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The therapeutic efficacy of a protein binder largely depends on two factors: its binding site and its bind-
ing affinity. Advances in in vitro library display screening and next-generation sequencing have enabled
accelerated development of strong binders, yet identifying their binding sites still remains a major chal-
lenge. The differentiation, or ‘‘binning”, of binders into different groups that recognize distinct binding
sites on their target is a promising approach that facilitates high-throughput screening of binders that
may show different biological activity. Here we study the extent to which the information contained
in the amino acid sequences comprising a set of target-specific binders can be leveraged to bin them,
inferring functional equivalence of their binding regions, or paratopes, based directly on comparison of
the sequences, their modeled structures, or their modeled interactions. Using a leucine-rich repeat bind-
ing scaffold known as a ‘‘repebody” as the source of diversity in recognition against interleukin-6 (IL-6),
we show that the ‘‘Epibin” approach introduced here effectively utilized structural modelling and docking
to extract specificity information encoded in the repebody amino acid sequences and thereby success-
fully recapitulate IL-6 binding competition observed in immunoassays. Furthermore, our computational
binning provided a basis for designing in vitro mutagenesis experiments to pinpoint specificity-
determining residues. Finally, we demonstrate that the Epibin approach can extend to antibodies, retro-
spectively comparing its predictions to results from antigen-specific antibody competition studies. The
study thus demonstrates the utility of modeling structure and binding from the amino acid sequences
of different binders against the same target, and paves the way for larger-scale binning and analysis of
entire repertoires.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein binders (e.g., antibodies, nanobodies, repebodies, affi-
bodies, DARPins, galectins, and monobodies [1–3]) are capable of
specifically recognizing different target proteins with high binding
affinity, making them attractive candidates for therapeutic pur-
poses. In recent years, considerable advances have been made in
the techniques and tools involved in selection and development
of protein binders. In particular, adaptive immune receptor reper-
toire sequencing leverages next-generation sequencing technolo-
gies to characterize the sequences comprising a repertoire of B-
cell receptors or antibodies [4–12], recently even including paired
antibody heavy and light chains [13]. Despite such advances in
rapidly discovering high-affinity binders, the process of character-
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izing their biological functions still remains low throughput. The
binding specificity of a protein binder is governed by its binding
site on the target protein, also known as the ‘epitope’ of an anti-
body, a word we adopt here generically to include sites recognized
by other classes of protein binder. Thus epitope mapping, the pro-
cess of identifying the epitopes of high-affinity binders, is consid-
ered an essential component of understanding a binder’s
mechanism and function [14].

While experimental structural determination remains the gold
standard for identifying epitopes and permitting deeper insights
into the factors governing specific recognition of an antigen, their
labor-intensive nature makes them infeasible for scaling up to
large sets of interactions, as immune repertoires may yield [15].
Other methods for epitope mapping that do not involve structural
determination include site-directed mutagenesis or alanine scan-
ning mutagenesis combined with binding assays [14,16]. An alter-
native to epitope mapping is epitope binning, which uses
competitive binding assays to sort antibodies into bins [17–21].
Unlike epitope mapping, epitope binning does not provide infor-
mation about the location of the epitope on the antigen, but rather
just that two binders compete with each other and thus are likely
to target the same epitope (though perhaps compete due to steric
hindrance distal to the epitope, conformational change by the anti-
gen upon binding of one, etc. [22]). Subsequent characterization of
a representative from each bin assists in elucidating their functions
and epitopes of the whole bin. Nevertheless, experimental epitope
binning, albeit higher-throughput than epitope mapping, is still
limited by the size of the repertoire.

Since the sequences of protein binders encode their structures
and consequently the determinants of their binding site specificity,
in theory computational methods should be able to decode this
information and predict where and how a set of binders with dif-
ferent sequences will bind an antigen. A number of different com-
putational methods have been developed for computationally
predicting binding regions (epitopes on antigens and paratopes
on antibodies), applying machine learning methods based on
sequence alone (e.g., [23–25]) or based on antibody structures or
homology models (e.g., [26–31]). Unfortunately, the utility of
purely computational prediction of epitopes and paratopes
remains limited in general due to the relatively low accuracy of
their predictions. To overcome the limitations of methods that
are purely computational or purely experimental, and better iden-
tify epitopes, researchers have pursued methods that integrate
computational predictions with experimental data. Recently, a
novel approach called ‘‘dock binning” successfully localized epi-
topes for a panel of antibodies against glycoprotein D of herpes
simplex virus, using docking models to identify putative antigenic
‘‘hot spots” on the antigen across the antibody panel, and then
leveraging experimental data regarding these hot spots in order
to constrain docking models and reveal each antibody’s specific
epitope regions [32]. This study provided a limited demonstration
of the ability of dock binning to discriminate binders with different
epitopes, considering only one representative antibody from each
distinct ‘‘community” of epitope binders. Thus, there is still a need
for a purely computational epitope binning method that not only
discriminates binders having different epitopes but also clusters
together sequentially-divergent binders sharing the same epitope.

