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The rapid development of single-cell transcriptome sequencing technology has provided

us with a cell-level perspective to study biological problems. Identification of cell types is

one of the fundamental issues in computational analysis of single-cell data. Due to the

large amount of noise from single-cell technologies and high dimension of expression

profiles, traditional clustering methods are not so applicable to solve it. To address the

problem, we have designed an adaptive sparse subspace clustering method, called

AdaptiveSSC, to identify cell types. AdaptiveSSC is based on the assumption that the

expression of cells with the same type lies in the same subspace; one cell can be

expressed as a linear combination of the other cells. Moreover, it uses a data-driven

adaptive sparse constraint to construct the similarity matrix. The comparison results of 10

scRNA-seq datasets show that AdaptiveSSC outperforms original subspace clustering

and other state-of-art methods in most cases. Moreover, the learned similarity matrix can

also be integrated with a modified t-SNE to obtain an improved visualization result.

Keywords: single cell RNA-seq, subspace clustering, adaptive sparse strategy, similarity learning, visualization

1. INTRODUCTION

Cells are the basic functional unit all organisms aremade of and play significant roles in the different
stages of life. Through various DNA and RNA sequencing data, researchers have a comprehensive
and deep understanding of cell biology. However, traditional sequencing data is obtained from
bulks of cells, and these are composed of the mixed effect of numerous cells and ignore cell
heterogeneity. These bulk-seq data will lead to deviations in downstream analysis if a specific type
of cell is expected. Recently, single-cell sequencing techniques have developed rapidly and make up
the defect of bulk sequencing data. Although the single-cell sequencing technique cannot capture
all cell information, it provides a great opportunity to reveal the characteristics of an individual cell.

The fundamental step of analyzing the single-cell data is to identify the cell types. Utilizing
single-cell RNA-seq (scRNA-seq) data to obtain the cell clusters is one of the most efficient methods
available. The amount of clustering methods on the basis of scRNA-seq data have been proposed.
A group of methods are focused on calculating more accurate and robust similarity scores between
cells. SNN-cliq (Xu and Su, 2015) constructed the distance matrix and counted the number of
common neighbor cells for each pair of cells as the similarity scores and then incorporated these
within a clique-based clusteringmethod. Seurat (V3.0) was inspired by an SNN-cliq and applied the
SNN graph with a louvain algorithm (Butler et al., 2018; Stuart et al., 2019). Seurat is one of themost
widely used methods. SIMLR (Wang et al., 2017) and SC3 (Kiselev et al., 2017) adopted multiple
similarity metrics from different aspects. In SIMILR, we could learn the inherent similarity matrix
from a different resolution of Gaussian kernels, while SC3 combinedmultiple sub-clustering results
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together to build up a consensus matrix. Random forest (Pouyan
and Kostka, 2018) was another way to calculate the similarity.
The correlation coefficient has been proven to be effective
when estimating the pairwise similarity of cells, and a high-
order correlation coefficient was also applied in the scRNA-seq
data analysis (Jiang et al., 2018; Tang et al., 2019). Compared
to the methods based on pair-wise distance or correlation
measurement, SinNLRR (Zheng et al., 2019b) considered
the subspace characteristics of cells’ expression and assumed
the low rank and non-negative properties of the similarity
matrix. Besides, several methods, including nonnegative matrix
factorization (NMF) (Shao and Höfer, 2017; Zhu et al., 2017),
imputation, and dimensionality reduction-based methods (Yau
et al., 2016; Lin et al., 2017), have been used widely in assessing
cellular heterogeneity. In the other aspect, the increasing number
of well-learned scRNA-seq datasets also drives the appearance
of supervised methods. These methods depended on labeled
training datasets or some prior biological knowledge, such as
gene markers (Wagner and Yanai, 2018; Pliner et al., 2019).
According to the latest study (Abdelaal et al., 2019), most
of the supervised methods are sensitive to prior knowledge,
dataset complexity, or input features. Moreover, this kind of
method has a fixed resolution and cannot find the detailed
subtypes from a rough cell group. In this study, we have focused
on the unsupervised clustering methods to identify the cell
types. Inspired by previous methods, calculating the distance or
similarity matrix of cells is a critical step. To recognize more
accurate similarities of cells from high dimensional expression
profiles, we have proposed an adaptive sparse subspace clustering
method called AdaptiveSSC. AdaptiveSSC follows the subspace
assumption and remains the nearest neighbors of a cell by a
data-driven adaptive sparse constraint. The derived similarity
matrix is used to obtain the clustering result and visualization.
AdaptiveSSC obtains an improved performance on multiple
experimental datasets.

