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a b s t r a c t

Introduction: Duchenne muscular dystrophy (DMD) is a progressive disease that leads to damage of
muscle and myocardium due to genetic abnormalities in the dystrophin gene. In utero cell trans-
plantation that might facilitate allogenic transplantation is worth considering to treat this disease.
Methods: We performed allogeneic in utero transplantation of GFP-positive myoblasts and adipose-
derived mesenchymal stem cells into murine DMD model animals. The transplantation route in this
study was fetal intraperitoneal transplantation and transplacental transplantation. Transplanted animals
were examined at 4-weeks old by immunofluorescence staining and RT-qPCR.
Results: No GFP-positive cells were found by immunofluorescence staining of skeletal muscle and no GFP
mRNA was detected by RT-qPCR in any animal, transplantation method and cell type. Compared with
previous reports, myoblast transplantation exhibited an equivalent mortality rate, but adipose-derived
stem cell (ASC) transplantation produced a higher mortality rate.
Conclusions: In utero transplantation of myoblasts or ASCs to murine models of DMD does not lead to
engraftment and, in ASC transplantation primarily, frequently results in fetal death.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Duchenne muscular dystrophy (DMD) is a progressive disease
that leads to damage of muscle and myocardium due to genetic
abnormalities of the dystrophin gene [1], and is currently treated
with corticosteroids [2]. Very recently, other novel drugs are
approved. Furthermore, experimental gene therapies are seeking
to address each specific mutation [3]. While these therapies have
had some efficacy, treatment of patients with mutations not
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eligible for the approved gene therapy is limited to steroids and
symptomatic treatment, which is focused on alleviation of
symptoms.

Cell therapy for DMD has been reported with various cell types,
both in preclinical animal studies and in humans, and is promising
as it is applicable to any genetic mutations [4]. It has been reported
that, at the animal experimental level, animal models of DMD
receiving mesenchymal stem cells (MSCs) intravenously or intra-
arterially show suppression of tissue necrosis and appearance of
dystrophin-positive muscle cells [5e8]. Reports from human clin-
ical trials using intravenous systemic administration of
cardiosphere-derived cells show delays in the decline of motor and
cardiac function [9]. There are also reports of improvement in
motor and respiratory functions in combination with intra-arterial
and intramuscular injections of MSCs [10].
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One human study reports intravenously transplanted cells
being engrafted into recipient’s myofibers [11]. On the other
hand, several reports describe intravascularly administered stem
cells observed in recipient’s muscle fiber and differentiating or
fusing into muscle in animal models [7,8,12e14]. However, even if
intravascularly administered stem cells do not migrate, differen-
tiate, and fuse into skeletal muscle to extents that slow disease
progression, both paracrine and endocrine effects of MSC are
expected to reduce inflammation, necrosis and fibrosis [15].

Allogenic stem cell transplantation in adults has the inherent
disadvantage that transplanted cells may be rejected by recipient
immune cells. To compensate for this, immunosuppressive drugs
have been used in some human clinical studies [16]. In utero cell
transplantation performed in the present study is a treatment
transplanting cells into the fetus via the umbilical vein or other
means. The advantage of this treatment is that the immunologi-
cally naïve state of fetal immune cells may not reject the trans-
planted cells [17e23]. This means that the use of
immunosuppressive drugs may not be necessary, and the
administration of normal stem cells during organ development
may result in the restoration of a normal cell nucleus in organ
development to mitigate the mutation.

Human clinical trials have already been conducted in osteo-
genesis imparfecta (OI) and severe combined immune deficiency
(SCID). Osteogenesis imperfecta is a group of phenotypically and
molecularly heterogeneous inherited connective tissue diseases
with similar skeletal abnormalities that cause bone fragility and
deformity [24], and SCID is a prenatal disorder of T cell develop-
ment caused by various gene mutations [25]. In OI, booster
administration in both the fetal and neonatal period allowed donor
cells to establish in the bone, reducing fractures and improving
mobility [22,26,27]. In addition, in SCID, donor cells were observed
in the blood after fetal administration, and T cells originally lacking
in this disease were observed in the blood, making treatment un-
necessary after birth [28e31].

