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Opinion
The neuroinvasiveness, neurotropism, and
neurovirulence of SARS-CoV-2
Highlights
Severe acute respiratory syndrome-co-
ronavirus 2 (SARS-CoV-2) infection has
been shown to be associated with a
range of neurological complications dur-
ing the acute and postacute phases.

The pathogenesis of SARS-CoV-2-
associated CNS disease is complex
and diverse, and cannot be explained
by one sole mechanism.

To understand the pathogenesis of
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Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection is as-
sociated with a diverse spectrum of neurological complications during the acute
and postacute stages. The pathogenesis of these complications is complex and
dependent on many factors. For accurate and consistent interpretation of exper-
imental data in this fast-growing field of research, it is essential to use terminol-
ogy consistently. In this article, we outline the distinctions between
neuroinvasiveness, neurotropism, and neurovirulence. Additionally, we discuss
current knowledge of these distinct features underlying the pathogenesis of
SARS-CoV-2-associated neurological complications. Lastly, we briefly discuss
the advantages and limitations of different experimental models, and how
these approaches can further be leveraged to advance the field.
SARS-CoV-2-associated CNS dis-
ease, it is important to gain deeper in-
sights into the neuroinvasiveness,
neurotropism, and neurovirulence of
SARS-CoV-2. It is also imperative to
consider the kinetics, since a viral in-
fection is not a static event.

Relevant in vivo models can be used
to study the neuroinvasiveness,
neurotropism, and neurovirulence of
SARS-CoV-2, and in vitro human plu-
ripotent stem cell (hPSC) models can
be used to study the neurotropism of
the virus and the associated cellular
responses. These models may be fur-
ther leveraged to study differences
among SARS-CoV-2 variants and for
the design of therapeutic approaches.
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Challenges in studying different aspects of the pathogenesis of
SARS-CoV-2-associated CNS disease
A variety of neurological complications have been associated with coronavirus disease 2019
(COVID-19) in humans. The spectrum of these neurological complications is not fully understood,
but it is clear that a substantial proportion of individuals have neurological complications during the
acute and/or postacute stage [1,2]. In the acute stage, these complications include anosmia, ce-
rebrovascular events, altered mental state, peripheral neuropathies, and encephalopathies [3,4].
Although frequencies vary, studies show that up to 80% of patients hospitalized with COVID-19
have neurological manifestations during the acute stage of disease [4]. Neurological symptoms
during the postacute stage, which belong to the spectrum of complications associated with long
COVID, are observed after not only moderate to severe, but also mild self-limiting respiratory dis-
ease (as defined in [5]). Several studies have shown that 30–60% of all patients still exhibit symp-
toms 6 months after disease onset, including neurological and psychiatric complications, such
as intracranial hemorrhage, parkinsonism, cognitive impairment, and sleep disorders [6–8]. The im-
pact of the increasing prevalence of long COVID, in particular with neurological symptoms, is not
yet clear but is thought to carry long-term consequences and significant socioeconomic burdens.

A comprehensive understanding of the pathogenesis of neurological sequelae of SARS-CoV-2 is
lacking but, given the range of these complications, there is likely to be more than one underlying
mechanism. Possible mechanisms that may contribute to the pathogenesis of SARS-CoV-2-
associated CNS diseases include hypoxia, immune-mediated damage, coagulation problems,
and viral invasion into the CNS [9–11]. The proclivity of SARS-CoV-2 to enter the nervous system
and its ability to infect and replicate in CNS cells have been studied extensively, with sometimes
seemingly contradicting findings. However, (i) a viral infection is not a static event, because the an-
atomical location of active virus replication may evolve over time and eventually disappear; (ii) the
course and severity of infection vary between individuals; and (iii) CNS cell types are highly diverse
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Glossary
Neuroinvasiveness: ability of a virus to
enter either the PNS or CNS.
Neurotropism: ability of a virus to infect
and replicate in cells of the nervous
system. Cells of the nervous system
include neurons, glial cells
(e.g., astrocytes, oligodendrocytes, and
oligodendrocyte precursor cells),
microglial cells, meningeal cells, choroid
plexus cells, and cells of the
neurovascular system (such as vascular
endothelial cells and pericytes).
Neurovirulence: ability of a virus
infection to cause pathology in the CNS
that contributes to the development of
clinical disease of the nervous system
independently of its ability to invade the
CNS or infect cells of the CNS.
and comprise many different subpopulations of neurons and non-neural cell types, with often
distinct cell-intrinsic antiviral immunity [12].

