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Abstract

Galectin-3 (Gal-3), a β-galactoside-binding lectin, serves as a pattern-recognition receptor (PRR) 

of dendritic cells (DCs) in regulating proinflammatory cytokine production. Galectin-3 (Gal-3) 

siRNA downregulates expression of IL-6, IL-1β and IL-23 p19, while upregulates IL-10 and IL-12 

p35 in TLR/NLR stimulated human MoDCs. Furthermore, Gal-3 siRNA-treated MoDCs enhanced 

IFN-γ production in SEB-stimulated CD45RO CD4 T-cells, but attenuated IL-17A and IL-5 

production by CD4 T-cells. Addition of neutralizing antibodies against Gal-3, or recombinant 

Gal-3 did not differentially modulate IL-23 p19 versus IL-12 p35. The data indicate that 

intracellular Gal-3 acts as cytokine hub of human DCs in responding to innate immunity signals. 

Gal-3 downregulation reprograms proinflammatory cytokine production by MoDCs that inhibit 

Th2/Th17 development.
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Introduction

Galectin-3 (Gal-3) is one of more than 15 members of the β-galactoside-binding lectin 

superfamily. This multifunctional molecule is involved in pattern recognition and affects 

diverse cellular and molecular events via extracellular and intracellular actions in lymphoid 

and non-lymphoid organs [1, 2]. The functional complexity reflects the presence of a 

plethora of N- and O-linked cell surface glycoproteins, and Gal-3 carbohydrate recognition 

domain (CRD)-mediated recognition results in signal transduction in various cell types [3–
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5]. In addition, the extensive and numerous carbohydrate-independent functions of Gal-3 in 

cytosolic organelles as well as the nucleus adds further complexity to this protein [1, 3]. 

Remarkably, Gal-3 is critically involved in diverse cellular processes, including immune 

activation, inflammation, allergic asthma, angiogenesis, cancer metastasis, atherosclerosis, 

obesity, idiopathic pulmonary fibrosis (IPF), and in particular its key role in the lung, 

kidney, liver, heart fibrosis and heart failure [2, 6, 7, 8, 9–11]. However, its role in 

controlling immunity and inflammation by lung dendritic cells is not yet known.

Monocyte-derived dendritic cells (MoDCs) present in nonlymphoid organs as well as lymph 

nodes mediate local inflammation, and in particular allergic asthma [12, 13]. DCs are 

sentinel antigen-presenting cells that express a wide spectrum of pattern recognition 

receptors (PRR), which recognize pathogen-associated molecular patterns (PAMP), 

including the families of toll-like receptors (TLR) and NOD-like receptors (NLR) [12, 14, 

15] as well as C-type lectins (CLEC) recognizing surface mannans and β-glucans [16, 17]. 

Gal-3 can be considered yet another novel family of PRR that mediates immunological 

functions in multiple immune cells, e.g., macrophages, T cells, neutrophils, B-cells of 

germinal center follicles [1, 2, 18]. Gal-3 plays a key role in regulating allergic asthma [19], 

and is constitutively expressed in DCs [20]; however, it is not known whether Gal-3 may 

play a critical role in regulating proinflammatory cytokines by DCs and influence CD4 T-

cell development. Herein we show that Gal-3 siRNA attenuates proinflammatory MoDCs by 

upregulating the secretion of IL-12 p35 and IL-10, while downregulating IL-23 p19, IL-6, 

IL-1β, which inhibit subsequent Th17 and Th2 development.

Methods

2.1. Reagents

Lipofectamine RNAiMAX and Opti-MEM (Invitrogen, Carlsbad, CA) to MoDC was 

optimized to over 85% by fluorescent RNA markers. Recombinant cytokines: recombinant 

human GM-CSF, IL-1β, IFN-γ, TNF-α (BioLegend, San Diego; PreproTech, Rocky Hill, 

NJ); recombinant human IL-6, human SCF, human TSLP (PreproTech); PGE2 (Sigma, St 

Louis, MO); recombinant human Gal-3; ELISA kits for human cytokines: IL-1β, TGF-β, p19 

(IL-23), p35 (IL-12), IL-10, IL-17A, and were obtained from eBioscience and PreproTech; 

anti-actin (Sigma). Cytokine neutralizing antibodies (used from 5–10 µg/ml): anti-IL-12 

(eBioscience); anti-human IL-12 p35, anti-IL-12/IL23 p40, anti-IL-23 p19, anti-IL-12 p70, 

anti-human IFN-γ, IL-β, IL-6, TGF-β1 (R&D); goat anti-Gal-3 (pAb, R&D), biotin mAb 

anti-Gal-3 (M3/38, BioLegend for western), mAb anti-Gal-3 (B2C10, prepared by this lab; 

and inhibition of radioactive Gal-3 binding to solid phase IgE by β-galactosides was 

previously described in the lab [21]. FACS reagents: FITC-anti-p35, PE-anti-p19, APC-anti-

CD83, PE anti-CD205 (DEC-205) (BioLegend); PE-anti-CD8α, FITC anti-human CD11c, 

APC anti-human CD11c, Brefeldin A, eFluor 710 streptavidin, and appropriate 

fluorochrome-matched control antibodies (eBioscience); FITC anti-human Gal-3 

(BioLegend), APC anti-human Gal-3 (R&D Systems). TLR reagents: TLR2, Pam3Csk4, 

synthetic triacylated lipoprotein, zymosan, and TLR7/8 ligand, R848 (InvivoGen, San 

Diego); house dust mite (HDM) extracts (LPS/dectin-1, 2) (Greer Lab, Lenoir, NC); TLR4 

ligand, LPS (E. coli. 0111:B4, List Labs, Campbell, CA). Other reagents are Ficoll-Hypaque 
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(Amersham/GE, Piscataway, NJ); CYBR Green PCR Master Mix (AB Applied Biosystems/

Invitrogen); anti-α-tubulin (Thermo/Fisher, Waltham, MA); human AB serum (VWR, 

Radnor, PA), staphylococcal superantigen B (SEB, Sigma), human CD4+ T cells and 

CD45RO separation kits (Miltenyi Biotec, Gladbach, Germany).

2.2. Gal-3 siRNA and cytokine primers for qRT-PCR

Four cross-species siRNAs and scramble non-silencing RNA sequence (sc/snRNA) were 

designed by Invitrogen’s BLOCK-iT™ RNAi Designer, and synthesized by Invitrogen: 

siRNA-1: 5’- GAACAACAGGAGAGUCAUU-3’; siRNA-2: 5’- 

CCCAAACCCUCAAGGAUAU-3’; siRNA-3: 5’ GCUGACCACUUCAAGGUUG-3’; 

siRNA-4: 5′- UAAAGUGGAAGGCAACAUCAUUCCC-3′. Non-silencing (ns) sequence 

(Open Biosystem): 5’- ATCTCGCTTGGGCGAGAGTAAG-3’. Human MoDCs and mouse 

RAW264.7 cells for cross species (Supplemental Fig.1) were treated with Gal-3 siRNAs 

with Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA) or TransIT (Mirus LLC, 

Madison, WI), and analyzed by RT-PCR and western blots. MoDCs and RAW264.7 cells 

were transfected respectively with 4 siRNAs targeting Gal-3 or a non-targeting, scrambled 

control RNA (scRNA) control that does not target any human and mouse genes. Two days 

after transfection, cells were harvested and used for western blots or for FACS analysis by a 