In humans, drugs are often administered through the umbili-
cal vein, while red blood cells are sometimes administered into
the abdominal cavity of the fetus, both of which proved to be safe
to a certain degree [32]. In mice, however, the umbilical vein is
narrow and difficult to administer, so intraperitoneal and trans-
placental routes of administration have been reported. There have
been several reports on intraperitoneal administration in rodents
[19,20,33e42]. As for transplacental administration, trans-
placental fetal hematopoietic stem cell transplantation into
model animals lacking hematopoietic stem cells has been re-
ported [18].

In utero cell transplantation for muscular dystrophy has only
been reported in animal studies. One is the transplantation of
mononuclear cell layers from the bone marrow blood of adult
mice or fetal hepatocytes into mdx mouse fetuses. Among the
nuclei of the whole muscle fibers, 0.4e3% of nuclei was donor
origin at 4 weeks old [33]. In another study, human fetal MSCs
were transplanted into mdx mouse fetuses, and among the nuclei
of the whole muscle fibers, 0.5e1% of nuclei was donor origin at 6
weeks old [19].

In order to acquire proof of concept of complex disease and
therapy, validated animal models are essential. For animal models
of congenital diseases, transgenic mice have been often utilized.
Therefore, the safety and efficacy of in utero cell transplantation
should be confirmed in an appropriate murine model. However,
compared with human embryo and infants, murine counterparts
are too small. In the present study, we examined cell trans-
plantation to newborn mouse models in addition to both in utero
cell and in utero intraplacental transplantation.
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2. Materials and methods

2.1. Ethics

All experiments were approved by the Ethics Committee of
Tokyo Women's Medical University, Tokyo, Japan, and The Univer-
sity of Tokyo, Tokyo, Japan, and animal carewas based on guidelines
from the Science Council of Japan. This study was carried out in
compliance with the Animal Research: Reporting of In Vivo Ex-
periments (ARRIVE) guidelines.

2.2. Animals

C57BL/10-mdx mice and Wistar rats were purchased from CLEA
Japan Inc., Japan. Enhanced GFP transgenic C57BL/6 mouse and SD
rats were purchased from Japan SLC Inc., Japan. W-Dmdem1Kykn

(DMD rats) were established and provided by The University of
Tokyo [43,44]. Mice were housed in the Institute of Laboratory
Animals, Tokyo Women's Medical University. Rats were housed in
the Institute of Advanced Biomedical Engineering and Science,
Tokyo, Japan or at the University of Tokyo. Both murine species
were housed in separate cages, with no more than 5 mice/cage and
no more than 2 rats/cage, with 12-h light/dark cycles. Laboratory
chow and water were given ad libitum.

2.3. Genotyping of DMD rat

At 3 weeks of age 2 mm of tail tip was obtained from trans-
planted rat. Then genotyping by PCR was performed using the
primers listed below [43], and only males with the mutation were
subjected to further analyses: forward AGTTTCCATCAATAGCCA-
TACCAAA and reverse TCTCAGTGTACAAGTGTGACGAACA.

2.4. Cell culture

Cell culture was performed using the following culture media:
1) Ham’s F-10 Nutrient Mix (Life Technologies, Carlsbad, Canada)
supplemented with 2 ng/mL basic fibroblast growth factor (FUJI-
FILM Wako Pure Chemical Corporation, Osaka, Japan), 10% fetal
bovine serum (FBS, Life Technologies), and 1% penicillin-
streptomycin (PS, FUJIFILM Wako Pure Chemical Corporation) for
myoblast culture; 2) DMEM/F-12, GlutaMAX™ supplement with
10% FBS and 1% PS for rat ASC culture (Life Technologies); 3) KBM
ADSC-1 (Kohjin Bio Co., Saitama, Japan) for mouse ASC culture.