In this work, we investigate the extent to which competition for
binding to an epitope can be predicted directly from the amino acid
sequences of a set of different but related binders, based on the
sequences alone or using the sequences as the basis for models
of structure and docking models which represent predicted inter-
actions between the binders and the target. In particular, we seek
to computationally analyze the functional equivalence of the bind-
ing regions, or loosely ‘‘paratopes” (as with ‘‘epitope”, again adopt-
ing for general use with any protein binder the corresponding
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word used with antibodies), of a set of distinct binders of a com-
mon target. We take as a case study a set of interleukin-6 (IL-6)
binding repebodies generated through phage display of a diversi-
fied repebody library [33]. A repebody is a binding scaffold com-
prised of leucine-rich repeat (LRR) modules whose b-strands
mediate antigen binding [3,34]; it serves as an excellent system
for the study at hand due to the ease of generating antigen-
specific libraries with different binding modes driven by diversity
in a relatively small set of residue positions in well-defined binding
modules [35,36]. Binding competition assay experiments on IL-6
binding repebodies indicate that there are largely two different
sets (bins) of binders, with one bin composed of sequence dissim-
ilar (yet competing) binders. Computationally predicted competi-
tion revealed that although sequence similarity was in general an
indicative metric for binding competition, an alternative approach
was required for the set of sequence-dissimilar binders that were
grouped into the same bin. Consequently, we developed Epibin,
inferring functional equivalence of paratopes by leveraging the
docking hypothesis that key structural features of binders mediate
binding and molecular docking largely captures binding similarity.
Epibin successfully classified binned variants sharing low paratope
sequence identity and identified specificity-determining residues
that confer functional equivalence.
2. Results

2.1. Selection and modeling of anti-IL-6 repebodies

In previous work [33], a library of repebody clones was gener-
ated by diversification of six positions in two of the leucine-rich
repeat modules (hereafter called hypervariable sites 1, 2, and 3
of modules 3 and 4) and screened by phage display for IL-6 bind-
ing. Seven clones (Fig. 1) were selected for further analysis on
the basis of expression, mutation variability, and binding. While
the structure of one of these repebodies in complex with IL-6
(clone ‘‘D3”) has been solved (PDB ID: 4J4L [33]), the details of
the interactions of the other six repebodies with IL-6 remain
unknown. The sequences show diversity throughout the two vari-
able modules (Fig. 1b). From previous structural studies [33,37], it
is notable that the presence or absence of Pro in hypervariable sites
(e.g. 3 of module 3, Fig. S1) induced a significant conformational
change. Thus, structural models of the six repebodies were con-
structed accordingly, based either on the above-mentioned crystal
structure for those with Pro or on a different repebody (PDB ID:
3RFS [3]) for those without Pro (Fig. S1). Structural superposition
of these two classes of repebodies consequently highlights distinct
conformational differences in module 3 (Fig. 1c). ClusPro-based
docking [38] of these models to the crystal structure of unbound
IL-6 (PDB ID: 1ALU [39]) yielded approximately 30 models per
repebody (Fig. 1d), which were further subjected to computational
binning analysis (‘‘Epibin”, Fig. 1e) as we introduce below.
2.2. Computational prediction and experimental assessment of epitope
binning

Competition between repebodies was predicted based on
sequence similarity (quantified as BLOSUM62 substitution scores
summed across the six hypervariable positions of the repebody,
Fig. 1b), binder structure-based dissimilarity (root-mean-squared
deviation of the Cb atoms over the whole structure of the undocked
repebody homology model, Fig. 1c), and interaction similarity (the
Epibin score we introduce here, Fig. 1e) based on docking models.
It was also experimentally assessed with competition binding
assays. The Epibin score predicts competition for epitope binding
based on pairwise similarities of complex models produced by



Fig. 1. Computational sequence, structure, binding, and competition analysis of IL6-binding repebody clones. (a, b) Seven repebodies were selected for analysis based on
experimental properties and sequence diversity in the hypervariable sites in Modules 3 and 4. (c) The amino acid differences in the repebodies manifested as structural
differences in homology models. (d) The structural differences in the repebody models led to predicted complex structure differences according to docking models (for clarity,
only a few models out of �30 per repebody are shown). (e) The docking models were analyzed by Epibin in order to predict competition for binding between pairs of
repebodies. First, Epibin computes the ‘‘epitope overlap score (EOS)”, the extent of common epitope residues (0: none to 1: all). In the example, B10_1 and B3_1 represent
docking models of B10-IL-6 and B3-IL-6, respectively. Comparing the epitopes of these two docking models indicates that their epitopes overlap to some extent, quantified by
an EOS of 0.6. Similarly, B10_2 (third row) and B3_4 (fifth column) docking models share common epitopes, yielding an EOS of 0.7. On the other hand, docking models B10_2
and B3_1 do not have any common epitope residues and hence the EOS between them is 0. Similarly, B10_4 does not share any common epitope residues with any of the B3
docking models, yielding EOS = 0.0 for the whole fourth row. Based on the set of EOSs, the overall ‘‘Epibin score” capturing competition between two repebodies is computed
as the average fraction of each repebody’s docking models that have a sufficiently strong competitor for the same epitope among the other repebody’s docking models (i.e.,
EOS exceeds a threshold). In the example, the cells containing the ‘D’ symbol indicate those pairs of models for which the EOS is above the threshold of 0.5 and hence included
in the fraction. Among the illustrated pairs of docking models, we see that three of the four B10 models (rows) have a strong competitor among the B3 models (columns), and
all four of the B3 models have a strong competitor among the B10 models. For consistency with experimental data, the average fraction of sufficiently overlapped models is
subtracted from 1 to yield the Epibin competition score, here giving a score of 1 – 0.5*(3/4 for B10 + 4/4 for B3) = 0.125.
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docking. While many of the docking models are likely to be incor-
rect (with perhaps one near-native, some relatively close, and
more well off-target [40–42]), intuitively they rely on and thus
reveal complementarity between a putative paratope and putative
epitope. Therefore, if the docking models of two protein binders
involve many of the same regions on the target, then the binders
are likely to have similar binding preferences and compete for
the (unknown) true epitope. To leverage this intuition in predicting
the extent of competition between binders, we devised a scoring
function (Epibin score) separately considering each pair of docking
models, one from each binder, and evaluating the fraction of dock-
ing models from one binder that have a sufficiently close competi-
tor from the other, and vice versa (Eqs. 1 and 2). The fraction of
models with competitors is subtracted from 1 to be comparable
to experimental measurements, with Epibin score of 0 for complete
competition to 1 for no competition.