FACSCalibur flow cytometer. The levels of Gal-3 protein and mRNA were measured by 

western blots and real-time RT-PCR respectively, normalized against α-tubulin and GAPDH 

(BioRad, Hercules, CA), respectively. The total RNAs were isolated via Trizol method 

(Invitrogen) and used for first-strand cDNA synthesis (ProtoScript® M-MuLV First Strand 

cDNA Synthesis Kit, NEB). The cDNAs were used for real time quantitative PCR with a 

pair of human LGALS3 specific primers, LGALS3-F (5’- 

GGAATGATGTTGCCTTCCAC-3’) and LGALS3-R (5’- 

CTGCAACCTTGAAGTGGTCA- 3’) (Applied Biosystems). The primers used for human 

p35: p35-F (5’- CTCCAGACCCAGGAATGTTC-3’) and p35-R (5’- 

ATCTCTTCAGAAGTGCAAGGG-3’). Human p19: p19-F (5’- 

ATGTTCCCCATATCCAGTGTG-3’) and p19-R (5’- 

GCTCCCCTGTGAAAATATCCG-3’). Human p40 are: p40-F (5’- 

CACATTCCTACTTCTCCCTGAC-3’) and p40-R (5’- 

CTGAGGTCTTGTCCGTGAAG-3’). Human IL-10: IL-10-F (5’- 

GCCTAACATGCTTCGAGATC-3’) and IL-10-R (5’- 

CTCATGGCTTTGTAGATGCC-3’). Human IL-1β: IL-1β-F (5’- 

ATGCACCTGTACGATCACTG-3’) and IL-1β-R (5’- 

ACAAAGGACATGGAGAACACC-3’). Actin and GAPDH mRNA was used as internal 

control for RT-PCR. Actin: actin-F (5’- GCGAGAAGATGACCCAGATC-3’) and actin-R 

(5'-CCAGTGGTACGGCCAGAGG-3’); GAPDH: Tri-GAPDH-F (5'-

CCCTTCATTGACCTCAACTA-3') and Tri-GAPDH-R (5'- 

CCTTCTCCATGGTGGTGAA-3'). SYBR Green qPCR Master Mixture (2X) (Applied 

Biosystems) was used for PCR reaction in a 96-well optical module for real-time PCR 

(CFX96™ optical reaction module 184-5096) includes CFX Manager™ software, 

qbasePLUS software license for use with C1000 Touch™ thermal cycler chassis. The relative 

levels of mRNA of Gal-3 gene, LGALS3, IL-12 p35, IL-12 p19, IL-12 p40 and IL-10 were 
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normalized with the internal control of actin or GAPDH. The PCR products were analyzed 

on 1.5% agarose gel.

2.3. Preparation of human MoDCs

Peripheral blood mononuclear cells (PBMCs) were purified from blood buffy coat of normal 

human donors (San Diego Blood Bank, San Diego, CA) via Ficoll-Hypaque density gradient 

centrifugation (Use of human PBMCs has been reviewed and approved by the IRB 

Committee). PBMC were adsorbed onto the plastic Petri plates for 2 h, decanted, and the 

adherent monocytes on the plates were then differentiated to immature dendritic cells (iDCs) 

by co-culturing with GM-CSF (100 U/ml) and IL-4 (200 U/ml) for 5 days, and were further 

stimulated to mature MoDCs by overnight culturing with different maturing media, 

containing (a) TNF-α (10 ng/ml), or (b) TNF-α/prostaglandin E2 (1 mM PGE2) or (c) TNF-

α/ PGE2, IL-1β and IL-6. All the cytokines were purchased from PeproTech. MoDCs were 

transfected with 1 nmol siRNA-3 and -4 targeting Gal-3 in 20 µl lipofectamine RNAiMAX 

to 1×106 MoDC in 0.5 ml cytokine cocktail media. Alternatively, The control MoDCs were 

transfected with scramble, non-targeting siRNA (scRNA/snRNA). MoDC were titrated with 

the optimal concentrations: R848 (5 µg/ml), LPS (250 ng/ml), Pam3Csk4 (1µg/ml), 

muramyl dipeptide (MDP, 2 µg/ml), zymosan (25 µg/ml) and house dust mite extract (25 µg/

ml). Numerous pilot experiments were first performed in titrating, optimizing the dosage 

range of the respective candidate stimulants alone or in combinations using MoDCs in 

different maturation media (a–c) as described above. Key experiments using optimal 

dosages in mature MoDCs from maturation medium (c) were then repeated at least three 

times. The representative experiment was presented. For cytokine staining, cells were 

restimulated on day of harvest with phorbol myristate acetate (PMA, 0.1 µg/ml) and 

ionomycin (1 µM) for 5 hr with Brefeldin A (10 µg/ml) added for four hr. Levels of human 

cytokines measured in MoDCs-T cell cocultures: IL-12, IL-10, IL-23, IL-5, and IFN-γ were 

quantified by ELISAs according to manufacturers. More than seven experiments were 

performed and the representative experiments were shown. CD45RO T cells were prepared 

with by positive selection with CD45RO magnetic beads of the CD4-T cells selected by the 

CD4 MACS multisort kit (Miltenyi Biotec). CD45RO CD4 T-cells traditionally regarded as 

a more memory-prone cell type, are prompt in cytokine secretion such as IFN-γ, IL-4 and 

IL-5 [22]. Co-cultures of T cells and MoDCs were initiated at 1:3 ratios, and supernatants 

harvested on day 5, 7, 14 for cytokine assays, and representative data on day 7 were 

presented [23].

2.4. SDS-PAGE and western blot

MoDCs treated under different conditions were lysed with 1% SDS and boiled in DTT 

containing sample treatment buffer and loaded on 10% Lammeli gel, and transfer was 

performed in 0.1% SDS and 1% methanol, and probed with HRP-labeled antibodies 

followed by chromogenic or chemoluminescent substrates, and densitometer reading was 

performed with ImageJ software (NIMH, NIH).

2.5. Flow Cytometry

After Fc block, MoDCs were stained for 30 mins with various combinations of 

fluorochrome-conjugated antibodies. For intracellular staining, cells were resuspeneded in 
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fixation/permeabilization solution (BDCytofix/Cytoperm kit, BD Biosciences), and 

performed in parallel with isoptype control antibodies according to the manufacturer’s 

protocol. The samples were analyzed with a FACSCalibur flow cytometer (BD 

Immunocytometry Systems) with 10,000 to 50,000 events collected. Further analyses were 

performed with Flow Jo software (Tree Star).

2.6 Statistical analysis

Experiments were repeated at least three times from different donors and showed consistent 

results. The results of the representative experiments in triplicate as means +/− SE were 

presented. The p value was computed between siRNA versus scRNA treated cultures 

stimulated by the same type of innate immunity ligand with a Mann-Whitney U test 

(GraphPad software, Inc., San Diego, CA) with a p value <0.05 (*) or <0.01 (**). Two-

tailed Student’s t-test was also used for comparison.