To understand how virus invasion and associated responses contribute to the pathogenesis of
SARS-CoV-2-associated CNS diseases, it is important to distinguish between neuroinvasiveness
(see Glossary), neurotropism, and neurovirulence. Unfortunately, these terms are not used con-
sistently in the literature, leading to ambiguity of the conclusions across studies examining SARS-
CoV-2 infection in the CNS. Thus, we emphasize that these definitions should be used correctly,
as defined in much of the long-standing literature in the field of neuroinflammation, and as summa-
rized in the Glossary. In this context, we discuss current knowledge of these different aspects under-
lying the pathogenesis of SARS-CoV-2 infection. For neuroinvasiveness and neurovirulence,we focus
on in vivo findings in humans and in experimental animal models, because the latter can providemore
detailed insights into the temporal kinetics of a SARS-CoV-2 infection. In vitro studies are included
when neurotropism is discussed. Finally, we discuss different in vivo and in vitro models that can
be used to study the neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2.

Neuroinvasiveness
Neuroinvasiveness refers to the ability of a virus to enter the PNS or CNS. Viruses can access the
CNS through peripheral nerves and/or via the hematogenous route (Figure 1). SARS-CoV-2 may
enter the CNS through nerve endings of cranial nerves (CNs) that innervate the respiratory tract,
followed by axonal (either anterograde or retrograde) transport of the virus to the CNS. For hematog-
enous spread, the virus needs to spill over into the circulation (viremia) and subsequently cross the
blood–brain barrier (BBB) and/or blood–cerebrospinal fluid barrier (B-CSFB) [13,14] (see Box 1).

The human respiratory tract, which is the primary replication site for SARS-CoV-2, is innervated
by several CNs. The nasal cavity is innervated by the trigeminal nerve (CN V) and olfactory
nerve (CN I); the upper respiratory tract by the facial (CN VII) and glossopharyngeal (CN IX)
nerve; and the lower respiratory tract by the vagus nerve (CN X). There is increasing evidence
that SARS-CoV-2 can use these CNs to enter the CNS. Studies in humans and experimental an-
imal models provided evidence for virus invasion along the olfactory nerve by the detection of viral
RNA or viral protein in sustentacular cells in the olfactory mucosa and, to a lesser extent, in olfac-
tory sensory neurons (OSNs) (Figure 1) (discussed in more detail in the section ‘Neurotropism’)
[8,15–20]. Whether SARS-CoV-2 is transported to the CNS transaxonally in OSNs or through dif-
fusion via channels formed by olfactory ensheathing cells along the olfactory nerve remains un-
clear. CNS invasion via the trigeminal nerve has been suggested in humans, as viral RNA has
been detected in the trigeminal ganglion, suggesting virus spread via nerve endings to the soma
of sensory neurons [16,21–24]. Evidence in humans for virus invasion through the vagus nerve
has been provided by the detection of SARS-CoV-2 proteins by immunohistochemistry in vagus
nerve fibers [23,25]. To our knowledge, no evidence for virus invasion via the glossopharyngeal
or facial nerves has yet been reported.

SARS-CoV-2 is able to disseminate into the circulation, which could result in subsequent virus
spread through the BBB or B-CSFB into the CNS. In patients with COVID-19, SARS-CoV-2
viral RNA [26–28] and viral particles [26] have been detected in the blood or serum (referred to
as RNAemia and viremia, respectively). The BBB, among its various functions, protects neural tis-
sues from pathogens in the circulation. There is currently no conclusive evidence on whether
SARS-CoV-2 can cross the BBB, but SARS-CoV-2 antigens have been detected in small vessel
endothelial cells in humans and animal studies [16,29,30]. In addition, in vivo damage of the base-
ment membrane of the BBB has been observed in mice and hamsters after SARS-CoV-2 infec-
tion [31] and, in in vitro BBB models, SARS-CoV-2 can cross the endothelial cell layer [31,32].
Trends in Neurosciences, May 2022, Vol. 45, No. 5 359
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Figure 1. Possible neuroinvasive routes of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2).
Neuroinvasiveness refers to the ability of a virus to enter the CNS or PNS, regardless of whether the virus specifically
infects, or replicates in, cells of the nervous system. Cranial nerves (CNs), particularly the olfactory nerve, are suspected to
contribute to the neuroinvasiveness of SARS-CoV-2. Other possibilities for neuroinvasion of SARS-CoV-2 are through
hematogenous spread via either the blood–brain barrier (BBB) or the blood–cerebrospinal fluid barrier (B-CSFB). Virus
antigen or viral RNA (indicated by the green corona-like icon) have been detected in the cell types or structures marked in
bold. Potential sites of viral replication, with inconsistent evidence to date, are formatted in italics.