Fig. 2 summarizes both the predicted competition, as heatmaps
(Fig. 2a, Table S1), and the resulting binning, as dendrograms
(Fig. 2b). Sequence-based analysis predicts strong competition
among repebodies B10, D3, and B3 (herby referred to as the ‘‘D3
cluster”) due to highly similar residues within modules 3 and 4
of these repebodies. Binning based on modelled binder structure-
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based dissimilarity, as estimated by RMSD, further tightly clusters
A4, A10, and G3, due to the presence of Pro in the hypervariable
site 2 of module 3. In contrast, Epibin predicts A4 to strongly com-
pete with B10 and C6, to moderately compete with B3 and D3, and
to weakly compete with G3. In addition, Epibin also predicts weak
competition of G3 with B10 and C6. The competitive immunoas-
says (here symmetrized by averaging, in order to support compar-
ison with the computational methods) showed that, consistent
with Epibin but counter to sequence- and structure-based predic-
tions, A4 indeed competes with B10 and to a lesser degree, with
B3 and D3 (Fig. 2a, Fig S2). On the other hand, immunoassays
revealed little competition between A4 and C6. As expected from
all analyses, the repebodies within the D3 cluster also experimen-
tally manifested high levels of competition. Finally, the experi-
ments revealed competition between A10 and G3 that was only
predicted by binder structure model-based dissimilarity analysis.
In inferring clustering and bins from the patterns of competition
(Fig. 2b), the experiments and all methods grouped the D3 cluster
together, though Epibin brings A4 into the core of the group
whereas the experiments place it just outside, and both
sequence- and structure-based methods associate it most tightly
with A10. Overall, the Pearson correlation coefficient (PCC) value



Fig. 2. Computational and experimental evaluation of repebody competition for IL-6 binding. (a) Relative competition and (b) clustering of repebodies based on pairwise
sequence similarity (in terms of BLOSUM62 substitution scores across the six hypervariable positions), pairwise structural similarity as measured by Cb RMSD, pairwise
complex similarity as evaluated by Epibin with an EOS threshold of 0.65, and competitive immunoassays. For both Epibin and the immunoassays, lower values indicate
increased competition. (c) Correlation between Epibin-predicted and experimentally-assayed competition of the seven repebodies.
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of 0.9 (Fig. 2c) indicates a strong positive correlation between
Epibin-predicted competition and experimentally-observed com-
petition, emphasizing the predictive utility of computational epi-
tope binning.

The Epibin results presented in Fig. 2 are based on a single EOS
threshold (0.65) and the complete set of ClusPro-generated dock-
ing models (a total of 30 for each repebody - IL-6 pair except for
A4 - IL-6 for which ClusPro returned 24 models). To assess the
impact of varying the EOS stringency and docking model complete-
ness, we further evaluated Epibin at different EOS thresholds rang-
ing from 0.5 to 0.75 and with sets of the top 20, top 15, top 10, and
top 5 docking models each (Table S2). The PCC between Epibin-
predicted competition and the observed competition when using
the set of 30 models ranges from 0.69 at an EOS threshold of 0.5
to 0.94 at 0.7, indicating that this control over stringency does
impact the quality of the results. For the purpose of illustrating
the Epibin results in Fig. 2, we chose an EOS threshold of 0.65
(PCC of 0.9, marginally less than for the higher threshold of 0.7)
since it balances accuracy over a range of test cases. Moreover,
the range of PCCs over subsets of docking models varies only
between 0.90 and 0.92 at this EOS of 0.65, suggesting that Epibin
is robust to taking smaller subsets of the top docking models. We
also evaluated the impact of the docking method, by applying Epi-
bin to the models returned by the HADDOCK webserver [43] (a
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total of 400 unranked models for each repebody - IL-6 pair). How-
ever, Epibin did not fare quite as well as it did on the ClusPro dock-
ing models, with PCC ranging from 0.65 at an EOS threshold of 0.5
to a maximum of 0.78 at an EOS threshold of 0.65 (Table S2).
2.3. ‘‘Paratope equivalent” residues drive competition between A4 and
B10

While A4 and B10 have distinct differences in sequence and
modelled structures, analysis of putative interactions via Epibin
was able to successfully predict their experimentally observed
competition. Therefore, we sought to delineate the factors con-
tributing to this competition. For the sake of comparison across
the repebodies we label paratope equivalent residues that may make
similar contributions to recognition of the antigen, regardless of
where they are in the sequence (Fig. 3a). We base the labeling on
the D3 cluster of repebodies (D3, B3, B10, and C6), which present
the same paratope, and we label as ‘a’ the structural position con-
tributed by their hypervariable site 1 on module 3, ‘b’ module 3 site
2, ‘c’ module 4 site 1, and ‘d’ module 4 site 2. Module 30s hypervari-
able site 3 is labeled ‘e’, but the Pro occupying this position is
pointed towards the interior of the repebody so does not partici-
pate in binding interactions for this cluster.



