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ABSTRACT
Background: Assessment of uncertainty in cost-effectiveness analyses (CEAs) is paramount for 
decision-making. Probabilistic sensitivity analysis (PSA) estimates uncertainty by varying all input 
parameters simultaneously within predefined ranges; however, PSA often ignores correlations 
between parameters.
Objective: To implement an efficient algorithm that integrates parameter correlation in PSA.
Study design: An algorithm based on Cholesky decomposition was developed to generate 
multivariate non-normal parameter distributions for the age-dependent incidence of herpes 
zoster (HZ). The algorithm was implemented in an HZ CEA model and evaluated for gamma 
and beta distributions. The incremental cost-effectiveness ratio (ICER) and the probability of 
being cost-effective at a given ICER threshold were calculated for different levels of correlation. 
Five thousand Monte Carlo simulations were carried out.
Results: Correlation coefficients between parameters sampled from the distribution generated by 
the algorithm matched the desired correlations for both distribution functions. With correlations 
set to 0.0, 0.5, and 0.9, 90% of the simulations showed ICERs below $25,000, $33,000, and 
$38,000 per quality-adjusted life-year (QALY), respectively, varying incidence only; and below 
$38,000, $48,000, and $58,000 per QALY, respectively, varying most parameters.
Conclusion: Parameter correlation may impact the uncertainty of CEA results. We implemented 
an efficient method for generating correlated non-normal distributions for use in PSA.
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Background

Cost-effectiveness analyses (CEAs) are widely used to 
assess the cost-effectiveness ratio of a new health tech-
nology compared to an alternative intervention [1]. 
Assessment of uncertainty in CEAs is paramount since 
it informs decision makers whether results are robust 
under changes in assumptions and input parameters. 
Uncertainties in CEAs may stem from the modeling 
approach (structural uncertainty) or from uncertainty 
in input parameters, either because of imperfect knowl-
edge of their true value or variability due to inherent 
heterogeneity, for example in patient characteristics. 
Parameter uncertainty may virtually affect all input 
parameters including demographic, epidemiological, 
clinical, economic, and quality of life parameters. 
Deterministic sensitivity analysis (DSA) and probabilistic 
sensitivity analysis (PSA) are often used to explore the 
impact of input parameters on CEA outcomes [2–5].

While DSA explores to which extent CEA results 
change when assuming extreme values for one or 

multiple parameters [6], PSA provides a global picture 
of uncertainty by sampling parameter values, typically 
using Monte Carlo (MC) simulations, from probabilistic 
distributions (e.g., normal, log normal, beta, gamma) [6]. 
In most instances, the correlation between input para-
meters is not incorporated in PSA [7]. Treating all input 
parameters as independent variables may lead to 
unrealistic combinations of parameter values and joint 
distributions that do not represent adequately the real- 
world situation. The importance of considering the cor-
relation between different parameters when sampling 
their value for PSA has been raised in the literature 
[6–8]. Additionally, various guidelines on economic eva-
luations also recommend that the correlation among 
parameters should be incorporated, as it can affect 
both expected values and their degree of uncertainty 
(i.e., understating or overstating the true cost uncer-
tainty) [6,9]. However, the techniques and algorithms 
for handling parameter correlation in a cost- 
effectiveness model, especially in the case of 
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multivariate non-normal distributions, are less well 
documented. Nevertheless, methods of generating mul-
tivariate distributions from correlated non-normal mar-
ginal distributions have been described in other fields, 
such as behavioral science and financial risk analysis.

In this study, we used an algorithm based on Cholesky 
decomposition to generate correlated multivariate non- 
normal distributions (e.g., beta, gamma, log-normal) for 
use in PSA. We evaluated the impact of correlation 
between input parameters on CEA results using as an 
example the cost-effectiveness of herpes zoster (HZ) vac-
cination in persons aged ≥50 years. Vaccination was 
shown to be highly cost-effective under model assump-
tions and PSA, but so far, the existing CEA model did not 
address the correlation between input parameters.

Several studies reported that HZ incidence is higher in 
the older age groups [10–12]. A simulation of the incidence 
by age group without taking into account parameter cor-
relation may lead to inconsistent values where the inci-
dence in older age groups may be lower than the incidence 
in younger age groups, thereby leading to modeling results 
that are inconsistent with epidemiological data.