Trends in Neurosciences
Whether this results in virus spread into the brain parenchyma in vivo is unknown. SARS-CoV-2
infection of choroid plexus epithelial cells, and subsequent invasion into the CNS via the B-CSFB,
has been suggested in several studies [31,33]. Altogether, evidence for virus invasion into the
Box 1. Neuroinvasiveness of respiratory viruses

Neurological complications are associated with many respiratory virus infections, including influenza A viruses, Enterovi-
rus-D68, measles virus, respiratory syncytial virus, and human coronaviruses [SARS-CoV-1, Middle East respiratory syn-
drome (MERS), and human coronavirus (HCoV)-229E, -OC43, -NL63, and -HKU1] [13,100–102]. Respiratory viruses can
access the CNS via peripheral nerves, including CNs that innervate the respiratory tract, or via the hematogenous route.
For coronaviruses (e.g., HCoV-OC43 and -229E, and SARS-CoV-1), evidence suggests that virus entry into the CNS oc-
curs preferentially via the olfactory nerve [103,104]. Influenza A viruses can use both the olfactory nerve and other CNs that
innervate the respiratory tract, such as the trigeminal [105] and vagus nerves [106]. Enterovirus-D68 is thought to use pe-
ripheral nerves by transaxonal transport in motor neurons [107,108].

Hematogenous virus spread into the CNS can occur via different mechanisms. For example, respiratory syncytial virus and
measles virus can infect blood leukocytes, which transmigrate through the BBB into the CNS (acting as a ‘Trojan Horse’)
[109]. Hematogenous spread to the brain might also occur in the case of coronaviruses. While this has not been studied
extensively, different strains of coronaviruses have been shown to infect myeloid cells, and cell-free virus has been de-
tected in the blood (viremia) [110,111].
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CNS via the BBB or B-CSFB is limited, but studies suggest that such invasion might occur, at
least in a subset of patients.

The route of virus entry into the CNS likely influences disease manifestation. For example,
Bell’s palsy, which some studies have suggested to be associated with SARS-CoV-2 infec-
tion, could be the result of virus invasion via the facial nerve [34]; virus infection along the ol-
factory nerve could result in anosmia [16–18,35]; and spread to the CNS via viremia and/or
infection of brain microvascular endothelial cells may result in intracerebral hemorrhage
[36,37]. Whether each of these infection routes is directly associated with specific disease
manifestation requires more in-depth studies. A major goal for future work is to obtain a
deeper understanding of the frequency and routes of CNS invasion by SARS-CoV-2, as
well as how these potential routes of entry contribute to the observed diversity of CNS
manifestations (see Outstanding questions).

Neurotropism
Neurotropism refers to the ability of a virus to infect and replicate in cells of the nervous system.
Several reports investigated the cell tropism of SARS-CoV-2, including studies that examined
its tropism along the olfactory nerve. The olfactory mucosa comprises OSNs, sustentacular
cells, basal cells, and Bowman glands. In the submucosa, axon bundles of OSNs are enveloped
by olfactory ensheathing cells (glial cells with Schwann-like properties) that form tunnels through
the cribriform plate to the olfactory bulb. SARS-CoV-2 antigens or RNA have been frequently de-
tected in sustentacular cells and Bowman glands in postmortem tissue from patients with
COVID-19 [16,17], and in experimentally inoculated hamsters, mice, and ferrets (Figure 1)
[17–19,29,38–40]. A few studies have found evidence for SARS-CoV-2 infection in OSNs early
after inoculation in experimentally inoculated hamsters [17,18,40] or patients with COVID-19
with chronic anosmia [17]. However, in other studies, virus antigen in OSNs was not detected
[20,29]. Whether these inconsistencies are related to differences in the time post infection, or re-
flect pathophysiological heterogeneity among individuals is not fully understood.