Fig. 3. Competition between A4 and B10, but not A10, can be attributed to the presence of similar amino acids in ‘‘paratope-equivalent” positions. (a) Full view of the
A4, B10, C6, and A10 structural models superposed onto one another, with the general location of IL-6 (from the D3 crystal structure, PDB ID: 4J4L). (b) Zoomed-in view
illustrating the positions of similar amino acids in paratope-equivalent positions of Modules 3 and 4 for (i) A4 and B10, (ii) B10 and A10. Hypervariable sites 1, 2, and 3 are
represented as sticks. (c) Amino acids present in key structural positions highlight the similarity of position pairs ‘b’ and ‘d’ (denoted by asterisks) in A4 and B10 and the
presence of dissimilar residues in these positions of the non-competing repebody A10. The (o) and (x) signs indicate competition of the respective repebody with B10.
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By comparing the structure of A4 to that of B10 (Fig. 3.b.i), we
see that in A4 structural positions ‘a’ and ‘c’ still derive from the
same sequence positions as in B10, but in contrast ‘b’ is presented
by module 3 site 3 instead of module 3 site 2. Similarly, ‘d’ is pre-
sented by module 4 site 3 in A4 as compared to module 4 site 2
in B10. Strikingly, these structurally equivalent positions are occu-
pied by physicochemically similar amino acids (Fig. 3c), with both
repebodies using an Asp in position ‘b’ in A4 and B10, and the other
competing repebodies B3 and D3 using Glu there (Figs. S3(a, b)). In
the solved D3 - IL-6 complex structure, this Glu (Glu 128) makes
electrostatic interactions with Lys 27 and Arg 30 of IL-6, and it is
likely that the Asp residues are also involved in similar interactions.
Likewise, the ‘d’ position is filled by Phe in A4 and Trp in B10 and D3
2173
(Fig. 3b.i; Figs. S3(a, b)), and in the solved D3 crystal structure this
Trp (Trp 152) forms a hydrophobic pocket with two other aromatic
residues, Phe 177 and Tyr 201. We note again that only the
interaction-based prediction of competition via Epibin was able to
pick up on this paratope equivalence, which uses different residue
positions fromA4 and B10 to fill a similar structural/functional role.

The repebodies A10 and G3 that do not compete with A4 and
B10 place physicochemically different amino acids in these posi-
tions: ‘b’ is Ala in A10 and Trp in G3 (vs. Asp in A4 and B10), while
‘d’ is Arg in A10 and Glu in G3 (vs. Phe in A4 and Trp in B10)
(Fig. 3b.ii; Fig. 3c; Fig. S3.c). Thus, Epibin is able to pick up on the
resulting differences in epitope preferences in predicting that they
do not compete.



Table 1
List of designed variants of A4, B10 and C6. Mutations made in repebody modules 3
and 4 (position ‘b’ and/or position ‘d’) are highlighted in bold.

Module 3 Module 4 Variant

DLLD ELMF A4DF (wild-type)
DLLD ELMW A4W
DLLE ELMW A4EW
DLLD ELMV A4V
DLLE ELMV A4EV
DLLK ELMF A4K
DLLK ELMV A4KV
VLDP SLWT B10DW (wild-type)
VLDP SLFT B10F
VLEP SLFT B10EF
VLDP SLVT B10V
VLEP SLVT B10EV
VLRP SLWT B10R
VLRP SLVT B10RV
VLWP DLVV C6WV (wild-type)
VLDP DLVV C6D
VLDP DLWV C6DW
VLWP DLWV C6W
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2.4. Experimental studies confirm the importance of paratope-
equivalent residues

In order to test the hypothesis that positions ‘b’ and ‘d’ are
important for competition between A4 and the D3 cluster, we
designed single-point and double-point mutant variants of A4,
B10, and C6 (Table 1). Based on our hypothesis that the negatively
charged amino acid in position ‘b’ and the aromatic residue in posi-
tion ‘d’ act as specificity determining positions, residues in these
positions were mutated to either resemble or differ from the orig-
inal physicochemical properties. In detail, the Asp residue in the ‘b’
position of A4 and B10 were mutated to Glu, Arg, or Lys; in the
position ‘d’, Phe of A4 was mutated to either Trp or Val, and the
Trp of B10 was mutated to either Phe or Val. Furthermore, since
B10 and C6 have different residues in the ‘b’ and ‘d’ positions
(Fig. S3.d), we reasoned that mutating the residues in these posi-
tions of C6 to mimic the interactions of B10 would increase the
competition between A4 and C6 mutants (Fig. S3.e). In particular,
C6 variants were constructed with the Trp residue in position ‘b’
mutated to Asp and/or the Val residue in position ‘d’ mutated to
Trp (Table 1). The competition of the variants against wild-type
forms of A4, B10 and C6 were computationally predicted with Epi-
bin as well as experimentally evaluated.

The prediction trends well (though without statistically
significant correlation) with the experimental observations
(Fig. 4a, Fig. S4.a). Firstly, for A4 and B10 variants, in accordance
with our hypothesis, we assumed that mutating Asp in position
‘b’ to either Lys or Arg would greatly abrogate competition, and
even binding to IL-6. As per our expectations, all of the B10 muta-
tions to Lys or Arg in ‘b’ eliminated IL-6 binding. The outcomes
were similar for A4 variants, where all except A4KV lost their bind-
ing to IL-6 (Fig. 4b, Fig. S4.b). In the case of A4KV, the binding affin-
ity was maintained to a similar extent to wild-type A4 but was not
able to compete with any of the wild-type binders (Fig. 4a). Muta-
tions of Phe or Trp in ‘d’ to Val removes the aromatic functional
group, but since it is not a replacement by an opposing functional
group (as in Asp to Lys/Arg), we expected that these mutations
would likely retain the ability of these variants to bind IL-6, though
with weakened strength and competition. While A4DV and A4EV
maintained weak binding, complete loss of IL-6 binding was
observed in B10DV and B10EV. This may originate from the fact
that the wild-type sequence in ‘d’ for A4 is Phe and B10 is Trp. In
this sense, we assume that B10 undergoes greater reduction in
the size of the functional group in ‘d’ when mutated to Val and
therefore manifests a larger decrement in binding compared to
A4. In line with our hypothesis, experimental evaluation showed
that A4EV competed to a lesser extent with wild-type binders for
IL-6 binding. Other than A4EW, the physicochemically-similar
mutations (i.e., A4DW, B10DF, and B10EF), exhibited similar trends
of predicted and observed competition.