2. MATERIALS AND METHODS

The pipeline of AdaptiveSSC is shown in Figure 1. Taking
the scRNA-seq expression matrix as the input, AdaptiveSSC
constructs the sparse cell-to-cell similarity matrix by keeping
the most similar cells for each cell before then applying it
to spectral clustering and modified t-distributed stochastic
neighbor embedding (t-SNE) to obtain cell groups and the
visualization result.

2.1. Data Pre-processing
The quantified scRNA-seq data contain thousands of genes,
and the sparsity of gene expression is usually high. Therefore,
AdaptiveSSC filters the genes expressed in <10% of the cells
(the maximum number is 100), which are not regarded as
informative genes. AdaptiveSSC investigates the linear effect
of other cells on the target cell. To remove the scale of cells’
expression, the L2 normalization is carried on the original gene
expression matrix.

Xij = Gij/

√

√

√

√

M
∑

k=1

G2
kj

(1)

where G is the original expression matrix with M genes
and N cells. The normalized matrix X is used in the
following calculation.

2.2. Adaptive Sparse Subspace Clustering
Most clustering methods depend on the calculation of the
similarity or distance matrix. The most popular similarity
measurements include Euclidean distance, Pearson or Spearman
correlations, and cosine similarity, which are all based on
a pairwise estimation. The scRNA-seq data usually contains
thousands of genes; however, only a part of a gene determines
the cell type, which corresponds to a low-dimensional manifold
surface. According to the common strategy in manifold learning,
only the local measurement of similarity or distance is reliable,
so previous scRNA-seq clustering methods (Xu and Su, 2015;
Wang et al., 2017) usually apply k-nearest neighbors (KNN) to
keep the locality. However, the KNN is used arbitrary to select
the same number of neighbors for each cell, and the selection
of k would have a great influence on the final result in some
situations. In order to overcome these shortcomings, we propose
an adaptive sparse subspace clustering method, which we have
called AdaptiveSSC.

AdaptiveSSC is developed from sparse subspace clustering
(SSC) methods. SSC is proposed to solve the motion
segmentation and face clustering problems (Elhamifar and
Vidal, 2013). SSC assumes that the feature vector of a sample can
be expressed as the linear combination of other samples in the
same subspace or type. Based on the assumption, the expression
of a cellXi = c1X1+c2X2+· · ·+ci−1Xi−1+ci+1Xi+1+· · ·+cNXN

and ck is the subspace coefficient denoting the similarity score
between cells. If the cell i and k are the same type, ck > 0,
otherwise it is 0. By adding l1 term, the most similar cells lying
in the same subspace are retained. Extending it to all cells,
the calculation of the subspace coefficient matrix is defined as
Equation (2):

min|C|1 s.t, X = XC and diag(C) = 0 (2)

where X is the normalized expression matrix. C is the coefficient
matrix and Cij denotes similarity between cell i and j. | · |1 denotes
l1 norm. The larger values in C mean the more similar cells. The
relaxation formula of the optimization problem is shown:

min
1

2
||X−XC||2F+λ|J|1 s.t, diag(C) = 0 and C−J = 0

(3)
where || · ||2F means the Fresenius norm and λ is the l1 penalty
factor, which controls the sparsity of the coefficient matrix. J is an
auxiliary matrix.

In the Equation (3), the coefficient matrix C is sensitive to
the selection of the l1 penalty factor. Another problem is that
the same penalty factor for all coefficients will lead to the loss
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FIGURE 1 | The pipeline of AdaptiveSSC to identify and visualize cell types from scRNA-seq data.

of consistency between estimation and variable selection (Zou,
2006). Therefore, we have introduced a data-driven adaptive
strategy to solve these problems. As a Pearson correlation has
been proven to be effective when measuring the similarity in
previous studies (Kiselev et al., 2017; Wang et al., 2017), we
utilized it to adjust the penalty factor for each coefficient.
If the correlation of two cells is high, the penalty factor is
decreased and vice versa. The modified optimization problem is
therefore defined:

min
1

2
||X − XC||2F + λ|

J

W
|1 s.t, diag(C) = 0 and C − J = 0

where,Wij =

{

pearson(Xi,Xj) If pearson(Xi,Xj) > 0

0 otherwise

(4)
where J

W means element division of matrix J and W. We set the
negative value of the Pearson correlation to 0. Because only the
trend of the expression of two cells are positively correlated, we
regard them as similar cells. Some zero values inW would lead to
zero values in J during the optimization.