2.5. Myoblast primary culture

Six-week old enhanced GFP transgenic C57BL/6 mice were
anesthetized with isoflurane and sacrificed by exsanguination from
the heart. Connective tissue, blood vessels, and fat were removed
from skeletal muscle collected from the lower limbs. The collected
muscle tissue was placed in Hanks' balanced salt solution (HBSS-,
FUJIFILM Wako Pure Chemical Corporation) containing 1% PS and
gently shaken to avoid contamination. Myoblast-containing cell
suspensions were prepared using the MACS skeletal muscle
dissociation kit for mouse and rat (Miltenyi Biotec, North Rhine,
Germany). Then, mouse myoblasts were isolated by MACS with a
purity of 98.5%, using the satellite cell isolation kit (Miltenyi Biotec),
according to the manufacturers’ protocols [45]. Obtained cells were
expanded on cell culture dishes coatedwith type I collagen solution
(FUJIFILMWako Pure Chemical Corporation) with myoblast culture
medium. Since Motohashi et al. reported that these myoblasts
engrafted to muscle when intramuscularly injected, it is assumed
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that the cells in this study, obtained by the same method, would
also be able to engraft if they migrated into the muscle [45].

2.6. ASC primary culture

Six-week old enhanced GFP transgenic C57BL/6 mice or SD rats
were sacrificed by CO2 inhalation. Abdominal fat was harvested
and washed in Hanks' balanced salt solution (HBSS-, FUJIFILM
Wako Pure Chemical Corporation) containing 1% penicillin-
streptomycin and gently shaken to avoid contamination. Purifi-
cation method for ASCs was performed according to a previous
report [46]. Briefly, collected fat tissue was digested by type II
collagenase (Sigma-Aldrich, St. Louis, USA) at 37 �C with gentle-
MACS™ Octo Dissociator with Heaters. Cells obtained by centri-
fugation were seeded onto type I collagen-coated dishes described
below (FUJIFILMWako Pure Chemical Corporation) and cultured in
ASC medium. Cells used for transplantation in present study were
all at passage 4e6.

2.7. Intraperitoneal in utero transplantation to mdx mice

Pregnant mdx mice (E14.5) were anesthetized on a heater
(37 �C) with inhalation of isoflurane and laparotomized. Myoblasts
(5.0 � 105 cells) or ASCs (1.0 � 106 cells) were resuspended in 20 ml
saline solution and loaded in a micro-syringe with a 36-gauge
needle (both provided by TERUMO, Tokyo, Japan). The needle was
inserted through uterus into the fetal abdominal cavity (Fig. 1a).
Then, a given cell suspension was injected slowly into fetal
Fig. 1. Photographs of various in utero cell transplantation techniques: (a) Intraperitoneal t
uterus, and the cell suspension was injected into the abdominal cavity of the fetus. (b) Plac
outside the uterus using a glass tube for embryo transfer connected to a femtojet. (c) Place
cells into the placenta by puncturing about 6 mm from the outside the uterus.
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abdominal cavity. During the procedure, the uterus was moistened
with warm saline to prevent drying and loss of body temperature.
The uteri were returned to the abdominal cavity and the abdomen
was closed with a 4-0 braided absorbable suture after all fetuses
had been injected. The transplanted mice were delivered by ce-
sarean section at 19.5 days gestation and raised until 4 weeks of age
for analysis.

2.8. Transplacental in utero transplantation to mdx mice

Injection pipettes were prepared according to a previous report
[37]. Briefly, the glass tube (NARISHIGE, Tokyo, Japan) was formed
thin using a pipette puller (PC-100, NARISHIGE), and the tip was
formed into a needle shape using a diamond sharping wheel.
5.0 � 104 myoblasts or 2.0 � 104 ASCs were resuspended in 2 ml
saline solution and loaded in injection pipette. Then, an injection
pipette was connected to electronic microinjector (FemtoJet 4,
Eppendorf, Hmburg, Germany). Pregnant mdx mice (E11.5) were
anesthetized on a heater with inhalation of isoflurane and laparo-
tomized. Placentas seen from outside the uterus were punctured
with a pipette to a depth of 2 mm vertically and cells were injected
with a microinjector (Fig. 1b). During the procedure, the uterus was
moistened with warm saline to prevent dryness and loss of body
temperature. After all fetuses were injected, the uterus was
returned to the abdominal cavity and the abdomenwas closed with
a 4-0 braided absorbable suture. The transplanted mice were
delivered by cesarean section at 19.5 days gestation and raised until
4 weeks of age for analysis.
ransplantation to the mdx mouse fetus. Fetuses were seen through the outside of the
ental transplantation of the mdx mouse. Injections were made into the placenta from
ntal transplantation of Wistar rats: a 36G needle with microsyringe was used to inject
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2.9. Intraperitoneal in utero transplantation to DMD rats