Results

3.1. Efficient knockdown of Gal-3 expression in human MoDC by RNA interference

Four human Gal-3 siRNA, sharing identical sequences with the mouse Gal-3 gene are tested 

for knocking out Gal-3 expression in human and murine cell lines. Two of the four Gal-3 

siRNAs inhibited Gal-3 protein in human MoDCs (siRNA-3, -4; Fig. 1A), indicating the 

specificity of the Gal-3 siRNA treatment effect by two siRNAs on different targeting 

sequences of Gal-3 gene, and Gal-3 siRNA4 was employed for subsequent studies. The 

targeting specificity was also confirmed by testing fourteen short hairpin RNA (shRNA) 

constructs including the overlapping cross-species siRNA-3, and -4, expressed in a lentiviral 

vector, inhibiting Gal-3 messages in human HT-29 cell lines (Supplemental Fig. 3). Fig. 1B 

showed that Gal-3 is constitutively expressed in MoDCs, and Gal-3 messages were elevated 

2 to 3-fold in MoDCs stimulated with LPS, R848 and LPS/R848. Approximately, 80% to 

90% Gal-3 mRNA were reduced in Gal-3 siRNA-treated, LPS and/or R848 by quantitative 

real-time (qRT)-PCR. Fig. 1C showed that approximately 90% Gal-3 protein was 

diminished by staining with FITC-anti-Gal-3 in the CD205 (+) and CD205 (−) MoDCs 

sustained at 48 h following Gal-3 siRNA treatment. Expression of CD205 on MoDCs 

requires 2 d treatment in the maturation media [24] in contrast to overnight maturation 

reported herein [25]. Thus the observation of Gal-3 expression in the residual 10% CD205 

(−) MoDCs, suggesting MoDCs undergoing prolonged maturation may be more prone to 

transfection by Gal-3 siRNA.

3.2. Differential IL-23 p19 and IL-12 p35 cytokine production is affected in Gal-3 siRNA-
treated human MoDCs

MoDCs produce an array of cytokines, e.g., IL-12, IL-27, IFN-β, IL-23, IL-1β, IL-6, TNF-α, 

TGF-β and IL-10 but not IL-4. We therefore evaluate whether Gal-3 siRNA modulates 

critical cytokine gene expression in LPS and/or R848-stimulated MoDCs. Fig. 2A showed 

that Gal-3 siRNA treatment reduced levels of IL-23 p19 mRNA approximately up to 3.5-

fold in R848 and/or LPS-stimulated MoDCs. In contrast, IL-12 p35 (Fig. 2B) and IL-10, an 

important immuno-regulatory cytokine (Fig. 2C) were upregulated in Gal-3 siRNA-treated 

MoDCs up to 2.5-fold to 3.3-fold, respectively. Noticeably, the common subunit of p40 
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shared by IL-12 and IL-23 remained unperturbed following Gal-3 siRNA treatment (Fig. 

2D). Taken together, the observation that Gal-3 siRNA differentially modulates IL-23 p19 

versus IL-12 p35 but does not affect the common IL-12 p40 strongly suggests that Gal-3 

mRNA activated by innate immunity ligands and its downregulation may play an important 

role in deviating CD4 T-cells.

Next, we proceed to confirm that levels of cytokine production and secretion are also 

concordant with the message levels in Gal-3 siRNA-treated MoDCs. MoDCs were cultured 

in maturation cocktails without externally added IL-1β and IL-6, known to play a key role in 

Th17 differentiation. Gal-3 siRNA significantly downregulates production/secretion of 

IL-1β (up to 2.3 fold) as well as IL-6 (up to about 4 fold) in LPS and/or R848-stimulated 

MoDCs measured by ELISA as shown in Fig. 3A and Fig. 3B respectively.

Concordant with upregulated IL-10 messages (Fig. 2), IL-10 secretion was significantly 

augmented (up to 4-fold) in Gal-3 siRNA-treated, LPS and/or R848-stimulated MoDCs (Fig. 

3C). TGF-β is another important Th17 differentiating cytokine for most rodent CD4 T-cells 

and naïve human CD4 T-cells [23, 26–28]. Nevertheless, Gal-3 siRNA treatment did not 

affect secreted levels of TGF-β produced by MoDCs (Fig. 3D).

Thus the above observations indicate a dichotomy that Gal-3 downregulation inhibits 

proinflammatory IL-1β and IL-6 (required for Th17 differentiation) by MoDCs, while 

augments immuno-regulatory IL-10. Interestingly, TGF-β levels (required for Treg or Th17 

differentiation) is not affected.

Next, we evaluate effect of Gal-3 siRNA on IL-23 p19 versus IL-12 p35 secretion in 

MoDCs stimulated with a variety of innate immunity ligands, e.g., TLR, NLR, c-type lectin 

as well as house dust mites (HDM). Fig. 4 showed that secreted levels of IL-23 p19 were 

significantly suppressed up to 4.5-fold in Gal-3 siRNA-treated MoDCs stimulated with LPS, 

R848, Pam3CSK4 (TLR2 ligand), muramyl-dipeptide, MDP (NOD-2 ligand), zymosan (c-

type lectin β-glucans for dectin-1 ligand) and HDM (β-glucans, LPS and proteases) (Fig. 4A, 

p value was computed between the two groups of siRNA-treated MoDCs versus snRNA-

treated MoDCs, stimulated with the respective innate immunity ligand) [29–32]. In contrast, 

levels of secreted IL-12 p35 were significantly elevated in MoDCs, stimulated with LPS, 

R848, zymosan as well as HDM up to about 3-fold but interestingly not in Pam3Csk4 and 

MDP stimulated MoDCs (Fig. 4B). Noticeably, Fig. 3C showed that levels of IL-12 p40 

subunit like that of mRNA levels (Fig. 2C) was not affected by Gal-3 siRNA treatment. In 

contrast, production of IL-12 hetero-dimer, e. g., IL-12 p70 in Gal-3 siRNA treated MoDCs 

was upregulated (Fig. 3D) as a result of differential upregulation of IL-12 p35 (Fig. 3C). 

Thus, importantly, differential modulation of secreted IL-23 p19 versus IL-12 p35 by Gal-3 

siRNA but not IL-12 p40 is concordant with that of differential mRNA levels of IL-23 p19 

versus IL-12 p35 but non-perturbed IL-12 p40 in LPS and/or R848 stimulated MoDCs (Fig. 

2).

3.3 Immune deviation of Th1, Th2, and Th17 by Gal-3 siRNA-treated MoDCs

We next evaluated whether cytokine reprogramming in Gal-3 siRNA-treated MoDCs may 

regulate trichotomous CD4 T cell development by promoting Th1, while inhibiting Th2 and 
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Th17 development. Human MoDCs/T-cell cocultures were initiated. Staphylococcal 

enterotoxin B (SEB) was previously shown to stimulate the production of IFN-γ, IL-5, 

IL-13, and IL-17A in human DCs-CD4 T-cell cocultures [33–35]. Circulating CD45RO 

CD4 T-cells regarded as a memory cell type, readily respond to innate immunity ligands and 

antigenic stimulation to secrete IL-4, IL-5, IL-17A and IFN-γ in contrast to CD45RA CD4 

T-cells [22, 23]. Therefore CD45RO CD4 T-cells isolated from PBMCs were cocultured 

with SEB-pulsed, Gal-3 siRNA-treated MoDCs [33], and levels of IL-12, IL-5, and IL-17A 

were harvested from day 7 supernatants. As shown in Fig. 5A, IFN-γ production by 

CD45RO CD4 T-cells was significantly enhanced by coincubation with Gal-3 siRNA-

treated, LPS and/or R848-stimulated MoDCs, pulsed with SEB (Gr. 2 vs. Gr.1; Fig 5A). 