Alternating direction method of multipliers (ADMM) (Boyd
et al., 2011) is an efficient method to solve Equation (4).
According to ADMM, the augmented Lagrangian formula
is defined:

ιγ ,λ (C, J,Y) =
1

2
||X − XC||2F + λ|

J

W
|1 + tr(YT (C − J) )

+
1

2γ
||C − J||2 and diag(C) = 0 (5)

where Y is a dual variable, γ is an augmented Lagrangian penalty
parameter, and tr means the trace of the matrix. ADMM updates
C, Y , or J by fixing others. In iteration k+ 1, the optimized form

of Ck+1, Jk+1, and Yk+1 is shown in Equations (6–8):

Ck+1 =

(

XTX +
1

γ
I

)−1 (

XTX +
1

γ

(

Jk − Yk
)

)

Ck+1 = Ck+1 − diag
(

Ck+1
)

(6)

Jk+1 = threshold λ
W ,γ

(

Ck+1 + Yk
)

= sign
(

Ck+1 + Yk
)

·max

(

|Ck+1 + Yk| −
λ

γW
, 0

)

Jk+1 = Jk+1 − diag
(

Jk+1
)

(7)

Yk+1 = Yk +
1

γ

(

Ck+1 − Jk+1
) (8)

where sign() means the sign function. The convergence of
ADMM mainly includes primal residuals and dual residuals. On
the basis of updating process, the penalty parameter γ affects
the speed of convergence. In AdaptiveSSC, we apply a balance
strategy (Boyd et al., 2011) between primal residuals and dual
residuals to adjust γ . The setting of γ is shown:

γk+1 =











γk/2, when ||rk||2 > µ||sk||2,

2γk, when ||sk||2 > µ||rk||2,

γk, others.

(9)

where rk = Ck− Jk is the primal residual and sk = 1
γ

(

Jk − Jk−1
)

is the dual residual. The µ is set to 50 as default. To reduce the
computational complexity, γ is updated by 10 iterations. When
max(abs(C − J)) < 0.0001 or the number of iteration is larger
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TABLE 1 | Single cell RNA-seq datasets.

Datasets Cell number Gene number Techniques

Darmanis (Darmanis et al., 2015) 420 22,085 SMARTer

Kolod (Kolodziejczyk et al., 2015) 704 10,685 Smart-Seq2

Treutlein (Treutlein et al., 2014) 80 959 SMARTer

Yan (Yan et al., 2013) 90 20,214 Tang et al., 2011

Ting (Ting et al., 2014) 114 14,405 Single CTC RNA-Seq

Engel (Engel et al., 2016) 203 23,337 Smart-seq2

Kumar (Kumar et al., 2014) 361 11,497 SMARTer

Vento (Vento-Tormo et al., 2018) 5,418 33,693 Smart-seq2

Baron (Baron et al., 2016) 8,569 20,125 inDrop

Shekhar (Shekhar et al., 2016) 26,830 13,166 Drop-seq

than 200, this update process is finished. To keep the symmetry
of the similarity matrix, the final similarity matrix S = CT + C.

Finally, the spectral clustering (SC) (Von Luxburg, 2007) is
applied on the learned similarity matrix. The SC is based on
the point of graph cut and utilizes the characteristic of the
corresponding Laplacian matrix to divide the graph into several
clusters. In AdaptiveSSC, we use the normalized Laplacianmatrix

Lnorm = I−D− 1
2 SD− 1

2 , whereD is the degree matrix, to obtain its
k eigenvectors corresponding to the smallest k eigenvalues. Then,
k-means is used to obtain the final clusters.