Pregnant DMD rats (E16.5) were anesthetized on a heater with
inhalation of isoflurane and laparotomized. ASCs (1.0 � 106 cells)
were injected into the fetus abdominal cavity by the same pro-
cedure as mdx mouse intraperitoneal in utero transplantation. Rats
born by vaginal delivery were subject to genotyping, and male rats
carrying the mutation were raised until 4 weeks of age for analysis.

2.10. Transplacental in utero transplantation to Wistar rats

Pregnant Wistar rat (E14.5) was anesthetized on a body heater
with inhalation of isoflurane and laparotomized. Since we did not
have a Femto jet available for rats at our facility, 5.0 � 105 ASCs
were resuspended in 5 ml saline solution and loaded into a micro
syringe with 36-gauge needle. Illuminating the uterus from the
back with LED white light, the placenta was visible through the
uterine wall (Fig. 1c). They were punctured to a depth of 6 mm
vertically and injected slowly. Two mothers were used for this
preliminary experiment: one is for the sampling the day after
transplantation and the other is for 4 days later from
transplantation.

2.11. Intraperitoneal transplantation to wild type neonatal rats

GFP-positive ASCs (5.0 � 106 cells) were resuspended in 100 ml
of warm normal saline and transplanted intraperitoneally to 1-day
old Wistar rats with 30-gauge needle (Nipro, Osaka, Japan). Total of
6 neonates were sacrificed on 3, 4, 5, 6, 7, 14-days old by decapi-
tation or CO2 inhalation. Total leg muscle and lung were collected
and subjected to RT-qPCR.

2.12. Immunofluorescence staining

The sampled fetus or placenta tissues were frozen in OTC
compound in cryomolds. On the other hand, sampled skeletal
muscles were fixed on a corkboard with tragacanth gum and then
frozen in isopentane at the temperature of liquid nitrogen. 8-mm-
thick cryo-tissue sections were prepared using a cryostat, fixed
with acetone for 5 min, and subjected to immunofluorescence
staining as follows. After washing with PBS, tissue sections were
incubated with 0.5% Triton-X (Sigma-Aldrich) in PBS for 10 min for
permeabilization, washed with PBS, blocked using Blocking One
Histo (NACALAI TESQUE, Kyoto, Japan) for 15 min, incubated with
primary antibodies (rabbit anti-GFP and mouse anti-dystrophin,
1:100 diluted, Abcam, Cambridge, UK), washed, and incubated
with Alexa-Fluor 488-conjugated anti-rabbit IgG antibody (1:200
diluted, Abcam) and Alexa-Fluor 588-conjugated anti-mouse IgG
antibody. The immunostained tissue sections were observed under
a confocal laser scanning fluorescence microscope (FV1200,
Olympus, Tokyo, Japan) and Cell Sens Standard software (FV1-ASW,
Olympus).

2.13. RT-qPCR

Transplanted mice were raised until 4-weeks old and their
skeletal muscles (diaphragm, quadriceps, tibialis anterior) were
harvested. These muscles were subjected to total RNA isolation and
gene expression analyses by TaqMan PCR. Total RNA was purified
with RNeasy plus mini kit (QIAGEN, Venlo, Netherlands), according
to themanufacturer’s protocol. Further, cDNAwas synthesizedwith
ReverTra Ace qPCR RT Master Mix with gDNA Remover (TOYOBO,
Osaka, Japan). RT-qPCR was performed using ViiA 7 real time PCR
system (Life Technologies), TaqMan Fast Advanced Master Mix and
TaqMan probes for enhanced GFP and GAPDH (Life Technologies).
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In all analyses, the mRNA extracted from GFP mice or rats was
utilized as a positive control.