Once inside the CNS, the virus is exposed to different cell types, including various subtypes of
neuron, glial lineage cell (oligodendrocyte precursor cells, oligodendrocytes, astrocytes, and
ependymal cells), microglia, cells of the choroid plexus, and neurovascular cells, including
vascular endothelial cells and pericytes (Figure 2). The receptor angiotensin converting enzyme-2
(ACE-2) is expressed in several brain locations, including the choroid plexus and olfactory
bulb [41–43]. Cell types expressing ACE2 include excitatory and inhibitory neurons, and some
non-neuronal cells, such as astrocytes, oligodendrocytes, and endothelial cells [41,44]. In humans,
autopsies revealed SARS-CoV-2 antigens in the brain parenchyma and cortical neurons of some
patients, while SARS-CoV-2 viral RNA has been detected in the substantia nigra [16,29].
Additionally, animal studies suggest that dopaminergic neurons and, to a lesser extent, cortical
neurons, microglia, and astrocytes are susceptible to SARS-CoV-2 infection [29,45,46].
Human pluripotent stem cell (hPSC)-derived 2D cultures and 3D organoids (models reviewed
in [47]) have been used to investigate the cell tropism of SARS-CoV-2 in vitro [48]. In general,
studies suggest that different cell types, including dopaminergic neurons, cortical neurons,
brain microvascular endothelial cells, and choroidal epithelial cells, are susceptible to SARS-
CoV-2 infection, but, among these different cell types, there are differences in the permissive-
ness for SARS-CoV-2 (i.e., its ability to produce progeny virus) [29,49–56]. Studies in choroid
plexus organoids showed that choroidal epithelial cells are permissive for SARS-CoV-2
infection [50,51,54–58]. Currently, there is no in vivo or in vitro evidence, to our knowledge,
for productive infection of neural progenitor cells with SARS-CoV-2, and some studies have
provided evidence arguing against this possibility [52,53,56].
Trends in Neurosciences, May 2022, Vol. 45, No. 5 361
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Figure 2. Neurotropism of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Neurotropism refers to the ability of viruses to infect and replicate
in cells of the nervous system. Cells of the CNS include neurons, glial cells (e.g., astrocytes and oligodendrocytes), microglia, choroid plexus cells, and cells of the
neurovascular system (such as vascular endothelial cells and pericytes). SARS-CoV-2 virus antigen or viral RNA has been detected in the cell types formatted in bold.
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In humans and in animal models, SARS-CoV-2 virus or virus antigen has been detected in endo-
thelial cells of the brain [16]. Evidence for productive infection of primary endothelial cells derived
from different organs is scarce, and in vitro studies showed that SARS-CoV-2 infects endothelial
cells only when ACE2 is artificially overexpressed [59,60]. In principle, abortive infection (cell infec-
tion without follow-up production of progeny virus) of endothelial cells [59,60] or pericytes [61]
could weaken the BBB, which could make it more susceptible to virus invasion or result in micro-
vascular complications.

Most studies examining SARS-CoV-2 infection of CNS cell types have shown that infection is
restricted to a subset of cells and that virus replication is often inefficient or even abortive. Despite
this inefficient or abortive replication, infection is likely associated with changes in cellular
functioning and responses. One of the mechanisms underlying altered cellular function following
SARS-CoV-2 infection involves cellular senescence, which may affect both infected and
bystander cells [45].

Neurovirulence
Neurovirulence indicates the ability of a viral infection to cause CNS pathology, independently
from the ability of the virus to invade, or infect cells of, the CNS. There is substantial evidence
that a SARS-CoV-2 infection can cause various neurological pathologies and neuropsychiatric
symptoms during both the acute and postacute stage. The neurovirulent potential of SARS-
CoV-2 is not restricted to cases of severe disease, and patients with mild or severe disease
can develop neurological complications. Several mechanisms have been hypothesized to con-
tribute to the neurovirulence of SARS-CoV-2, including virus invasion into the CNS, dysregulated
systemic inflammatory responses, hypoxia, and autoimmune responses (Figure 3).