3. RESULTS AND DISCUSSION

3.1. scRNA-seq Datasets
We collected 10 scRNA-seq datasets to evaluate the performance
of AdaptiveSSC. These datasets are based on different single-
cell techniques or protocols, such as Smart-seq, SMARTer,
and Drop-seq based methods. Meanwhile, the scale of these
datasets ranges from the tens to the tens of thousands. The
variety of the datasets could indicate the generalization ability of
AdaptiveSSC comprehensively. The details of these datasets are
shown in Table 1. All datasets contain the real cell types from the
original researches.

3.2. Evaluation Metrics
In order to compare the performance of different clustering
methods, we selected two popular metrics: normalized mutual
information (NMI) and adjusted rand index (ARI). Both NMI
and ARI can quantify the consistency between the clustering
results and the real labels. The definition of NMI and ARI
is shown:

NMI (T, P) =
I(T, P)

[

H(T)+H(P)
] (10)

ARI (T, P) =

∑

ij

(nij
2

)

−

[

∑

i

(ni.
2

)
∑

j

(n.j
2

)

]

/
(n
2

)

1
2

[

∑

i

(ni.
2

)

+
∑

j

(n.j
2

)

]

−

[

∑

i

(ni.
2

)
∑

j

(n.j
2

)

]

/
(n
2

)

(11)

Where T and P mean the real labels and clustering labels,
respectively. In Equation (11), nij denotes the number of cells
belonging to i group in real labels and j group in clustering labels;
ni denotes the number of cells belonging to the i group in real
labels, while nj denotes the number of cells belonging to the j
group in clustering labels.

3.3. Parameter Analysis
Although the adaptive strategy is used in AdaptiveSSC, there
are still some hyperparameters to be set. The most important
hyperparameter is the l1 penalty factor λ. By the adaptive
adjustment, the learned similarity matrix is not so sensitive to
it. We evaluated the NMI and ARI of AdaptiveSSC on eight
small datasets (smaller than 5,000 cells) with λ ranging from 0.01
to 0.19 and the interval set to 0.02. The results for eight small
datasets are shown in Figure 2. Based on the result, when the λ

was in the 0.01–0.05, both NMI and ARI were in the best range
and were more stable. Therefore, we used λ = 0.03 as a default in
AdaptiveSSC. During the experiment, we also found the optimal
λ was not consistent for big datasets (in Baron is 0.01 and in
Shekhar and Vento is 0.007). We recommend that users select
the proper λ by grid searching with the following rule. If the
corresponding sparsity ofC is between 0.02 and 0.05, the λ should
be selected. In Baron and Shekhar, we selected the corresponding
λ with the sparsity of C is 0.03.

3.4. Comparison Analysis of Clustering
Methods
To validate the effectiveness of AdaptiveSSC, we selected seven
competitive methods, including SIMLR (Wang et al., 2017),
MPSSC (Park and Zhao, 2018), SNN-cliq (Xu and Su, 2015),
RAFSIL (Pouyan and Kostka, 2018), Seurat(V3.0) (Butler et al.,
2018; Stuart et al., 2019), SinNLRR (Zheng et al., 2019b), and
sparse subspace clustering (SSC) (Elhamifar and Vidal, 2013). All
these methods are based on the construction of similarity matrix.
SNN-cliq and Seurat recalculate the similarities based on their
shared neighbors. SIMILR and MPSSC focus on the different
resolution of Gaussian kernels, while RAFSIL applies random
forest. SinNLRR is based on the subspace assumption with low
rank constraint. The original SSC was selected as the baseline
method. The results of NMI and ARI on 10 datasets are shown
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FIGURE 2 | The corresponding NMI and ARI with different values of λ on eight datasets.

FIGURE 3 | The corresponding (A) NMI and (B) ARI of SIMLR, MPSSC, SNN-cliq, RAFSIL, Seurat, SinNLRR, SSC, and AdaptiveSSC on 10 datasets.