3. Results

3.1. Intraperitoneal in utero transplantation to mdx mouse

As a control experiment, we conducted intraperitoneal in utero
administration of only normal saline to mdx murine fetuses, and
confirmed that this process was not fatal and that the fetuses were
fully developed and normally born at term. Then, a total of 22 fe-
tuses were subjected to myoblast intraperitoneal transplantation
and 21 fetuses were subject to ASC intraperitoneal transplantation.
Nine neonates for myoblast transplanted group and 1 neonate for
ASC transplanted group were born by surgical cesarean section at
19.5 days gestation; that is, the neonatal survival rate was 41% for
myoblasts and 4.8% for ASC (Table 1). At 4-weeks of age, neither RT-
qPCR nor immunofluorescence staining of skeletal muscle showed
positive evidence of enhanced GFP (Fig. 2). Treated fetuses that died
during pregnancy showed necrosis and absorbed at 19.5 days
gestation (Fig. 3a).

3.2. Transplacental in utero transplantation to mdx mouse

Total of 7 murine fetuses were subject to myoblast trans-
placental transplantation and 8 fetuses were subject to ASC intra-
peritoneal transplantation. Six full-term neonates from the
myoblast-transplanted group were delivered by cesarean section
at 19.5 days gestation. On the other hand, all fetuses in ASC trans-
placental transplantation group died; that is, survival rates were
86% for myoblast and 0% for ASC, respectively (Table 1). At 4-weeks
of age neither RT-qPCR or immunofluorescence staining of skeletal
muscle showed positive evidence of enhanced GFP (Fig. 2).

3.3. Intraperitoneal in utero injection to Wistar rats

Intraperitoneal in utero injection of 20 mL Evans Blue dye
(FUJIFILM Wako Pure Chemical Corporation) was performed on
E14.5 Wistar rat fetuses. Fig. 3b shows a sample fetus 30 min post-
injection. The clearly blue-colored abdomen proves the success of
the intraperitoneal injection.

3.4. Intraperitoneal in utero transplantation to DMD rats

Total of 41 fetuses were subject to ASC intraperitoneal trans-
plantation: 17 neonates was born by normal vaginal delivery; a
survival rate of 41% (Table 1). Genotyping revealed that 4 neonates
retained the dystrophin gene mutation. At 4-weeks of age, neither
RT-qPCR nor immunofluorescence staining of skeletal muscle
showed positive evidence of enhanced GFP (Fig. 2).

3.5. Transplacental in utero transplantation of ASC to Wistar rats

Because of the high mortality rate of ASC transplantation, we
discontinued transplantation in DMD rats that do not have a high
probability of having mutations and to conduct a preliminary
experiment in Wistar rats. ASC-transplanted E17.5 fetuses sub-
jected to placental transplantation on E16.5 died (Fig. 3c).
Compared to normal control fetuses (Fig. 3d), blood flow was dis-
rupted, and the fetus waswhitened. ASC-transplanted E19.5 fetuses
subject to placental transplantation on E16.5 were also dead and
absorbed. Atrophying and absorbed fetuses were observed (Fig. 3e).
Also, compared to normal placenta (Fig. 3f), HE staining of trans-
planted placenta revealed disruption of structures such as chori-
onic villi and lacuna (Fig. 3f).



Table 1
Number of trials and survival rates of in utero cell transplantation. For mdx mice and DMD rats, analysis was performed at 4 weeks of age. No GFP-positive cells or GFP mRNA
were detected by immunofluorescence staining or RT-qPCR of muscle. Preliminary placental transplantation experiments on Wistar rats resulted in death of all fetuses.

Species Method Cell type Number of
fetuses (mothers)

Number
of births

Survival
rate(%)

mdx mouse ip myoblast 22(3) 9 41
ASC 21(3) 1 4.8

pl myoblast 7(1) 6 86
ASC 8(1) 0 0

DMD Rat ip ASC 41(3) 17 41
Wistar Rat pl ASC 40(3)

ip: intraperitoneal administration, pl: placental administration, ASC: adipose-derived stem cell.