The neurovirulent potential of SARS-CoV-2 has been examined in postmortem brain tissue and
in vivo animal models, and by radiological studies during the acute and postacute stages of
COVID-19. Radiological studies suggest morphological changes, especially in the olfactory
bulb (edema and microbleeding) [62–66], as well as loss of gray matter in the parahippocampal
gyrus, lateral orbitofrontal cortex, and insula [66].
362 Trends in Neurosciences, May 2022, Vol. 45, No. 5
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Figure 3. Neurovirulence. Neurovirulence refers to the ability of a virus infection to cause pathology in the CNS that contribute to the development of clinical disease of
the nervous system, independent of its ability to invade the CNS and infect cells of the CNS. Lesions or inflammatory responses associated with severe acute respiratory
syndrome-coronavirus 2 (SARS-CoV-2) infection are illustrated.
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Anosmia has often been associated with SARS-CoV-2 infection, at least with the initial variants of
the virus, but the underlying pathology is not fully understood. The mechanisms underlying olfac-
tory dysfunction may involve a complex and possibly long-lasting interplay of dysregulated im-
mune responses in the olfactory mucosa and the olfactory bulb, as well as virus-induced
lesions along the olfactory tract [18,35]. In hamsters andmice, there is evidence for focal destruc-
tion of the olfactory mucosa, associated with an influx of inflammatory cells [19]. Autopsy findings
from patients with COVID-19 found focal atrophy and infiltrating CD45+ leukocytes, CD4+ T cells,
CD8+ T cells, and activated macrophages in the olfactory mucosa in a subset of patients
[16,17,67–69].

Several studies have found evidence for CNS inflammation after SARS-CoV-2 infection. In
humans, activated microglia were found in the olfactory bulb, midbrain (specifically, in the
substantia nigra), hindbrain, dorsal motor nucleus of the vagus nerve, and the pre-Bötzinger com-
plex in the medulla [70]. Furthermore, multifocal microgliosis and astrogliosis were reported in
older patients [71], although it could not be ruled out that these were associated with host factors
[72]. Perivascular and parenchymal infiltrations of CD8+ cytotoxic T cells and macrophages have
been reported postmortem in patients with COVID-19 and in intranasally inoculated mice at 6
days post inoculation [61,71,73]. Extensive inflammatory responses, such as astrogliosis, activa-
tion of microglia, and perivascular cuffing of T cells, were detected postmortem in both white and
gray matter of patient brains regardless of their COVID-19 disease severity, a finding that ap-
peared most pronounced in the cranial medulla oblongata and olfactory bulb [74]. Furthermore,
evidence for acute hypoxic injury was observed in the cerebrum and cerebellum, with loss of neu-
rons in the cerebral cortex, hippocampus, and cerebellar Purkinje cell layer [75]. In mice that ex-
press human ACE2 in their respiratory tract, SARS-CoV-2 infection triggered microglial activation
and hypomyelination in the subcortical white matter and impaired neurogenesis in the
Trends in Neurosciences, May 2022, Vol. 45, No. 5 363
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hippocampus [76]. In hamsters, SARS-CoV-2 infection triggers microglial and T cell activation in
the olfactory bulb [18,35].

Neurovascular injuries and lesions in the vasculature of the CNS have been detected in patients
hospitalized with COVID-19 [65,77,78]. Postmortem analyses on the CNS from patients who
died with COVID-19 showed thinning of the basal lamina of endothelial cells and congested
blood vessels with fibrinogen leakage, suggestive of microhemorrhages [70]. Studies in patients
with COVID-19 and in animal models, including hamsters and K18-hACE2 mice, suggested that
SARS-CoV-2 infection of brain vascular endothelial can lead to endothelial cell death and forma-
tion of string vessels in the cortex [30]. Additionally, perivascular infiltration of CD3+, CD8+ T cells,
and macrophages, as well as the presence of hypertrophic astrocytes and activated microglia,
were detected [16,17,68,69].