in Figure 3. Compared to SSC, AdaptiveSSC improved NMI
and ARI in six datasets. Especially in Treutelin, Kumar, Vento,
and Shekhar, AdaptiveSSC exhibited a significant improvement,
more so than SSC, which means the adaptive penalty factor
leads to the more accurate similarity matrix. In Kolod and
Ting, AdaptiveSSC achieved the same performance with SSC.
Overall, AdaptiveSCC exhibited a better performance than SSC

in most cases. Besides, AdaptiveSSC achieved the best (or a tie
for first place) performance in seven datasets upon NMI and
eight datasets upon ARI compared with other six state-of-the-art
methods. It is worth noting that only AdaptiveSSC obtains the
perfect result on Treutelin. The results in Baron and Shekhar also
verify AdaptiveSSC’s effectiveness in large datasets. Estimation
of the number of cell types is another important aspect in
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FIGURE 4 | The visualization of t-SNE, SIMLR, MPSSC, and AdaptiveSSC on (A) Darmanis and (B) Treutelin.

application. In AdaptiveSSC, we also used eigengap to determine
the number of clusters, which was popular in previous studies.
The results can be found in the Supplementary Material. As
shown in the results, none of the methods predict the correct
number of clusters in all datasets. However, AdaptiveSSC obtains
the correct number of clusters in three datasets and gets the
closest number in five datasets, which is a better selection overall.
Moreover, we select five different scale datasets to evaluate the
computational efficiency of these methods. The running time
can be found in the Supplementary Material. AdaptiveSSC has a
faster speed than SSC but is still time-consuming in large datasets
compared with SIMLR and Seurat. All the experiments run on
the server with 24 cores and 512 GB memory. The methods with
running timemore than 36 h are excluded, such as RAFSIL, SNN-
cliq, and SinNLRR in large scale datasets, and MPSSC gets out of
memory error on Shekhar.

3.5. Comparison Analysis of Visualization
Visualization of scRNA-seq is another important issue.
Previous study (Wang et al., 2017) proposed a modified t-
distributed stochastic neighbor embedding (t-SNE) to validate
the performance of learned similarity. We also adopted this
evaluation to AdaptiveSSC and generate 2D-embedding images
on Darmanis and Treutelin with the learned similarity matrix
of t-SNE, SIMLR, MPSSC, and AdaptiveSSC, respectively. The
result is shown in Figure 4. The points with the same color
mean they have the same cell type. Compared to other methods,
AdaptiveSSC could group the same cells together and exhibits

good silhouettes. Although SIMILR and MPSSC contain more
dense parts, they divide cells with same type into different
cliques, which are usually far away from each other. This will give
the researchers a misconception that they are belong to exactly
different types. Therefore, AdaptiveSSC has a better performance
and potential in the visualization of scRNA-seq data.

3.6. Discussion and Conclusion
The identification of cell types is a fundamental problem is
scRNA-seq data analysis. In recent years, a lot of clustering
methods have been proposed to solve it. However, most of
these methods do not exhibit a good generalization on different
datasets. In this study, we proposed a subspace clustering with
an adaptive sparse constraint, called AdaptiveSSC. AdaptiveSSC
regards the expression of a cell can be expressed as a
linear combination of other cell’s expression from the same
type. A data-driven adaptive sparse strategy is applied to
keep the locality of cells in the original dimension and
decrease the sensitivity to the penalty factor. Eight scRNA-
seq datasets were used to evaluate the performance of
AdaptiveSSC. By comparing with SSC, AdaptiveSSC improves
the clustering results significantly in some cases, which indicates
the effectiveness of our strategy. Moreover, six state-of-the-art
methods were selected as comparison. From the NMI and ARI,
AdaptiveSSC achieves the best performance in most of datasets.
Finally, we integrated the learned similarity with modified t-SNE
further, which also shows the powerful potential of AdaptiveSSC
in visualization.
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However, the computational efficiency of AdaptiveSSC is still
low for large datasets and should be improved in the future. Some
strategies used in the fast clustering method could be considered
to make AdaptiveSSC more efficient (Ren et al., 2019). Moreover,
AdaptiveSSC explores the cell heterogeneity from a gene level,
but it is also important to study the different biological functions
of cells. Regulatory modules (Aibar et al., 2017) have been proved
effective when showing the functional heterogeneity of cells. It is
possible to identify the cell type from the whole gene regulatory
network perspective (Li et al., 2017; Zheng et al., 2018, 2019a).
Besides, motivated by previous studies (Lan et al., 2018; Chen
et al., 2019; Shi et al., 2019), multi-view learning and integrating
with prior knowledge are promising directions to improve the
accuracy of clustering and give a higher resolution of cell types.
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