The objectives of this study are to raise awareness of 
the importance of parameter correlation in CEA when 
evaluating uncertainty and to provide access to an 
algorithm that can be efficiently incorporated into exist-
ing CEA models.

Methods

Correlation of parameters

In PSA, each input-parameter is considered as a random 
variable, associated with a probability distribution. For 
each MC run, parameters are randomly sampled from 
their assigned distributions and the model is executed 
to calculate a set of outcome values (i.e., Incremental 
Cost-Effectiveness Ratio [ICER]). The procedure is 
repeated for numerous iterations, usually 1,000 or 
more, and the outcomes presented on a probabilistic 
sensitivity analysis scatter plot showing the incremental 
costs per quality-adjusted life-year (QALY) gained dis-
tributed across the cost-utility plane [13].

Most often, parameters are sampled independently, 
but this is inadequate in the presence of parameter 
correlation. In the case of HZ incidence, epidemiological 
data show that the risk of HZ increases with increasing 
age. The HZ CEA model used here is stratified by age, and 
each age group is associated with its expected HZ inci-
dence and distribution. When sampling HZ incidence 
values for each age group, the correlation between sam-
ple values should be maintained to reflect the fact that 
HZ incidence increases with age. Therefore, these 

parameters should be sampled together from a joint 
probability distribution of correlated parameters.

Generating a joint probability distribution from a set 
of uncorrelated (marginal) parameter distributions can 
be achieved by different approaches, such as the 
copula approach [8]. Here, we use a similar, well- 
known algorithm, i.e., the Cholesky decomposition 
matrix, which allows introducing pre-specified correla-
tion among a set of uncorrelated variables.

Let us assume that the variables X1; X2; andX3 are 
correlated using the correlation matrix:

C ¼
1 0:5 0:5
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0:5 0:5 1
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with an associated Cholesky decomposition matrix L, 
such that C ¼ LT L [14,15].

L ¼
1 0:5 0:5
0 0:866 0:2887
0 0 0:8165
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If we assume that vector Y represents the three inde-
pendent variables Y1; Y2; andY3, then the vector X = YL 
represents three correlated variables X1; X2; andX3with 
correlation matrix C [14,15].

Sampling algorithm

The matrix L is known as the Cholesky decomposition 
matrix of the correlation matrix C. To simplify, we assumed 
that the correlation values between N parameters are 
equal (=ρÞ. We then simulated the correlated multivariate 
non-normal distribution following these steps:

(1) We created a Cholesky decomposition matrix 
using the correlation value ρ and the number 
of parameters correlated (N);

(2) We simulated N uncorrelated normal random 
variables with a meanμ ¼ 0 and a 
standarddeviationσ ¼ 1;

(3) We multiplied the uncorrelated normal variables 
by the Cholesky matrix to generate correlated nor-
mal random variables and calculated the probabil-
ity associated with each value from the cumulative 
distribution function from a normal distribution;

(4) We calculated the inverse probability of these 
values assuming a non-normal distribution (e.g., 
beta, gamma, log-normal).

The algorithm was implemented using visual basic for 
applications (VBA) in Microsoft Excel (2007) and further 
explanations are provided in the user guide (Additional 
file 1).
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Implementation

The algorithm was implemented in a static multi-cohort 
Markov model developed to assess the cost- 
effectiveness of an adjuvanted recombinant zoster vac-
cine (RZV) vs no vaccination in adults aged ≥50 years 
[16]. Input data used in the model were retrieved from 
the RZV cost-effectiveness study recently published 
[17]. Cohorts were split into five age groups (i.e., 
50–59, 60–64, 65–69, 70–79, and ≥80). The CEA was 
performed from a US societal perspective over 
a lifetime horizon. The primary outcome in the model 
was the ICER. The model results and ICERs including 
uncertainty were estimated by carrying out two PSAs 
consisting of 5,000 simulations each. In the first PSA, 
only HZ incidence was varied using multivariate distri-
butions of correlated parameters generated by 
Cholesky decomposition. In the second PSA, besides 
HZ incidence most other input parameters were varied, 
except for all-cause mortality, vaccine price per dose, 
administration cost per dose, number of doses, the time 
between first and second dose, coverage of first dose 
vaccination, number of doses and discounting.