Addition of anti-p35 IL-12 and IL-12 p40 abrogated enhanced levels of IFN-γ (Gr. 3, 4 vs. 

Gr. 2; Fig 5A). In contrast, Gal-3 siRNA treated, Pam3CSK4-stimulated MoDCs did not 

elevate levels of IFN-γ in cocultures (Gr. 2 vs. Gr. 1; Fig. 5A), consistent with the 

observation of lack of IL-12 p35 upregulation in Gal-3 siRNA-treated, Pam3Csk4- or MDP-

stimulated MoDCs (Fig. 4B).

Fig. 5B showed that production of IL-17A by CD4 T-cells was inhibited by coincubation 

with Gal-3 siRNA-treated MoDCs stimulated with LPS, R848, LPS/R848, Pam3Csk4 or 

MDP-stimulated, but not with scRNA-treated control MoDCs (Gr. 2 vs. Gr. 1; Fig 5B). 

Addition of anti-IL-12 p35 antibodies partially reversed Th17 production (Gr. 3 vs. Gr. 2; 

Fig 5B). In contrast, adding anti-IL-23 p19, anti-IL-1β and anti-IL-6 antibodies profoundly 

inhibited IL-17A levels in cocultures (Gr. 4 vs. Gr. 1, 2, 3; Fig. 5B).

Fig. 5C showed that elevated IL-5 production by CD4 T-cells co-cultured with control LPS 

and/or R848-stimulated MoDCs (Gr. 1, Fig. 5C). In contrast, IL-5 levels were diminished in 

cocultures with Gal-3 siRNA-treated MoDCs (Gr. 2 vs. Gr. 1; Fig. 5C). In contrast, 

neutralizing anti-IL-12 p35 addition reversed suppression of IL-5 (Gr. 3 vs. Gr. 2; Fig. 5C). 

Taken together, these observations indicate that Gal-3 downregulation in MoDCs inhibits 

IL-5 production by CD4 T-cells via upregulating IL-12 secretion by MoDCs and/or CD4 T-

cells. Taken together, we propose that Gal-3 as a cytokine hub in MoDCs reprograms 

inflammatory-prone MoDCs to anti-inflammatory or regulatory-prone MoDCs for immune 

homeostasis.

3.4. Intracellular action of Gal-3

Next, we evaluate whether mechanisms of Gal-3 siRNA are mediated by inhibiting levels of 

extracellular and/or intracellular Gal-3. Extracellularly secreted Gal-3 mediates its action via 

the CRD domain, which can be blocked by anti-Gal-3 (B2C10) mAb made in the lab [21], 

or polyclonal anti-Gal-3 antibodies. Adding B2C6 or polyclonal antibodies did not augment 

IL-12 p35 nor suppress IL-23 p19 production in LPS and/or R848 stimulated MoDCs as 

shown in Fig. 6A and Fig. 6B, respectively. Fig. 6C ascertained that the dosage of B2C10 

used in the above studies effectively abrogated radioactive Gal-3 binding to human IgE, and 

the potency of blocking CRD by B2C6 completely at 10 µg/ml is similar to high dose of 

NAC-lactosamine [36]. The observations strongly suggest that differential IL-23 p19 versus 

IL-12 p35 is not mediated by elevated extracellularly secreted Gal-3.
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The lack of an extracellular role of secreted Gal-3 is also supported by reconstituting Gal-3 

siRNA treated MoDCs with externally added recombinant Gal-3. Fig. 6D showed that 

addition of recombinant Gal-3 to Gal-3 siRNA-treated MoDCs did not restore IL-23 p19 

production nor suppress the enhanced levels of IL-12p35 due to downregulating Gal-3 

mRNA. Taken together, these observations strongly suggest that intracellular pools of Gal-3 

but not extracellularly secreted Gal-3 play a key role in differential regulation of IL12 p35 

versus IL-23 p19 production. The molecular signal transduction governing the endogenous 

Gal-3-mediated events are being investigated.

Discussion

Data herein show that Gal-3 in MoDCs, prepared form adherent monocytes of human 

PBMC plays a key role in immune homeostasis of Th1 versus Th2 and Th17 development. 

Gal-3 siRNA differentially upregulates IL-12 p35 versus IL-23 p19 unique subunit in 

MoDCs stimulated by innate immunity ligands without affecting IL-12/IL-23 p40 common 

subunit. In addition, IL-1β and IL-6 are also downregulated, while IL-10 production is 

augmented. Moreover, Gal-3 siRNA treated MoDCs redirect Th1, Th2 and Th17 

development. Since fungal dectins and β-glucans present in HDM are known asthmogenic 

triggers, diminished IL-23 p19 versus elevated IL-12 p35 in β-glucans-stimulated MoDCs 

suggest a role of Gal-3 siRNA in treating MoDCs-mediated allergic asthma. Data presented 

herein prompt the hypothesis that Gal-3 acting as a cytokine hub reprograms 

proinflammatory versus anti-inflammatory cytokines in innate ligands-stimulated MoDCs. 

CD205 has been reported variably expressed in human MoDCs as well as expressed in 

multiple leukocyte lineages [24]. Gal-3 expression in both CD205+ and CD205 (−) MoDCs 

subsets, cultured from enriched adherent monocytes via maturation cocktails, were 

suppressed by Gal-3 siRNA treatment. It will be important to also extend the above 

observations to conventional DCs (cDCs) e.g., CD1c+/CD11b+ cDCs and CD1c+/CD103 or 

CD141+ cDCs [13, 37–39]. MoDCs play a critical role in house dust mite (HDM) induced 

allergic asthma in the rodent model [13], and siRNAs (without nanoparticles) against 

pertinent target genes in lung DCs and macrophages were shown to alleviate allergic asthma 

[40–43]. Future studies will be extended to targeting lung DCs and other cell types in vivo in 

the rodent asthma model [19].

We show that Gal-3 siRNA suppress IL-23 p19 production in MoDCs stimulated by dectins, 

e.g., β-glucans of zymosan and HDM. On the other hand, IL-23 p19 production was shown 

upregulated in a recent study using Gal-3 deficient, bone marrow derived dendritic cells 

(BMDC) stimulated by Histoplasma capulatum or fungal dectins [44, 45]. The disparity of 

these two observations may be attributed to species difference, source of DCs and/or culture 

conditions. The diametrical outcome, however, is likely to be attributed to using DCs with 

temporary phenotypic knockdown of the Gal-3 gene versus those with permanent genotypic 

knockout of the gene. Gal-3 gene deficiency has been routinely used in analyzing its 

function in various cell types and animal models. It may be pointed out that genotypic 

deficiency leads to a permanent loss of not only the Gal-3 gene but also gene products that 

interact with Gal-3 during its up- and downregulation. The losses of Gal-3 gene and Gal-3 

dependent physiologic networks are also accompanied with molecular and cellular 

compensatory responses, which may not be elicited in Gal-3 competent cells. In contrast, 
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phenotypic knockdown by Gal-3 siRNA in MoDCs maintains a normal homeostatic function 

of the Gal-3 gene and its molecular network of the gene within the appropriate spatial-

temporal constraint, which can re-establish homeostasis following a transient knockdown 

[17]. In this vein the endogenous Gal-3 dependent network, present in Gal-3 knocked-down 

DCs but missing in Gal-3 knocked-out DCs underlies the discrepancy of the two 

observations.