Fig. 2. Immunofluorescence staining of transplanted murine quadriceps. Mice transplanted by the various cell methods were sacrificed at 4-weeks old and subjected to immu-
nofluorescent staining. Quadriceps, tibialis anterior, and diaphragm muscles were stained, and the quadriceps muscle is presented in this figure. No rats were GFP-positive other
than GFP rats stained as controls. Bars ¼ 100 mm.
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3.6. Neonatal intraperitoneal transplantation to Wistar rats

GFP-positive ASCs (5.0 � 106 cells) were transplanted intraper-
itoneally to 1-day old Wistar rats. Total leg muscle and lung tissues
were collected and subjected to RT-qPCR over time post-injection.
3-day old leg muscle and lung samples showed GFP-positive
signal and lungs of 14-day old also showed GFP-positive signals
enhanced with GFP gene expression by RT-qPCR (Table 2).
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4. Discussion

In the early fetal development period, the immune system re-
mains immature, and therefore immune rejection of transplanted
cells does not occur [47]. We hypothesized that transplantation of
allogeneic cells at this point would allow long-term engraftment
without the need for immunosuppressive drugs, and trans-
plantationwas performed in fetuses of DMDmodel rodents, but the



Fig. 3. Photographs of in utero-transplanted fetuses. (a) Dead fetus from myoblast intraperitoneally transplanted mdx mouse (E19.5). As seen from outside the uterus, the dead
fetuses were atrophying and being absorbed. (b) Fetus of Wistar rats intraperitoneally injected with Evans blue dye (E16.5). (c) Dead fetus of Wistar rat one day after placental
transplantation of ASCs (E17.5). Compared to Fig. 2e, blood flow was disrupted and the fetus was whitened, suggesting that the placental transplantation of ASCs may have resulted
in destruction and loss function of placenta. (d) E17.5 fetus saline-injected control. (e) Atrophying fetus and uterus of Wistar rats three days after placental transplantation of ASCs
(E19.5). (f) HE staining of normal placenta (E16.5) and placenta after placental transplantation of ASCs (E16.5). Cell injection into the placenta results in disruption of structures such
as chorionic villi and lacuna (arrow). Bars ¼ 1000 mm.

Table 2
RT-qPCR results from ASC-transplanted neonates of Wistar rats. GFP-positive ASCs
(5.0 � 106 cells per fetus) were transplanted intraperitoneally to 1-day old Wistar
rats. Presence of GFP mRNA in lung and leg muscle tissues over time indirectly in-
dicates that intraperitoneal cell administration to the neonates allows the admin-
istered GFP-cells to migrate into the bloodstream. Each value represents Ct value,
and number in () represents relative expression compared to GAPDH (%).

3 4 5 6 7 14 (day old)

Leg 35.8 (0.0760) (�) (�) (�) (�) (�)
Lung 33.1 (1.62) (�) (�) (�) (�) 37.6 (7.85)

Y. Kihara, Y. Tanaka, M. Ikeda et al. Regenerative Therapy 21 (2022) 486e493
transplanted cells were not viable and showed a highmortality rate
(Table 1).

In this study, fetal cell transplantation was performed with
two different cell types and two different administration methods
in two different murine models, but no GFP-positive cells were
found by immunofluorescence staining, and no GFP mRNA was
detected by RT-qPCR. Previous studies on fetal cell trans-
plantation have reported intraperitoneal transplantation of mouse
bone marrow and fetal liver cells [33] and human fetal MSCs [19]
into mdx mouse fetuses, with fetal mortality results similar to
those of this study. This high mortality rate is attributed to fetal
491
removal from the abdominal cavity and ex situ canula puncture
as a fundamentally unsafe procedure with significant risk of hy-
pothermia and hemorrhage. Higher mortality of ASC fetal treat-
ment over that of myoblasts may be due to the higher
thrombogenic risk of ASCs resulting in impaired blood flow
[48,49] but this is not confirmed. MSC administration in blood
induces platelet aggregation with MSCs included in the aggre-
gates, which may induce thrombosis [50]. The highest mortality
rate for ASC transplacental administration may also be due to
embolization of ASCs and thrombosis triggered by ASCs, resulting
in the destruction of the placenta. The pathological observation of
placental destruction after ASC transplantation also supports this
hypothesis. Contrary to our present study, fetal intraperitoneal
transplantation in utero to mdx mice was reported to be suc-
cessful with murine bone marrow mononuclear cells, mouse fetal
liver cells [33], and human fetal MSCs [19]. On the other hand,
transplanted ASCs and myoblasts failed to engraft even in the
surviving cases in this current study. ASCs, as mentioned above,
can trigger thrombosis and may have been disadvantaged in
intraperitoneal migration. As for myoblasts, their lack of migra-
tory ability through endothelial layers of vessels may have pre-
vented them from reaching the muscles [51], even if they were
able to migrate from the abdominal cavity into the fetal