The underlying neurovirulent pathologies of SARS-CoV-2 are diverse, and it is plausible that there
is not one sole mechanism triggering these changes. Furthermore, it is likely that host factors,
such as sex and age, or underlying diseases, complicate the picture of the diverse CNS compli-
cations associated with SARS-CoV-2 infection (see Outstanding questions).

Models and techniques to study the neuroinvasiveness, neurotropism, and
neurovirulence of SARS-CoV-2
Studying the pathogenesis in human samples and human postmortem tissue can reveal impor-
tant insights into neurological complications associated with SARS-CoV-2 infection, albeit with
limitations. First, samples are collected after disease onset; thus, the early phases of the infection
are not captured in this approach. Second, sequential sampling is often difficult and, in most
cases (except postmortem studies), samples can only be taken from the CSF or from outside
the CNS. Lastly, there is substantial heterogeneity in human cohorts, including differences in
age, sex, comorbidities, and immune status. Complementing studies in humans, in vivo animal
models and in vitro hPSC approaches can assist in elucidating pathological mechanisms during
the acute and postacute stages of the disease as well as various aspects of virus–host cell inter-
actions. However, extrapolating from animal data or human cellular modeling data to human clin-
ical situations comes with limitations, which should be carefully considered.

In vivo models
Several animal models have been established to study the pathogenesis of SARS-CoV-2 infec-
tion in vivo, including models in mice, hamsters, and, to a lesser extent, ferrets and non-human
primates (NHPs) [79,80]. Mice are not naturally sensitive to SARS-CoV-2 replication, but trans-
genic expression of human ACE2 or transduction of mice with adenovirus or adeno-associated
viruses expressing human ACE2 sensitizes mice to SARS-CoV-2 infection. Although the tissue
and cell ACE2 expression in these models differs from that in humans, these mice models have
been used to study the effect of both virus replication [79–82] and inflammation-induced changes
[73,83,84] in the brain. Although the observations cannot be extrapolated directly to humans,
they provide important insights into the different mechanisms that could contribute to the large
spectrum of neurological complications following SARS-CoV-2 infection.

Experimental inoculation of ferrets or NHPswith SARS-CoV-2 generally results in onlymild respiratory
disease, with limited evidence for CNS invasion [81,85,86]. However, these models could shed light
on changes in the CNS during the acute and postacute stage of mild SARS-CoV-2 infection [87].

Experimental inoculation of hamsters results in more severe respiratory disease, with virus being
detected in extrapulmonary tissues, including the CNS. Studies in Syrian hamsters detected viral
364 Trends in Neurosciences, May 2022, Vol. 45, No. 5
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Outstanding questions
Which route(s) can SARS-CoV-2 use
to enter the CNS, and how does the
route of entry contribute to the subse-
quent virus spread and/or disease
outcomes?

What is the frequency of SARS-CoV-2
entry into the CNS?

What are the cell-specific responses in
the CNS after SARS-CoV-2 infection?

What are the different cell-autonomous
mechanisms that can lead to the
neurovirulence of SARS-CoV-2 during
the acute and postacute phases?

Dohost factors (e.g., sex and age), or un-
derlying comorbidities (e.g., diabetes or
obesity) contribute to the severity of
acute and postacute SARS-CoV-2-
associated neurological complica-
tions and, if so, how?

What are risk factors for the development
of acute and postacute SARS-CoV-2-
associated CNS disease?

Are there differences among SARS-
CoV-2 variants, in particular variants
of concern, in their neuroinvasiveness,
neurotropism, and neurovirulence?

Is SARS-CoV-2 unique among respira-
tory viruses in its ability to invade the
CNS or in the frequency it does so? Is
it unique in its ability infect certain cell
types of the CNS, or in its ability to
cause specific CNS complications?

Can infection with SARS-CoV-2 exac-
erbate prior underlying neurodegener-
ative or neuropsychiatric diseases?
RNA in the CNS as well as inflammation and changes in the neurovascular system [17,30].
Although the Syrian hamster has been used most frequently in hamster studies, it was recently
shown that, in Roborovski dwarf hamsters, inbred hamsters, transgenic hamsters expressing
human ACE2, and obese hamsters, SARS-CoV-2 infection resulted in more severe disease
and systemic spread, including virus spread to the CNS [88–91].