The above explanations may in part also reconcile some un-anticipated observations in vivo. 

Gal-3 gene deficiency paradoxically leads to an un-anticipated poor prognosis in kidney and 

cardiac fibrotic inflammation; moreover, the deficiency also causes increased insulin 

resistance and weight gain in other animal models of diseases [10, 46, 47]. It is possible that 

basal/low levels of Gal-3 expression are required in order to maintain low levels of 

inflammation in Gal-3 sensitive target organs, while the permanent loss of Gal-3 dependent 

molecular regulatory networks leads to accelerated, severe, unregulated inflammatory 

responses in the target organs. Thus drug development using Gal-3 siRNA in assessing 

changes in pathophysiological outcomes in a transient knockdown in an animal model 

appears more patho-physiologically pertinent than that of using Gal-3 gene knockout mice.

We address two potential mechanisms of Gal-3 siRNA-mediated cytokine reprogramming in 

MoDCs. First Gal-3 siRNA is proposed to reduce cell-bound and/or secreted Gal-3 that 

binds to surface glycoproteins and/or glycans via CRD and polarize cytokines by MoDCs. 

Indeed, Gal-3 polarized alternative or M2 macrophages by binding to surface CD98 on 

monocytes via the PI-3K pathway [48]. Moreover, this modality of extracellular binding to 

EGF receptors and cytokine receptors via Mgat5-modified glycans also account for altering 

cytokine-mediated signaling in different cell types [4]. Herein we showed that the 

extracellular CRD-dependent signaling is unlikely for our model since neutralizing 

antibodies against Gal-3 did not affect differential regulation of IL-23p19 versus IL-12 p35 

in LPS and/or R848-stimulated MoDCs (Fig. 5D).

We therefore propose that Gal-3 siRNA reprograms cytokine production by affecting 

intracellular Gal-3 dependent kinases and transcription factor independent of extracellular 

carbohydrate recognition [2, 49, 50]. Intracellular Gal-3 is known to mediate diverse 

biological effects via its binding to cytoplasmic and/or nuclear N-Ras, Bcl2, p53, β-catenin, 

integrin/ITK, Fak, and XBP-1 upregulation and UPR-mediated oxidative stress recently 

reported by our laboratory [49–55]. Cellular and molecular mechanisms of Gal-3-mediated 

signal transduction leading to cytokine reprogramming in MoDCs and subsequent CD4 T-

cell immune deviations are currently being studied in the laboratory. Recently, augmented 

IL-27 was shown in human MoDCs treated with Gal-3 antagonists, and augmented CD4 

Treg induction was also shown in another study using Gal-3 deficient mice [56, 57]. Thus 

the future studies in the laboratory will also address whether Gal-3 siRNA treated MoDCs 

also favor Treg/Tr1 deviation (in addition to Th2/Th17) by producing IL-27, IFN-β in 

addition to IL-10 reported herein [49, 58, 59].

In summary, the results herein suggest a role of Gal-3 to differentially regulates or 

reprograms cytokine production in favor of anti-inflammatory DCs in immune deviation of 

Th1/Th2/Th17. Unlike anti-cytokine antibody-based therapy tailored for a single 
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proinflammatory cytokine, targeting Gal-3 cytokine hub downregulates multiple 

proinflammatory cytokines at once in DCs inhibiting Th2/Th17 CD4 T-cells, and therefore 

mitigates PAMP-induced proinflammatory damage to the target organs [60].
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Acknowledgements

We acknowledge the critical technical help of Mr. Edison Tse and Mr. Kevin Tso. We wish to thank Dr. Fu-Tong 
Liu for discussion, and Ms. Lillian Shiu Chen and Mr. Henry Lin for resource management and assistance in 
manuscript preparations.

The work was support in part by grants from the Advanced Technology SBIR grant at NIAID, NIH AI1084348 
(SSC).

Abbreviations

cDCs conventional dendritic cells

Gal-3 galectin-3

Gal-3 siRNA galectin-3 small interfering RNA

MoDCs monocyte-derived dendritic cells

NLR NOD-like receptors

PAMP pattern-associated molecular pattern

PRR pattern recognition receptors

TLR Toll-like receptors

References

1. Liu F-T, Rabinovich GA. Galectins: regulators of acute and chronic inflammation. Annals of the 
New York Academy of Sciences. 2010; 1183:158–182. [PubMed: 20146714] 

2. Liu F-T, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005; 
5:29–41. [PubMed: 15630413] 

3. Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and 
autoimmunity by Mgat5N-glycosylation. Nature. 2001; 409:733–739. [PubMed: 11217864] 

4. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana 
JL, Dennis JW. Regulation of Cytokine Receptors by Golgi N-Glycan Processing and Endocytosis. 
Science. 2004; 306:120–124. [PubMed: 15459394] 

5. Earl LA, Bi S, Baum LG. N- and O-Glycans Modulate Galectin-1 Binding, CD45 Signaling, and T 
Cell Death. Journal of Biological Chemistry. 2010; 285:2232–2244. [PubMed: 19920154] 

6. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, Haslett C, Simpson 
KJ, Sethi T. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proceedings of the 
National Academy of Sciences of the United States of America. 2006; 103:5060–5065. [PubMed: 
16549783] 

7. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: a novel 
mediator of heart failure development and progression. European Journal of Heart Failure. 2009; 
11:811–817. [PubMed: 19648160] 

Chen et al. Page 10

Cell Immunol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Fukushi, J-i; Makagiansar, IT.; Stallcup, WB. NG2 Proteoglycan Promotes Endothelial Cell Motility 
and Angiogenesis via Engagement of Galectin-3 and {alpha}3{beta}1 Integrin. Mol. Biol. Cell. 
2004; 15:3580–3590. [PubMed: 15181153] 

9. Liu Y-H, D'Ambrosio M, Liao T-d, Peng H, Rhaleb N-E, Sharma U, André S, Gabius H-J, 
Carretero OA. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction 
induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. American Journal of 
Physiology - Heart and Circulatory Physiology. 2009; 296:H404–H412. H404–H412. [PubMed: 
19098114] 

10. Weigert J, Neumeier M, Wanninger J, Bauer S, Farkas S, Scherer MN, Schnitzbauer A, Schäffler 
A, Aslanidis C, Schölmerich J, Buechler C. Serum Galectin-3 Is Elevated in Obesity and 
Negatively Correlates with Glycosylated Hemoglobin in Type 2 Diabetes. Journal of Clinical 
Endocrinology & Metabolism. 2010; 95:1404–1411. [PubMed: 20080851] 

11. Mahendran S, Sethi T. Treatments in idiopathic pulmonary fibrosis: time for a more targeted 
approach? QJM. 2012; 105:929–934. [PubMed: 22647761] 