Y. Kihara, Y. Tanaka, M. Ikeda et al. Regenerative Therapy 21 (2022) 486e493
vasculature. Intravenously transplanted ASCs and myoblasts are
reported to migrate to inflammatory sites [51], but in mdx mice,
pathological changes in muscle do not occur until approximately
3 weeks after birth [52], and mechanical muscle destruction does
not occur during the fetal period without muscle movement.
Even if the administered stem cells successfully migrated into the
bloodstream, they would not have extravasated from the blood
vessels to further contribute to muscle formation without
inflammation. Cell migration from the abdominal cavity to the
blood is reported to be via the lymphatic vessels and into the
venous system [53]. It is also reported that cell migration to the
lymphatic vessels is accomplished by intermittent increases in
abdominal pressure due to moderate muscle tone of the
abdominal wall and movement of the diaphragm [54]. In contrast,
the fetus does not make physiologically mature oscillatory res-
piratory motions similar to that of adult, as it obtains oxygen
from the mother via the placenta and is also thought to have little
muscle tone in the abdominal wall [55,56]. Therefore, it is
possible that increases in abdominal pressure did not occur, and
requisite administered cell migration into the vessels did not
occur in this study. These factors, i.e., lack of abdominal pressure
in the fetus, lack of stem cell migratory capacity, and known
tendency of ASCs to form emboli, may have resulted in unsuc-
cessful fetal cell transplantation in the present study.

Since the observed high mortality rate in fetal cell trans-
plantation could be attributed to the limited size of the murine fetal
vasculature and cell transport issues, we also used DMD rats for
intraperitoneal fetal cell transplantation. As expected, mortality
decreased as these animals became larger, but no viable grafted
cells were observed. Considering that highly intense tissue
destruction does not occur even in 13 weeks in DMD rats [43], it is
possible that inflammation in the muscle did not occur during the
early fetal period, thus preventing cell migration and engraftment,
even if they migrated into the blood. As for the neonatal trans-
plantation, 5.0 � 106 cells were administered intraperitoneally and
GFP mRNA was detected in the lungs and muscles. Although these
GFP-positive result in muscle may have actually reflected cells
retained in blood vessels and in blood contained therein, obser-
vations combined with GFP-positive results also in the lungs
confirm that exogenous cells administered intraperitoneally
migrated to blood vessels. Since cells administered are the same,
we can conclude that our hypothesis that the cells did not migrate
into the blood due to lack of mature respiratory movement and
muscle tone is at least a contributing factor to the observed failure
of fetal cell transplantation.

Although ASCs and myoblast fetal cell transplantation failed in
this study, this does not mean that fetal cell transplantation
completely lacks developmental potential. In human clinical prac-
tice, successful fetal cell transplantation has already been reported
in OI [26] and SCID [23]. These treatments were performed via the
umbilical vein, which is different from intraperitoneal adminis-
tration. In mice and rats, the umbilical cord is thin and technically
difficult to access and reproduce, so wewere unable to perform this
technique in this study to assert full equivalence with human
clinical practice.
5. Conclusions

We performed in utero transplantation of myoblasts or ASCs to
murine models of DMD by fetal intraperitoneal transplantation and
transplacental transplantation but did not lead to engraftment.
Furthermore, in ASC transplantation primarily, frequently resulted
in fetal death. However, this does not mean that in utero cell
transplantation of myoblasts or ASCs is not promising for DMD,
492
since different route of administration is used in human in utero
cell transplantation.
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