Next, we set out to investigate whether the introduction of
Asp in the ‘b’ position of C6 and Trp in the ‘d’ position would lead
to increased competition with A4. All of the C6 mutants were pre-
dicted to compete with the wild-type C6 to a similar extent.
However, we found that the mutation in position ‘b’ to Asp
induced a formation of oligomeric species for both C6DV and
C6DW (Fig. S4c.(iii, iv)), which is likely the main reason for these
two variants displaying significantly weaker binding to IL-6. Nev-
ertheless, increased competition for C6WW against both A4 and
B10 wild-types indicates that an aromatic functional group in ‘d’
is indeed a key specificity-determining residue (Fig. 4a). Overall,
these results support Epibin’s ability to uncover structural/func-
tional equivalence in the paratope, thus outperforming
sequence-based or binder structure-based predictions in predict-
ing competition.
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2.5. Localizing epitope regions

While investigation of competition gives an idea about which
repebodies are likely to bind to the same epitope, along with their
paratope-equivalent residues, it does not provide any information
about the location of the epitopes. The observed competition
between A4 and B10 suggests that their epitopes are common or
located in close proximity to one another. In addition, based on
the high sequence identity between the members of the D3 cluster
of repebodies (B3, B10, C6, and D3), it is conceivable that the D3
epitope is shared by the other members of the D3 cluster. Also,
while immunoassays showed competition between A10 and G3,
Epibin did not predict any competition between these two repe-
bodies. To better understand the mechanisms at work here, we
sought to localize the epitope on IL-6 for each of the six repebodies.
We made use of EpiScope [44], a method that views antigen–anti-
body docked models as hypothesized binding modes and designs
sets of antigen variants to test these hypotheses. If a docking model
is correct, then unfavorable mutations in the associated interface
(e.g., switching amino acid charge, size, hydrophobicity, etc.)
should disrupt binding. EpiScope optimizes small panels of such
mutational variants to efficiently test the various docking models,
using computational protein design to identify combinations of
mutations likely to disrupt putative binding while maintaining
antigen stability. EpiScope has been successfully applied to localize
the binding site of many protein binders with diverse scaffolds
[35,44–46]. Here, EpiScope was applied separately to each repe-
body, designing each repebody-specific IL-6 triple-mutants of
which their binding disruption was examined experimentally,
and thereby localizing the binding region.

Table 2 shows the list of mutated sequence for each repebody.
EpiScope designed a minimal set of triple-mutants predicted to
effectively disrupt binding regardless of which docking model is
most accurate. In the case of the D3 cluster of repebodies (i.e., B3
and B10), which have high sequence similarity, the available IL-
6-bound crystal structure was directly used in place of docking
models to guide the design. The residues that are mutated in these
IL-6 designs are highlighted in Fig. 5a. Overall, three distinct candi-
dates for the epitope regions can be discerned: one containing resi-
dues Arg 24, Lys 27, Arg 30, and Tyr 31 (colored green in Fig. 5a),
one Ala 38, Arg 40, Lys 41, Asn 45, Met 49, and Ser 52 (colored
brown in Fig. 5a), and one Ala 68, Phe 74, and Glu 80 (colored blue
in Fig. 5a). The first epitope region overlaps with the crystal
structure-based design that abrogates D3 binding; thus, the bind-



Fig. 4. Competitive immunoassays and isothermal titration calorimetry (ITC) results confirm the significance of paratope-equivalent positions ‘b’ and ‘d’. (a)
Correlation between Epibin-predicted competition (x-axis) and corresponding observed competition (y-axis) of all designed variants competing against the wild-type forms
A4, B10, and C6 (separate panels by wild-type). Pearson’s correlation coefficient is denoted as r. (b) Binding affinity measurement of the wild-type and variant forms of A4,
B10, and C6 against IL-6 as measured by ITC. Bars show the means and SDs over three replicates.

Table 2
EpiScope-generated triple-mutant variants of anti-IL-6 repebodies to localize epitope
regions on IL-6.

Repebody Triple-mutant variants

A10 A50T|F56L|E62K, K9E|Y13S|A20E, N27D| M31K|S34N
A4 Y13S|R22S|K23E, R6K|K9E|Y13S, R22S|K23D|N27E
B10 R6Q|R12K|Y13S, N27D|M31K|S34D, Y13S|R22K|K23E
B3 R6Q|R12K|Y13S, N27D|N30D|M31K, R12K|Y13S|K23E
C6 N27E|M31V|S34D, R6Q|R12K|Y13S, R12K|R22K|K23E
G3 R22K|N27E|M31K, R6K|K9E|Y13S, R12K|Y13S|R22S
4J4L (D3 Clone) R6K|K9E|R12K, R6Q|K9E|R12K, L1G|R6K|K9E,

L1G|R6Q|R12K, L1G|R6L|R12K
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ing of the D3 cluster and A4 to designs spanning this region were
expected to be disrupted. The third region is unique for A10, which
implies that A10 produces docking models different from those
produced by the other repebodies.