The different in vivo models enable studies of the neuroinvasiveness, neurotropism, and
neurovirulence of SARS-CoV-2 during the course of infection, including before disease onset
and the postacute phase. In our opinion, these models provide a unique opportunity to study
the impact of virus dose, sex, age, obesity, as well as other risk factors and comorbidities on the
pathogenesis during the acute and postacute stages in a controlled manner, which is challenging
in humans. However, there are differences in the course of disease among the in vivomodels and,
thus, it is important to choose the most suitable model for specific research questions.

In vitro models
hPSC-based models are ideal tools to investigate the interaction between SARS-CoV-2 and cells
of the CNS and PNS. These models, either 2D or 3D, allow the investigation of neural and non-
neural cells from different CNS regions, which are known to display extensive heterogeneity in
their gene expression profiles, functionality, and immunological status. Moreover, hPSC-
derived sensory neurons can be used to address the question of whether and which sensory
neuron subtypes are susceptible to SARS-Co-2 infection, and whether they facilitate transaxonal
transport. Due to their scalability, hPSC-based models are particularly well suited for large-scale
compound screening and whole-genome screens to dissect virus–host interactions.

Methodological considerations
When studying SARS-CoV-2 infection in different cells and/or tissues, it is important to differen-
tiate between susceptibility or permissiveness. Susceptibility can be shown by the detection of
viral antigens (using immunofluorescence or immunohistochemistry) or by the detection of viral
RNA (using in situ hybridization, qPCR, or RNA-seq). When these analyses are performed on tis-
sue sections from in vivomodels, the location of virus antigen can directly be associated with his-
tological lesions. Nonetheless, these assays require the use of adequate controls, such as isotype
and omission-negative controls, and preferentially the inclusion of two methods to ensure true
detection of infection. Ideally, permissiveness is determined in vitro by the detection of an increase
in infectious virus over time by determining the tissue culture infectious dose (TCID) or plaque-
forming units (PFU). Alternatively, the detection of virus antigen or RNA in vivo, together with
the location and presence of histological lesions, detection of virus particles by electron micros-
copy, or isolation of infectious virus, are also suggestive of active virus replication.

Concluding remarks
Currently available data show that SARS-CoV-2 has neuroinvasive potential, that its neurotropism
is limited, and that it can be neurovirulent in at least a subgroup of patients. This concurs with
observations from the clinic, where the impact of SARS-CoV-2-associated CNS complications
appears limited during the acute phase, but more prominent during the postacute phase. Reports
of severe disease during the acute phase, such as encephalitis, exist, but these are rare compared
with the number of people infected [92,93]. However, the percentage of patients with SARS-CoV-
2-associated CNS impairments during the postacute phase, which are part of the wide spectrum
of complications associated with long COVID, can be up to 30–60% [5–7].

CNS complications observed during the acute and postacute stages of SARS-CoV-2 infection
are diverse, which might be related, at least in part, to host factors, comorbidities, immune status
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of the host, virus variants, or other variables [94–96]. Host factors or comorbidities that affect the
risk of developing severe disease from COVID-19 include age, sex, metabolic status, or pre-
existing neurological conditions. Whether each of these factors influences the development of
CNS disease and, if so how, is not fully understood. In addition, potential differences among
SARS-CoV-2 variants in terms of their neuroinvasiveness, neurotropism, or neurovirulence re-
main to be further investigated, although it has already been shown that SARS-CoV-2 variants dif-
fer in the pathogenesis of respiratory disease [97,98]. The possible emergence of future variants
could add additional complexity to the issue. Furthermore, the risk of developing CNS diseases
after infection with SARS-CoV-2 might change after vaccination or prior to SARS-CoV-2 infec-
tion. It has already been shown that vaccination partly protects against the development of
long COVID [99]. Other variables that might influence the development of CNS disease include,
for example, the infection dose and primary replication site of the virus [73].

As both the acute and postacute disease burdens of COVID-19 continue to increase, there is a
pressing need to better understand the contribution of all factors that influence the course of dis-
ease and how they contribute to CNS complications (see Outstanding questions). Much remains
to be learned about the underlying mechanisms leading to SARS-CoV-2-induced neuropathol-
ogy. In vitro and in vivo models, together with analyses in patients, can reveal important insights
into the neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2 variants within dif-
ferent environmental settings and host factors.
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