To assess the performance of the Cholesky decompo-
sition algorithm in generating joint distributions of vari-
ables with a pre-specified correlation, we first simulated 
sets of parameters where the correlation was set to the 
desired values of 0.25, 0.5, 0.75, and 0.9. Next, we eval-
uated the impact of parameter correlation on PSA results. 
Two PSAs were carried out as described above: in the first 
PSA only correlation between HZ incidence parameters 
was considered, while in the second PSA, most model 
parameters were treated as correlated parameters. 
Furthermore, three different scenarios were evaluated, 
depending on the desired correlation values:

Zero correlation: no correlation, parameters are 
assumed to be independent (ρ ¼ 0:0Þ;

Moderate correlation (ρ ¼ 0:5Þ;
Strong correlation (ρ ¼ 0:9Þ.
Key parameters in the model and the distribution 

associated with each parameter in the PSA are pre-
sented in Additional file 2. Gamma distributions were 
assumed for all cost variables while beta distributions 
were applied for all other inputs [4,5]. The results of the 
PSA were presented separately on a cost-effectiveness 
plane and a cost-effectiveness acceptability curve.

Results

The Cholesky decomposition matrix has been 
embedded in a Microsoft Excel workbook via a VBA 
macro and is provided in Additional file1. We used 
a 5 × 5 matrix to match the number of age groups 

(i.e., 50–59, 60–64, 65–69, 70–79, and ≥80) used in our 
CEA example of HZ vaccination. The user can integrate 
this tool in any Excel-based PSA project to take into 
account the correlation between a set of correlated 
parameters. The correlation coefficient and type of dis-
tribution can be adapted by the user.

Adding the correlation between selected parameters 
using Cholesky decomposition added very little compu-
tational overhead. The actual runtime will depend on 
the CEA model and the computational platform.

Simulation results

Cholesky decomposition generated multivariate para-
meter distributions with correlations between age- 
dependent HZ incidence values close to the desired 
correlations, regardless of the underlying marginal dis-
tribution (beta or gamma distribution). The median 
correlation estimated through the simulation assuming 
a gamma distribution was 0.247, 0.496, 0.748, and 0.899 
for the desired correlations of 0.25, 0.5, 0.75, and 0.9, 
respectively. Similarly, the median correlation estimated 
assuming a beta distribution was 0.248, 0.494, 0.746, 
and 0.895, respectively (Additional files 3 and 4).

Cost-effectiveness results

The base case results (e.g., the results of the CEA model) 
showed that RZV was associated with an ICER estimated 
at 11,863 USD per quality-adjusted life-year (QALY) 
gained compared to no vaccination.

For the PSAs varying incidence only, 90% of the 
simulations resulted in an ICER below 25,000 USD, 
33,000 USD, and 38,000 USD using a correlation of 0.0, 
0.5, and 0.9, respectively (Figure 1(a)). For the PSAs 
varying most parameters in the model, 90% of the 
simulations resulted in an ICER below 38,000 USD, 
48,000 USD, and 58,000 USD using a correlation of 0.0, 
0.5, and 0.9, respectively (Figure 1(b)).

Uncertainty around the incremental QALYs and 
incremental costs for the two scenarios is presented 
by scatterplots (Figure 2(a,b)). The QALYs gained ran-
ged from approximately 1200 to 3600 while the costs 
varied from approximately 100 million in expenditure to 
savings of 145 million per 1 million individuals vacci-
nated. As expected, uncertainty was larger in scenario 2 
in which most parameters were varied compared with 
scenario 1, in which only a subset of parameters related 
to HZ incidence was varied. Including correlation 
between the age-dependent HZ incidence also tended 
to increase uncertainty as illustrated by dots lying on 
the outside of the scatterplot cloud.
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Discussion

PSAs provide a synthesis of parameter uncertainty and 
its impact on the cost-effectiveness of a given inter-
vention; guidelines recommend the use of PSA to 
assess uncertainty in CEA and PSAs have been widely 
used in health economics evaluations [4]. However, 
a review of CEAs conducted for the National Institute 
for Health and Clinical Excellence (NICE) revealed that 
the majority of models ignore the potential correlation 
between input parameters [7]. The apparent lack of 
considering parameter correlation in CEAs might be 
due to the unfamiliarity of the analyst with the subject, 
programming issues, and the absence of explicit 
requirements and recommendations in applicable 
guidelines. The goal of this study was to overcome 
these hurdles by describing a known algorithm for 
handling parameter correlation and providing access 
to its implementation in Microsoft Excel, a program 
widely used for CEA modeling. Similar efforts have 
been undertaken by several other groups, using differ-
ent methods to introduce correlation in PSA, with 
accompanying code provided for the statistical pack-
age R [8,18].

