart was derived using SNV frequencies from Fig. 1. (b) Average SNV frequencies in all the strains and isolates.
Red and black dots indicate out-of-control (“hot spots”) and in-control respectively. Yellow dots indicate violating runs.

occurrence of hyper and hypo variable regions suggests that different
regions of M. tuberculosis genomes are changing at different rates.
Identification of these regions may be helpful in deciphering future
therapeutic targets. In conclusion, we have shown that Shewhart
Control Chart can be useful to identify hot and cold spots in micro-
bial genomes.

Methods

Datasets. The sequences used were complete genome sequences of M. tuberculosis
[H37Rv (NC_000962.2), CDC1551 (NC_002755.2)] and whole genome re-
sequencing short reads of 20 clinical isolates of M. tuberculosis downloaded from SRA
(http://www.ncbi.nlm.nih.gov/sra). The data were generated on a high throughput
sequencing platform (Illumina) with an average depth of 50x and read length of 52
nucleotides®.
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Figure 4 | Multiple sequence alignment of representative amplified re-sequenced cold spot and hot spot regions from clinical isolates. Left side of the
alignments is the isolates names with F/R indicating forward/reverse stands. (A) Cold spot; (B) Hot spot.

Identification of single nucleotide variations (SNVs). Identification of single
nucleotide variations (SN'Vs) was done separately for complete genome and next
generation sequencing data. We used published genome sequence of M. tuberculosis
H37Rv as reference genome in both data sets. SNVs were identified from genome data
using Anchor Based Whole Genome Analysis Tool (ABWGAT)?, an online sever for
identification of genetic variations from whole genome sequences. Output from the
server is a list of SN'Vs in tabular format including reference genome position,
nucleotide change, COG, functions etc. For re-sequencing short reads data, we
mapped these with respect to reference genome individually using MAQ? allowing at
most two mismatches. SNV calling parameters used were minimum read depth 3,
maximum read depth 256 and consensus quality score 20. We filtered the low score
SNVs using SNPFilter, a module of MAQ to get high confidence SNVs.

Prediction of Hot and Cold spots using Shewhart Control Chart. We divided the
reference genome into bins of size of 500 to 5000 nucleotides and calculated SNV
frequency in each bin. The frequency in each bin was then plotted to find the
distribution of SN'Vs over the genome. We have found the optimal bin size of 2000 in
order to get on an average a single SNV in a bin as the total number of SNVs in
different datasets was found to be around 1500-2500.

To identify hot and cold spots we used a statistical quality control method called
Shewhart Control Chart". Quality control is a technique to monitor a process with
the goal of making it more efficient. Shewhart control chart can easily identify outliers
in a production process. For our study the presence of outliers indicates hot spots. The
chart contains three lines, named UCL -upper control limit, CL -control limit and
LCL -lower control limit. (See Fig. 2).

CL=u (1)
UCL=p+30 @)
LCL=p—30 (3)

Where |1 = mean,
o = standard deviation

Analysis of M. tuberculosis isolates from patients. DNA extracted from
mycobacterial cultures maintained/stored at —20°C on Lowenstein-Jensen (LJ)
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media in the TB immunology laboratory, Biotechnology department, AIIMS, New
Delhi and in the Microbiology Department, Lala Ram Sarup Institute of Tuberculosis
and Respiratory Diseases, Meharuli, New Delhi, was used in the study. The 40
mycobacterial isolates included in the study have been derived from a variety of
clinical samples, which include sputum and extra-pulmonary samples such as
cerebral spinal fluid, pleural fluid, fine needle lymph node aspirates, endometrial
biopsies etc.

DNA extraction, PCR amplification and sequencing. DNA extraction from the
isolates was carried out as described before™. Briefly, a single colony of a M.
tuberculosis was picked and suspended in 100 pl of 0.1% Triton -X 100.The
suspension was boiled in a dry bath at 90°C for 45 min and centrifuged at 10,000 rpm
for 10 minutes. The supernatant was used as template DNA in PCRs.

Amplifications were carried using reagents obtained from Fermentas AB, Vilnius,
Lithuania, using a thermocycler (Applied Biosystems , USA). The amplicons were
analyzed in a 1.5% agarose gel. Specific DNA bands corresponding to the estimated
amplicon size were cut and DNA extracted as per the manufacturer’s recom-
mendation, (Real Biotech Corporation,Tawian). Sequencing of the extracted ampli-
cons was done commercially, (GCC Biotech, (India) Pvt. Ltd., Kolkata) for both
forward and reverse strands.

SNV calling. Sequences were aligned with M. tuberculosis H37Rv genome sequence
as reference using CLUSTALW multiple alignment tool**. Any nucleotide change was
marked as an SNV if the change was observed in both the forward and reverse strands.
Otherwise it was considered as a sequencing error.
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