Binding disruption was evaluated via ELISA testing repebody
binding against the respective designed IL-6 triple mutants vs. that
against wild-type IL-6 (Fig. 5b, Fig. S5). As expected, B3, B10, and
C6 were all revealed to interact with IL-6 in a binding mode similar
to that of D3, as inferred by binding disruption of the triple-mutant
in the D3 binding interface. Surprisingly, A4 was shown to interact
predominantly with the second epitope region, whose mutations
largely disrupted its binding, while mutations in the first epitope
region resulted in intermediate binding disruption. This implies
that although A4 shares similar functional paratope equivalence
with the D3 cluster of repebodies (position ‘b’ and ‘d’ in Fig. 3), they
do not employ identical binding modes as their backbone align-
ments may differ. This could also be one of the reasons A4 was
more resistant than B10 to the mutation of the ‘d’ position Phe to
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Val. For A10, binding was disrupted only for the third epitope
region, located opposite to the D3 epitope, and for G3 none of
the variants resulted in any reduction in binding. Since in the com-
petitive ELISA, A10 and G3 were shown to compete, we also tested
binding of G3 to the IL-6 triple-mutant variants designed for A10.
G3 was found to retain binding to these variants, which suggests
that the G3 epitope is likely located in the vicinity of the A10 epi-
tope and the observed competition between them could be due to
steric clashes while attempting to bind their respective epitopes.
This further illustrates that experimental competition assays can-
not determine whether the competition is due to an overlap of
the epitope or, as in this case, steric hindrance. Therefore, for the
purpose of selecting and developing therapeutics, it may be very
beneficial to leverage the information provided by Epibin regarding
whether the binders actually share an epitope or not.
2.6. General applicability of Epibin: antibody binning

The ability to group entire repertoires of antibody sequences by
predicted epitope specificity could provide large-scale functional
insights into the effects of infection and vaccination, as well as
the results of antigen-specific library screening. While our main
focus here is on repebodies against IL-6 due to the availability of
high-quality experimental data and the ease of conducting
follow-up experiments, we were also interested in assessing how
well Epibin is able to bin groups of antigen-specific antibodies. In
order to gain preliminary insights, we investigated three different
sets of antibodies for which experimental cross-blocking data is
available: twelve anti-D8 antibodies [47], ten anti-Pfs25 antibodies
[48], and nine anti-SARS-CoV-2 antibodies [49]. Following an anal-
ogous approach to that implemented for repebodies, competition



Fig. 5. Mutational studies confirm that epitopes of A4 and B10 partially overlap.Triple-mutant variants of IL-6 were designed by Episcope [44] to localize repebody
epitopes by disrupting hypothesized binding interfaces while maintaining IL-6 stability. (a) Residues selected by Episcope for mutation mapped onto the structure of IL-6
(PDB ID: 1ALU) and colored by general regions. (b) Bar plots representing the normalized binding of IL-6 variants, relative to wild type IL-6, to each of the six repebodies.
Colors of mutated residues refer to colors of regions in panel (a). Values are the means of three replicates.
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between the antibodies was predicted based on sequence identity
among the CDR loops, which mainly drive antibody recognition of
the antigen, structural similarity of the variable regions, and
Epibin-based comparison of docking models. Furthermore, for Epi-
bin evaluation, both ClusPro and HADDOCK models were tested,
using either the full ClusPro set of �25–30 models or just the top
5, 10, 15, or 20, and the EOS threshold was varied from 0.45 to
0.7. To evaluate the ability of the different computational binning
methods to correctly classify pairs of antibodies as either compet-
ing or non-competing, we calculated the area under the precision-
recall curve (AU-PRC) evaluating agreement between predicted
and observed competition (as classified in the original publica-
tions) over the range of prediction probability thresholds. We note
that AU-PRC is preferred to area under receiver operating charac-
teristic curve, AU-ROC, for imbalanced datasets like these.

We observed that overall, the best results were obtained with
the top 20 ClusPro models at an EOS of 0.45 (Table S3). In the case
of the anti-Pfs25 antibodies, CDR sequence identity yielded 0.80
AU-PRC and Epibin 0.78, while structural similarity of the antibody
variable region only obtained 0.56 (Table S3). For the anti-SARS-
CoV-2 dataset, Epibin substantially outperformed the others, with
0.60 compared to 0.32 for sequence and 0.25 for antibody variable
region structure (Table S3). However, for the anti-D8 dataset,
structural similarity of the antibodies as gauged from RMSD mea-
surements was by far the best score, yielding 0.91 AU-PRC, com-
pared to 0.40 for sequence similarity and 0.60 for Epibin
(Table S3). Epibin results using HADDOCK models were not quite
as good as those using ClusPro models (Table S3; note that the ser-
ver failed to return results for the anti-D8 Abs).
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Although Epibin demonstrated promising performance on anti-
bodies, the modest results when compared to its performance on
repebodies could be attributed to other factors such as the inherent
nature of the datasets where the antibodies themselves could pos-
sibly have widely different epitope specificities with little room for
competition, or have been chosen based on a sequence identity
cutoff. Thus, despite having scope for improvement, these initial
results also demonstrate the general utility of Epibin for binning
large sets of antibodies based on available information about the
antibody sequences and antigen.
3. Discussion

Epitope binning facilitates the selection of diverse antigen-
binding candidates from a large pool by grouping into bins those
with shared features. While experimental binning methods have
scaled to assess competition between numerous clones, next-
generation sequencing methods go much further, identifying thou-
sands or even millions of different clones in repertoires [12,50].
This gap begs for computational methods that can characterize
the different sets of binding functions within a repertoire, based
on sequence information alone, without needing to isolate and
experimentally evaluate the different clones. The study presented
here evaluates the extent to which comparison of sequences, mod-
eled structures, or modeled interactions, leads to binning of a set of
seven anti-IL-6 repebodies in a manner consistent with
experimentally-observed competition. We show that the informa-
tion provided by our Epibin computational epitope binning
method was beneficial not only in distinguishing important com-
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petition, but also in pinpointing the paratope-equivalent residues
contributing to the binding specificity of each bin.