12. Cheong C, Matos I, Choi J-H, Dandamudi DB, Shrestha E, Longhi MP, Jeffrey KL, Anthony RM, 
Kluger C, Nchinda G, Koh H, Rodriguez A, Idoyaga J, Pack M, Velinzon K, Park CG, Steinman 
RM. Microbial Stimulation Fully Differentiates Monocytes to DC-SIGN/CD209+ Dendritic Cells 
for Immune T Cell Areas. Cell. 2010; 143:416–429. [PubMed: 21029863] 

13. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, 
Vanhoutte L, Neyt K, Killeen N, Malissen B, Hammad H, Lambrecht Bart N. Conventional and 
Monocyte-Derived CD11b+ Dendritic Cells Initiate and Maintain T Helper 2 Cell-Mediated 
Immunity to House Dust Mite Allergen. Immunity. 2013; 38:322–335. [PubMed: 23352232] 

14. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 
2009; 21:317–337. [PubMed: 19246554] 

15. Lambrecht BN, Hammad H. Lung Dendritic Cells in Respiratory Viral Infection and Asthma: 
From Protection to Immunopathology. Annu. Rev. Immunol. 2012; 30:243–270. [PubMed: 
22224777] 

16. Geijtenbeek TBH, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune 
responses. Nat Rev Immunol. 2009; 9:465–479. [PubMed: 19521399] 

17. Hollmig ST, Ariizumi K, Cruz PD. Recognition of non-self-polysaccharides by C-type lectin 
receptors dectin-1 and dectin-2. Glycobiology. 2009; 19:568–575. [PubMed: 19287024] 

18. Rabinovich GA, Toscano MA. Turning 'sweet' on immunity: galectin-glycan interactions in 
immune tolerance and inflammation. Nat Rev Immunol. 2009; 9:338–352. [PubMed: 19365409] 

19. Zuberi RI, Hsu DK, Kalayci O, Chen H-Y, Sheldon HK, Yu L, Apgar JR, Kawakami T, Lilly CM, 
Liu F-T. Critical Role for Galectin-3 in Airway Inflammation and Bronchial Hyperresponsiveness 
in a Murine Model of Asthma. The American Journal of Pathology. 2004; 165:2045–2053. 
[PubMed: 15579447] 

20. van Stijn CMW, van den Broek M, van de Weerd R, Visser M, Tasdelen I, Tefsen B, van Die I. 
Regulation of expression and secretion of galectin-3 in human monocyte-derived dendritic cells. 
Molecular Immunology. 2009; 46:3292–3299. [PubMed: 19699526] 

21. Liu FT, Hsu DK, Zuberi RI, Hill PN, Shenhav A, Kuwabara I, Chen SS. Modulation of functional 
properties of galectin-3 by monoclonal antibodies binding to the non-lectin domains. 
Biochemistry. 1996; 35:6073–6079. [PubMed: 8634249] 

22. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes 
with distinct homing potentials and effector functions. Nature. 1999; 401:708–712. [PubMed: 
10537110] 

23. Lombardi V, Van Overtvelt L, Horiot S, Moingeon P. Human Dendritic Cells Stimulated via TLR7 
and/or TLR8 Induce the Sequential Production of Il-10, IFN-{gamma}, and IL-17A by Naive 
CD4+ T Cells. J Immunol. 2009; 182:3372–3379. [PubMed: 19265114] 

24. Kato M, McDonald KJ, Khan S, Ross IL, Vuckovic S, Chen K, Munster D, MacDonald KPA, Hart 
DNJ. Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. International 
Immunology. 2006; 18:857–869. [PubMed: 16581822] 

25. O'Neill, DW.; Bhardwaj, N. Current Protocols in Immunology. John Wiley & Sons, Inc.; 2001. 
Differentiation of Peripheral Blood Monocytes into Dendritic Cells. 

Chen et al. Page 11

Cell Immunol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Annunziato F, Romagnani S. Do studies in humans better depict Th17 cells? Blood. 2009; 
114:2213–2219. [PubMed: 19494349] 

27. Ghoreschi K, Laurence A, Yang X-P, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, 
Davidson TS, Bouladoux N, Grainger JR, Chen Q, Kanno Y, Watford WT, Sun H-W, Eberl G, 
Shevach EM, Belkaid Y, Cua DJ, Chen W, O/'Shea JJ. Generation of pathogenic TH17 cells in the 
absence of TGF-[bgr] signalling. Nature. 2010; 467:967–971. [PubMed: 20962846] 

28. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler 
DA. IL-21 and TGF-[bgr] are required for differentiation of human TH17 cells. Nature. 2008; 
454:350–352. [PubMed: 18469800] 

29. Barrett NA, Maekawa A, Rahman OM, Austen KF, Kanaoka Y. Dectin-2 Recognition of House 
Dust Mite Triggers Cysteinyl Leukotriene Generation by Dendritic Cells. The Journal of 
Immunology. 2009; 182:1119–1128. [PubMed: 19124755] 

30. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite 
allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 
2009; 15:410–416. [PubMed: 19330007] 

31. Wei W-C, Su Y-H, Chen S-S, Sheu J-H, Yang N-S. GM-CSF plays a key role in zymosan-
stimulated human dendritic cells for activation of Th1 and Th17 cells. Cytokine. 2011; 55:79–89. 
[PubMed: 21486701] 

32. Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang G-X, Constantinescu CS, Bar-Or A, 
Gran B. TLR2 Stimulation Drives Human Naive and Effector Regulatory T Cells into a Th17-Like 
Phenotype with Reduced Suppressive Function. The Journal of Immunology. 2011; 187:2278–
2290. [PubMed: 21775683] 

33. van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SAJ, 
Kapsenberg ML, de Jong EC. Stimulation of the Intracellular Bacterial Sensor NOD2 Programs 
Dendritic Cells to Promote Interleukin-17 Production in Human Memory T Cells. Immunity. 2007; 
27:660–669. [PubMed: 17919942] 

34. Liu LY, Mathur SK, Sedgwick JB, Jarjour NN, Busse WW, Kelly EAB. Human airway and 
peripheral blood eosinophils enhance Th1 and Th2 cytokine secretion. Allergy. 2006; 61:589–597. 
[PubMed: 16629789] 

35. Mandron M, Ariès M-F, Brehm RD, Tranter HS, Acharya KR, Charveron M, Davrinche C. Human 
dendritic cells conditioned with Staphylococcus aureus enterotoxin B promote TH2 cell 
polarization. The Journal of allergy and clinical immunology. 2006; 117:1141–1147. [PubMed: 
16675344] 

36. Liu F-T, Hsu DK, Zuberi RI, Hill PN, Shenhav A, Kuwabara I, Chen S-S. Modulation of 
Functional Properties of Galectin-3 by Monoclonal Antibodies Binding to the Non-Lectin 
Domains†. Biochemistry. 1996; 35:6073–6079. [PubMed: 8634249] 

37. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, Chu F-F, Randolph 
GJ, Rudensky AY, Nussenzweig M. In Vivo Analysis of Dendritic Cell Development and 
Homeostasis. Science. 2009; 324:392–397. [PubMed: 19286519] 

38. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J. BDCA-2, 
BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic Cells in Human 
Peripheral Blood. The Journal of Immunology. 2000; 165:6037–6046. [PubMed: 11086035] 

39. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan Pavandip S, Wang X-N, 
Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson 
R, Dimmick I, Jarrett Ruth F, Renia L, Tam J, Song C, Connolly J, Chan Jerry KY, Gehring A, 
Bertoletti A, Collin M, Ginhoux F. Human Tissues Contain CD141hi Cross-Presenting Dendritic 
Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells. Immunity. 
2012; 37:60–73. [PubMed: 22795876] 

40. Bonifazi P, D'Angelo C, Zagarella S, Zelante T, Bozza S, De Luca A, Giovannini G, Moretti S, 
Iannitti RG, Fallarino F, Carvalho A, Cunha C, Bistoni F, Romani L. Intranasally delivered siRNA 
targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunol. 
2009; 3:193–205. [PubMed: 19924119] 

41. Collison A, Hatchwell L, Verrills N, Wark PAB, de Siqueira AP, Tooze M, Carpenter H, Don AS, 
Morris JC, Zimmermann N, Bartlett NW, Rothenberg ME, Johnston SL, Foster PS, Mattes J. The 

Chen et al. Page 12

Cell Immunol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting 
protein phosphatase 2A activity. Nat Med. 2013; 19:232–237. [PubMed: 23334847] 

42. Huang Z-Y, Kim M-K, Kim-Han T-H, Indik ZK, Schreiber AD. Effect of locally administered Syk 
siRNA on allergen-induced arthritis and asthma. Molecular Immunology. 2013; 53:52–59. 
[PubMed: 22796951] 

43. Zafra MP, Mazzeo C, Gámez C, Marco AR, de Zulueta A, Sanz V, Bilbao I, Ruiz-Cabello J, 
Zubeldia JM, del Pozo V. Gene Silencing of SOCS3 by siRNA Intranasal Delivery Inhibits 
Asthma Phenotype in Mice. PLOS one. 2014; 9:1–11.

44. Wu S-Y, Yu J-S, Liu F-T, Miaw S-C, Wu-Hsieh BA. Galectin-3 Negatively Regulates Dendritic 
Cell Production of IL-23/IL-17–Axis Cytokines in Infection by Histoplasma capsulatum. The 
Journal of Immunology. 2013; 190:3427–3437. [PubMed: 23455499] 

45. Lee, A. Fermin; Chen, H-Y.; Wan, L.; Wu, S-Y.; Yu, J-S.; Huang, AC.; Miaw, S-C.; Hsu, DK.; 
Wu-Hsieh, BA.; Liu, F-T. Galectin-3 Modulates Th17 Responses by Regulating Dendritic Cell 
Cytokines. The American Journal of Pathology. 2013; 183:1209–1222. [PubMed: 23916470] 

46. Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu F-T, Eddy AA. Galectin-3 
preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. 
American Journal of Physiology - Renal Physiology. 2011; 300:F245–F253. [PubMed: 20962111] 

47. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, Liu F-T, Hughes J, 
Sethi T. Galectin-3 Expression and Secretion Links Macrophages to the Promotion of Renal 
Fibrosis. The American Journal of Pathology. 2008; 172:288–298. [PubMed: 18202187] 

48. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson 
UJ, Haslett C, Forbes SJ, Sethi T. Regulation of Alternative Macrophage Activation by Galectin-3. 
The Journal of Immunology. 2008; 180:2650–2658. [PubMed: 18250477] 

49. Chen, SS. RNA interference of galectin-3 expression and the methods of use thereof. US 
2013/0072540 A1. 2013. 

50. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, 
Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An Integrated Stress Response Regulates 
Amino Acid Metabolism and Resistance to Oxidative Stress. Molecular Cell. 2003; 11:619–633. 
[PubMed: 12667446] 

51. Shalom-Feuerstein R, Cooks T, Raz A, Kloog Y. Galectin-3 Regulates a Molecular Switch from 
N-Ras to K-Ras Usage in Human Breast Carcinoma Cells. Cancer Research. 2005; 65:7292–7300. 
[PubMed: 16103080] 

52. Shimura T, Takenaka Y, Fukumori T, Tsutsumi S, Okada K, Hogan V, Kikuchi A, Kuwano H, Raz 
A. Implication of Galectin-3 in Wnt Signaling. Cancer Research. 2005; 65:3535–3537. [PubMed: 
15867344] 

53. Saravanan C, Liu F-T, Gipson IK, Panjwani N. Galectin-3 promotes lamellipodia formation in 
epithelial cells by interacting with complex N-glycans on α3β1 integrin. Journal of Cell Science. 
2009; 122:3684–3693. [PubMed: 19755493] 

54. Yang R-Y, Hsu DK, Liu F-T. Expression of galectin-3 modulates T-cell growth and apoptosis. 
PNAS. 1996; 93:6737–6742. [PubMed: 8692888] 

55. Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F, 
Trovato M, Piaggio G, Bartolazzi A, Soddu S, Sciacchitano S. Repression of the Antiapoptotic 
Molecule Galectin-3 by Homeodomain-Interacting Protein Kinase 2-Activated p53 Is Required for 
p53-Induced Apoptosis. Molecular and Cellular Biology. 2006; 26:4746–4757. [PubMed: 
16738336] 

56. Fermino ML, Dias FC, Lopes CD, Souza MA, Cruz ÂK, Liu F-T, Chammas R, Roque-Barreira 
MC, Rabinovich GA, Bernardes ES. Galectin-3 negatively regulates the frequency and function of 
CD4+CD25+Foxp3+ regulatory T cells and influences the course of Leishmania major infection. 
European Journal of Immunology. 2013; 43:1806–1817. [PubMed: 23592449] 

57. Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vermeulen ME, Geffner JR, 
Rabinovich GA. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-
driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol. 2009; 
10:981–991. [PubMed: 19668220] 

Chen et al. Page 13

Cell Immunol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



58. Hall, Aisling OH.; Beiting, Daniel P.; Tato, C.; John, B.; Oldenhove, G.; Lombana, Claudia G.; 
Pritchard, Gretchen H.; Silver, Jonathan S.; Bouladoux, N.; Stumhofer, Jason S.; Harris, Tajie H.; 
Grainger, J.; Wojno, Elia DT.; Wagage, S.; Roos, David S.; Scott, P.; Turka, Laurence A.; Cherry, 
S.; Reiner, Steven L.; Cua, D.; Belkaid, Y.; Elloso, MM.; Hunter, Christopher A. The Cytokines 
Interleukin 27 and Interferon-γ Promote Distinct Treg Cell Populations Required to Limit 
Infection-Induced Pathology. Immunity. 2012; 37:511–523. [PubMed: 22981537] 

59. Pennell LM, Fish EN. Immunoregulatory Effects of Interferon-β in Suppression of Th17 cells. J. 
Interferon & Cytokine Res. 2014; 34:333–341.

60. Peck A, Mellins ED. Plasticity of T-cell phenotype and function: the T helper type 17 example. 
Immunology. 2010; 129:147–153. [PubMed: 19922424] 

Chen et al. Page 14

Cell Immunol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Galectin-3 (Gal-3), a β-galactoside-binding lectin, reprograms proinflammatory 

cytokine production in human MoDCs.