Our algorithm used a Cholesky decomposition to 
transform independently correlated normal random 
variables into correlated normal random variables. 
These variables were then transformed into non- 
normal variables resulting in correlated non-normal ran-
dom variables. We simulated 5,000 values for each 
parameter included in the PSA; after 5,000 simulations, 
the results appeared to be stable and no additional 
simulations were needed [19]. The results showed that 
the desired correlations were met by the algorithm, as 
the median values were close to the desired correla-
tions for both distributions. The scatter plot clouds 
produced by varying only the incidence parameters 
are more densely distributed than when most para-
meters are varied, which reflects the impact of the 
different parameters on the PSA analysis.

In our CEA model of HZ vaccination, including the 
(positive) correlation between age-dependent HZ inci-
dence lead to higher uncertainty in CEA outcomes, i.e., 
incremental costs and incremental QALYs. As expected, 
the credibility interval changed dramatically when more 
parameters were introduced in the PSA. Other situations 
may occur where consideration of the correlation 
between input parameters may decrease the uncertainty 

Figure 1. Cost-effectiveness acceptability curves varying (a) incidence parameters only; or (b) most parameters.
Acceptability curves with a threshold of 90% of the simulations being cost-effective for PSA. ICER, incremental cost-effectiveness ratio; PSA, 
probabilistic sensitivity analysis; QALY, quality-adjusted life-year; WTP, willingness-to-pay. 
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in cost-effectiveness results [8]. In either case, the impact 
of parameter correlation provides a more realistic esti-
mate of the uncertainty in CEA results. PSA may also 
highlight areas where additional information might be 
valuable to reduce uncertainty and thereby lending 
more credibility to model outcomes.

There are several limitations to the presented method. 
The results provided by this algorithm are imperfect in 
terms of the desired correlations and the correlations 
obtained based on simulations, e.g., for the desired corre-
lation of 0.25 and assuming a beta distribution, the med-
ian was 0.247 with a range of 0.184 to 0.277 (Additional 
file 3). The skewed nature and ranges observed are similar 
to those presented by Iman and Conover 1982 [14].

Frequently, the true value of a correlation is unknown. 
Ideally, all available evidence, including expert opinion, 
should be used to estimate uncertainty both around input 
parameter values and correlation. While the presented 
method allows for propagating uncertainty in input para-
meters to assess uncertainty in CEA output variables, the 
correlation between input variables is considered as a fixed 
variable in the PSA. Other methods of simulating 

multivariate non-normal variables have been proposed 
which are more robust and allow for considering uncer-
tainty in correlation itself, but these methods require itera-
tive processes and are consequently less efficient from 
a computational perspective [6,18]. The described method 
is intended for situations where the exact correlation 
remains unknown, but where several plausible assump-
tions can be explored. Another consideration is the poten-
tial non-linearity of relationships, which may influence 
model calculations [8].

In conclusion, considering correlations in PSA may 
impact conclusions reached based on CEA results. 
Analysis of decisions taken by NICE on a series of CEA 
models suggests that the outcome depended on uncer-
tainty and that high uncertainty was more likely leading 
to a negative decision [7]. Although the precise value of 
parameter correlation is often unknown, allowing for 
parameter correlation will help decision makers under-
stand the potential impact on results and overall model 
uncertainty. Here, we developed an algorithm based on 
Cholesky decomposition, which simulates a correlated 
non-normal distribution taking any desired correlation 

Figure 2. ICER scatterplot of scenarios for PSA varying (a) incidence parameters only; or (b) most parameters.
PSA, probabilistic sensitivity analysis; QALY, quality-adjusted life-year; ICER, incremental cost-effectiveness ratio. 
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value. The VBA code can be freely downloaded from the 
link attached to this paper.
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