For both repebodies and antibodies, the accuracy of a computa-
tional predictor naturally depends on the quality of the models.
Here, binning predictions are based on docking models which in
turn are influenced by the nature of the interacting proteins. For
example, protein interactions involving flexible binding sites or
significant conformational changes are particularly challenging.
The docking models further depend on the initial models of the
individual proteins. In the case of repebodies, the presence of a
Pro in one of the binding loops may affect the quality of the model,
while in the case of antibodies, CDR-H3 may be difficult to model
correctly. Furthermore, the antigen structure used in docking
may not capture the same state as that probed experimentally,
e.g., if there are post-translational modifications such as glycosyla-
tion which is common in viral antigens. Despite these limitations,
with the methods for modeling proteins and interactions continu-
ing to improve and the databases upon which they build continu-
ing to expand, computational epitope binning promises to enable
large-scale investigation of functional diversity across repertoires
of antigen-specific binders.
4. Materials and methods

4.1. Generation and selection of repebodies

The generation and selection of a panel of diverse anti-IL-6
repebodies was previously described [33]. All 42 clones were com-
pared against each other and those with more than 4 common
sequences in the hypervariable region were discarded from the
set. Among the 11 clones with sequence variance, only those with
sufficient and comparable binding intensity were chosen through
ELISA (data not shown).

4.2. Structural modelling and docking of repebodies against IL-6

Due to the structural importance of Pro, repebody homology
models were based on the D3 crystal structure (PDB ID: 4J4L,
[33]) for those containing Pro in the hypervariable site 3 of module
3 (B3, B10, and C6) and on a different repebody crystal structure
(PDB ID: 3RFS [3]) for those without Pro (A4, A10, and G3). Twenty
models per repebody were generated using MODELLER v9.12 [51]
and the best model was selected based on the DOPE score [52].
Models were further energy-minimized by the Tinker (ver. 6)
molecular dynamics software [53] using the GB/SA implicit solvent
model [54] with the AMBER99sb force field parameter [55]. The
structure of unbound IL-6 (PDB ID: 1ALU) [39] contains a fewmiss-
ing residues which were filled using MODELLER and energy-
minimized as described above. The modeled repebodies were
docked on the unbound structure of IL-6 using two docking web-
servers – ClusPro [38] and HADDOCK [43]. When utilizing the Clu-
sPro webserver, the Antibody Mode scoring function [56] was
employed, using residues making up the concave portion of the
repebody to guide the docking. The ClusPro webserver generated
24–30 models for each repebody – IL-6 pair. For the HADDOCK
webserver, residues comprising the concave portion of the repe-
body and all surface residues of IL-6 were used to guide the dock-
ing. The HADDOCK webserver generated 400 unranked models for
each repebody – IL-6 pair.

4.3. Computational prediction of competition

Repebodies were evaluated for competition based on compar-
isons of their sequences, their modeled structures, and their mod-
eled interactions with the antigen.
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4.3.1. Sequence-based similarity
Repebody sequences vary only in six positions that are

restricted to Modules 3 and 4. All-against-all pairwise BLOSUM62
substitution scores, used as a measure of similarity, was calculated
on the basis of these six hypervariable positions.

4.3.2. Binder structure-based dissimilarity
All-against-all pairwise root mean square deviations (RMSD) of

Cb atoms were calculated for the modelled structures of the six
repebodies along with the D3 crystal structure (Fig. 1c). For the
antibodies, Cb-RMSD was calculated on the variable regions of
heavy and light chains.

4.3.3. Complex model-based competition score: Epibin
The Epibin score for a pair of protein binders integrates infor-

mation about their docking models against a common target to
assess how likely it is that the binder will compete for the same
epitope on that target. We define an antigen residue to be in the
epitope region according to a particular docking model if any of
its non-hydrogen heavy atoms are within 6 Å of any of the binder’s
heavy atoms in that docking model. We compute the ‘‘epitope
overlap score” (EOS) (Fig. 1e) for a pair of docking models based
on the similarity of their two sets of ‘‘epitope” residues defined
in the models. Let A and B be two docking models and eð�Þ be a
function that gives the epitope residues in a docking model as
described above. Then the EOS is defined as the Jaccard index:

EOS A;Bð Þ ¼ eðAÞ \ eðBÞj j
eðAÞ [ eðBÞj j ð1Þ

For the Epibin score, we compute the fraction of one binder’s
docking models that have competitors from the other binder. Let
R and S be two sets of docking models and If�g the indicator func-
tion yielding 1 if a predicate is true and 0 if it is false, based on the
overlap threshold h. Then the Epibin score is defined as follows:

Epibin R; Sð Þ

¼ 1� 0:5
P

A2RI 9B2SEOS A;Bð Þ � hf g
Rj j þ

P
B2SI 9A2REOS B;Að Þ � hf g

Sj j
� �

ð2Þ
A score of ‘‘0” indicates the two sets of docking models are most

likely overlapped, whereas ‘‘1” means no docking models share a
sufficient number of epitope overlaps according to the epitope
overlap threshold (h). The results presented here use h ¼ 0:65
except when examining the effect of different values of h on the
Epibin scores for the repebodies and antibodies as indicated in
the Results section.

4.4. Binning

Repebodies were hierarchically clustered (calculated by average
linkage) based on one of these similarity/dissimilarity scores using
the clustermap function of the Python data visualization software
Seaborn [57].

4.5. Protein expression and purification

Human interleukin-6 (IL-6; amino acids 19–184) was cloned
into a pET21a vector with 6xHis-tag and a thrombin cleavage
sequence inserted at the N-terminus of the IL-6 gene. Repebody
genes were selected from the previous report [33] and synthesized
by Integrated DNA Technologies. Repebody genes were cloned into
a pET21a expression vector with either a myc tag or a flag tag
attached to the C-terminus. All cloned genes were transformed to
Origami B(DE3) cells for expression. Cells were cultured at 37 �C,
200 rpm using LB media to OD 0.6 and induced with 0.5 mM IPTG.
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Induced cells were harvested by centrifuge at 4,000 g, after 20 h of
culture at 18 �C, 200 rpm. Harvested cells were lysed through son-
ication and centrifuged at 13,000 rpm for 1 h. The supernatant was
filtered, and affinity purified with Ni-NTA (Qiagen). Proteins were
further purified with 20 mM Tris-HCl (pH 8.0), 50 mM NaCl buffer
through size exclusion chromatography (AKTA FPLC, GE
Healthcare).