• Gal-3 siRNA upregulates IL-12 p35, IL-10, while downregulates IL-23 p19, 

IL-6, IL-1β in TLR/NLR-stimulated MoDCs.

• Gal-3 siRNA-treated human MoDCs inhibit Th2 and Th17 development.

• Intracellular Gal-3 acts as a cytokine hub of human DCs, independent of 

carbohydrate recognition domain (CRD).
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Fig. 1. 
Gal-3 knockdown in MoDCs by four Gal-3 siRNA constructs. Adherent monocytes from 

PBMC were cultured in GM-CSF/IL-4 for 7 days, and then incubated in maturation cocktail 

containing TNF-α, PGE2, IL-1β, and IL-6 for 24 h. MoDCs were transfected at 1 nmol with 

4 respective siRNAs targeting Gal-3 or with a non-targeting scramble control RNA (scRNA) 

in lipofectamine for 2 h, washed and then incubated in media for 72 h. Western blot was 

then performed in Gal-3 siRNA-transfected MoDCs. The experiment was independently 

confirmed (A). Gal-3 expression siRNA-4 transfected MoDCs stimulated with LPS (250 

ng/ml) and/or R848 (5 µg/ml) for 72 h was evaluated by qRT-PCR with arbitrary units or 

fold against endogenous actin. Experiments were repeated three times from different donors 

with consistent results. The results of the representative experiments in triplicate 

determination as means and SE. The p value was computed with a Mann-Whitney U test 

with a p value <0.05 (*) or <0.01 (**). (B). MoDCs treated with Gal-3 siRNA-4 were 
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stained at 72 h with PE-anti-human CD205 (BioLegend) in ice-cold PBS, washed, fixed in 

2% paraformaldehyde, then stained with FITC-anti-Gal-3 and evaluated by FACS analysis. 

The repeated experiment was independently confirmed (C).
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Fig. 2. 
Altered cytokine messages in Gal-3 siRNA-treated MoDCs. MoDCs, matured in a full 

cocktail (TNF-α, PGE2, IL-1β, and IL-6) were transfected with 1 nmol siRNA-4 or treated 

with scramble control, non-targeting RNA control (sc/snRNA) for 2 h and then stimulated 

with LPS (250 ng/ml) and/or R848 (5 µg/ml) for 48 h. Messages for IL-12 p19 (A), IL-12 

p35 (B), IL-10 (C), IL-12 p40 (D) and OX40L (E) in Gal-3 siRNA-4 and scRNA-treated 

MoDCs were evaluated by qRT-PCR as described. Primers have been titrated and optimized 

for reliable performance. Experiments were repeated three times from different donors. The 

results of the representative experiments in triplicates as means+/−SE, and the p value 

computed.
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Fig. 3. 
Production of IL-1β, IL-6, TGF-β and IL-10 in Gal-3 siRNA-treated MoDCs. MoDCs, 

matured in TNF-α/PGE2 were treated with 1 nmol Gal-3 siRNA-4 or scRNA for 2 h, and 

then stimulated for 48 h with LPS (250 ng/ml) and/or R848 (5 µg/ml). Levels of cytokines 

that were secreted in the supernatants, were evaluated by ELISAs (Panel A-D). Experiments 

were repeated three times from different donors. The results of the representative 

experiments in triplicates as means+/−SE and the p value computed.
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Fig. 4. 
Differential IL-23 p19 versus IL-12 p35 production in Gal-3 siRNA-treated MoDCs 

stimulated with TLR/NOD and innate immunity ligands. GM-CSF/IL-4 cultured MoDCs 

were matured with a full cocktail (TNF-α, PGE2, IL-1β, and IL-6). MoDCs were treated 

with Gal-3 siRNA-4 or scRNA for 2 h and then stimulated for 48 h with different innate 

immunity ligands, e.g., LPS (250 ng/ml) and/or R848 (5 µg/ml), Pam3CSK4 (10 µg/ml), 

MDP (2 µg/ml), zymosan (25 µg/ml), or house dust mites (HDM, 25 µg/ml). Levels of 

secreted IL-23 p19 (Panel A) and IL-12 p35 (Panel B) were evaluated by ELISAs. 

Experiments were repeated three times. The results of the representative experiments in 

triplicates as means+/−SE, and the p value computed.
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Fig. 5. 
Effect of Gal-3 siRNA-treated MoDCs on CD4 T cell differentiation. CD45RO T cells were 

prepared with by positive selection with CD45RO magnetic beads of the CD4-T cells 

selected by the CD4 MACS multisort kit. Gal-3 siRNA-4 treated MoDCs were stimulated 

with LPS (250 ng/ml) and/or R848 (5 µg/ml), Pam3CSK4 (10 µg/ml) or MDP (2 µg/ml) for 

48 hr in the presence of SEB (100 ng/ml). To assess IL-5 production, siRNA or scRNA 

treated MoDCs were also coincubated with CD40L (10 µg/ml) along with innate immunity 

ligand. MoDCs (3.3×105) were then washed and added to CD45RO (1×106) at a ratio of 1:3, 

and cocultures were incubated continually for seven days. Supernatants were then collected 

and evaluated for IFN-γ (A), IL-17A (B), and IL-5 (C) by ELISAs. The experiments were 

repeated five times with the optimal conditions obtained and the representative experiment 

is presented. Comparator between the two selected groups are specified in the arrowed 

legend placed within the respective drawing (Panel A to C). Thus a siRNA treatment group 

will be compared to the snRNA control group (e.g. siRNA vs. snRNA) as well as compared 

to another treatment group with added mAbs (e.g., siRNA vs. siRNA+ mAbs) to yield 

pertinent information. Experiments were repeated three times from different donors. The 

results of the representative experiments in triplicates as means+/−SE, and the p value 

computed.
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Fig. 6. 
Effect of anti-Gal-3 antibodies and Gal-3 antagonists on IL-23 p19 versus IL-12 p35 

production by MoDCs. MoDCs were stimulated with LPS (250 ng/ml) and/or R848 (5 

µg/ml) in the presence of anti-Gal-3 B2C10 (25 µg/ml), polyclonal anti-Gal-3 (20 µg/ml), 

Gal-3 antagonists, e.g., NAC lactosamine, galactose. Supernatants were harvested 2 days 

later and evaluated for levels of IL-12 p35 (A) and IL-23 p19 (B) by ELISAs. I125-Gal-3 

(1.2 × 106 cpm) was preincubated with B2C10 (0.1 to 25 µg/ml) at rt for 2 h or β-

galactosides, NAC lactosamine (1–1000 ug/ml) or galactose (10 µg to 10 mg/ml) at rt for 2 

h, and then added to NP-specific IgE coated on NP-BSA solid phase for 2 h. The 

radiolabeled Gal-3 bound to IgE on the solid phase was then evaluated by a γ-counter (C). 

MoDCs treated with Gal-3 siRNA or control scRNA were stimulated with LPS with 

recombinant human Gal-3 added back to cultures at 20 µg/ml for 48 h. Supernatants were 

then harvested and evaluated for IL-23 p19 and IL-12 p35 by ELISAs (D). Experiments 

were repeated three times from different donors. The results of the representative 

experiments in triplicates as means+/−SE, and the p value computed.
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