4.6. Experimental epitope binning by competitive ELISA

Competitive ELISAs were conducted with the seven repebodies.
Human IL-6 (10 lg/mL) was immobilized to 96-well maxisorp
plate (SPL Life Sciences) overnight at 4 �C. Plates were blocked with
2% PBST-BSA for 2 h at 4 �C. Purified repebody A (myc tag) was
mixed with another repebody B (flag tag) in molar ratios of 1:0,
1:1, 1:2 and 1:4 to a final concentration of repebody A of 100 lg/
mL. After washing the 96-well plate with PBST, the repebody mix-
ture was treated and incubated for 1 h at room temperature. Plates
were washed three times before addition of anti-myc tag antibody-
HRP conjugate in 1:400 dilution (sc-40 HRP; Santa Cruz Biotech-
nology). After 1 h of incubation with antibody at room tempera-
ture, tetramethylbenzidine solution (Sigma) was added to each
well, and the reaction was stopped immediately by adding 1 M sul-
furic acid. The results were obtained by scanning absorbance at
450 nm using Infinite M200 plate reader (Tecan).

The experimental competition score was calculated as the ratio
of the absorbance taken at 1:0 (myc:flag) to the absorbance
observed at 1:4. Competition between two repebodies was consid-
ered to be present if this ratio was � 0.5. In order to render the
results directly comparable with the computational prediction,
which are necessarily symmetric, the A:B score and B:A score were
averaged to yield a symmetric competition score (Table S1).

4.7. Epitope localization of repebodies

Repebody epitopes were localized by application of the
computational-experimental EpiScope method [44]: design IL-6
variants mutated so as to disrupt docking model interface regions,
and experimentally evaluate the effects on binding of the muta-
tions in order to test the hypothesized binding modes.

4.7.1. Design
The docking models described above were provided as input to

EpiScope, which designed for each repebody a set of repebody-
specific triple-mutant IL-6 variants predicted to maintain IL-6 sta-
bility while disrupting each of the binding interfaces present in the
models. There were a total of 12 triple-mutant variants, three each
for A4, A10, C6, and G3. Due to their high sequence similarity with
D3, clones B3 and B10 were expected to resemble the binding
mode of D3. Thus, triple-mutant IL-6 variants based on the crystal
structure of D3 in complex with IL-6 (PDB code 4J4L) were
designed and tested prior to EpiScope. EpiScope was not applied
to B3 and B10 as the crystal structure-based triple-mutant success-
fully disrupted binding of the two clones.

4.7.2. Experimental evaluation of repebody binding against IL-6 triple-
mutant variants

The designed variants of IL-6 with triple point mutations were
cloned, expressed, and purified in the same methods as wild-type
human IL-6. For the binding assays, 10 lg/mL of each IL-6 variant
was immobilized onto 96-well plates by incubation overnight at
4 �C. The plates were blocked with 2% PBST-BSA solution for 2 h
at 4 �C. Following washing with PBST, each repebody and corre-
sponding IL-6 variants were treated in a range of concentrations
and incubated for 1 h at room temperature. The subsequent steps
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from antibody treatment to absorbance scanning were identical to
those described above for competitive ELISA.

4.8. Binding affinity measurement

The binding affinity was determined through ITC at 25 �C
(iTC200 system; Microcal). Repebody was prepared in 0.2 mM,
and IL-6 in 0.02 mM. 2 lL of repebody was injected twenty times
to IL-6 in an isothermal chamber. Integrated peaks were fitted to a
one-site binding model, and the dissociation constant was calcu-
lated using the Origin program.

4.9. Structural modelling, docking, and computational binning of
antibodies

Anti-D8, anti-Pfs25 and anti-SARS-CoV-2 antibodies whose
structures were unavailable were modelled using ABodybuilder
[58] and the top-ranked models were chosen for docking to the
crystal structure of the vaccinia virus D8 antigen (PDB ID: 4E9O),
Pfs25 antigen (PDB ID: 6AZZ) and the RBD domain of SARS-CoV-
2 (PDB ID: 6XDG), respectively using either the ClusPro docking
server with the Antibody Mode scoring function or the HADDOCK
webserver [43]. Residues making up the CDRs were used to guide
the docking in the case of ClusPro, while for HADDOCK, the anti-
body CDR residues and all surface-exposed residues of the respec-
tive antigen structures were used to guide the docking. The
HADDOCK webserver failed to return results for the anti-D8 anti-
bodies, so only results for the other two are provided here. Epibin
was then implemented on the antibody docking models in the
same manner as that done for the repebody-IL-6 docked models.
Accession numbers

Protein Data Bank accession numbers:
PDB ID: 4J4L, PDB ID: 3RFS, PDB ID: 1ALU, PDB ID: 4E9O, PDB

ID: 6AZZ, PDB ID: 6XDG.
Glossary

Epitope: the region on an antigen recognized by an antibody,
here generalized to include the region on any target protein recog-
nized by any target-specific protein binder.

Epitope binning: grouping antigen variants into sets sharing
common epitopes by which antibodies recognize them, here gener-
alized to the grouping of a set of any protein target variants based
on common binding regions by which target-specific protein bin-
ders recognize them.

Paratope: the region on an antibody recognizing an antigen,
here generalized to include the region on any target-specific pro-
tein binder recognizing its target.

Repebody: a binding scaffold comprised of leucine-rich repeat
modules whose b-strands mediate target binding.
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