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We characterized the energy response of personal dose equivalent (Hp(10) in 
mrem) and the contribution of backscatter to the readings of two electronic per-
sonal dosimeter (EPD) models with radionuclides commonly used in a nuclear 
medicine clinic. The EPD models characterized were the RADOS RAD-60R, and 
the SAIC PD-10i. The experimental setup and calculation of EPD energy response 
was based on ANSI/HPS N13.11-2009. Fifteen RAD-60R and 2 PD-10i units 
were irradiated using 99mTc, 131I, and 18F radionuclides with emission energies at 
140 keV, 364 keV, and 511 keV, respectively. At each energy, the EPDs output in  
Hp(10) [mrem] were recorded with 15 inch thick PMMA to simulate backscatter 
form the torso. Simultaneous free-in-air exposure rate measurements were also 
performed using two Victoreen ionization survey meters to calculate the expected 
EPD Hp(10) values per ANSI/HPS N13.11-2009. The energy response was cal-
culated by taking the ratio of the EPD Hp(10) readings with the expected Hp(10) 
readings and a two-tailed z-test was used to determine the significance of the ratio 
deviating away from unity. The contribution from backscatter was calculated by 
taking the ratio of the EPD Hp(10) readings with and without backscatter material. 
A paired, two-tailed t-test was used to determine the significance of change in EPD 
Hp(10) readings. The RAD-60R mean energy response at 140 keV was 0.85, and 
agreed to within 5% and 11% at 364 and 511 keV, respectively. The PD-10i mean 
energy response at 140 keV was 1.20, and agreed to within 5% at 364 and 511 keV, 
respectively. On average, in the presence of acrylic, RAD-60R values increased 
by 32%, 12%, and 14%, at 140, 364, and 511 keV, respectively; all increases were 
statistically significant. The PD-10i increased by 25%, 19%, and 10% at 140 keV, 
364 keV, and 511 keV, respectively; however, only the 140 keV measurement was 
statistically significant. Although both EPD models performed within the manufac-
turers’ specifications of ± 25% in the energy ranges used, they fell outside of our 
criteria of 10% at lower energies, suggesting the need to calculate energy-dependent 
correction factors, depending on the intended EPD use.

PACS numbers: 87.53.Bn, 87.55.N-, 87.57.U-

Key words: personnel dosimetry, electronic personal dosimeter, radiation pro-
tection, nuclear medicine

 
I. INTRODUCTION

Electronic personal dosimeters (EPDs) provide the benefit of real-time dose measurements as a 
supplement to passive monitoring of whole body radiation dose to radiation workers with thermo 
luminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD). EPDs 

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015

423   423

mailto:skappadath@mdanderson.org
mailto:skappadath@mdanderson.org


424  Meier et al.: Characterization of electronic personal dosimeters 424

Journal of Applied Clinical Medical Physics, Vol. 16, No. 6, 2015

are often used by pregnant technologists in nuclear medicine departments to monitor radiation 
exposure during pregnancy. The real-time (e.g., daily) dose measurements provide informa-
tion that can be used to proactively modify work responsibilities and schedules of the pregnant 
technologist. This flexibility provides a distinct advantage to relying on monthly readings of 
whole body dosimeters. EPDs can be used to obtain a better understanding of transient dose 
received during routine testing of clinical nuclear medicine equipment. The EPDs could also 
be employed to monitor dose real time during high dose rate procedures, such as administration 
of therapeutic doses of radionuclides, and to monitor dose to the staff during interventional 
computed tomography procedures. Even though EPDs are not used as the dose of record but as 
a dose estimate in these situations, a miscalibrated or faulty EPD could lead to the premature 
or tardy change of work responsibilities for a pregnant technologist.

EPD vendors quote the energy response to be within 25% across a range of 60 keV to 
3 MeV.(1-2) EPDs are most commonly calibrated with Cs-137, which has a photon emission at 
662 keV. This is higher than typical photon energies that the dosimeters are exposed to most 
frequently in the nuclear medicine clinic environment, namely 140 keV, 364 keV, and 511 keV 
from 99mTc, 131I, and 18F radionuclides, respectively. The energy response of the EPDs in this 
energy range of 140 to 511 keV has not been well characterized, especially using clinically 
relevant radionuclides commonly used in nuclear medicine clinics. 

Other groups(3-5) have used filtered X-ray spectra close to the energy range in the nuclear 
medicine clinic, but with dose rates and energy spectra that do not match those encountered in 
the nuclear medicine clinic. The American National Standards Institute (ANSI) and the Health 
Physics Society (HPS) have established a standard procedure and criteria for the testing and 
performance of personnel dosimetry in ANSI/HPS N13.11-2009.(6) 

ANSI recommends that polymethyl methacrylate (PMMA) be used to provide backscatter to 
the EPDs during testing. One group found that backscatter contributed only marginally with an 
average increase of 2.5% (maximum of 7% for one model) compared to the in-air EPD reading 
when irradiated with Cs-137 for the three models of EPD tested.(3)  

There are three objectives in this study. The first is to assess the energy response of two 
EPD models in the energy range experienced in clinical nuclear medicine, and to determine 
whether energy-specific energy response correction factors should be applied to individual 
EPDs. The second objective of this study is to assess the impact of backscatter material on 
characterizing EPD performance. The third objective is to discuss a practical method for 
monitoring performance of the EPDs on a periodic basis. We have modified the ANSI/HPS 
N13.11-2009 testing procedures of EPDs to make it more suitable for evaluation in a nuclear 
medicine clinic. We investigated the effects of backscatter on the EPDs motivated by the need 
to perform periodic testing of EPDs in a simple, clinically relevant manner. If the effect of 
backscatter can be characterized from comparing irradiations free-in-air and irradiations on 
a phantom, then routine calibrations could be performed free-in-air, taking into account the  
effects of backscatter.

 
II. MATERIALS AND METHODS

Two models of EPDs were investigated in this study, the RAD-60R (RADOS Technology Oy, 
Turku, Finland) (Fig. 1) and the PD-10i (Scientific Applications International Corporation, 
McLean, VA) (Fig. 2). Fifteen RAD-60R and two PD-10i units were irradiated using 99mTc, 
131I, and 18F radionuclides, corresponding to emission energies at 140 keV, 364 keV, and  
511 keV, respectively.

The RAD-60R EPD uses a 4.5 mm2 PIN Si-Diode, energy compensated with copper  
filtration.(1) The personal dose equivalent, Hp(10), is defined in ICRU Report 51 as the dose 
equivalent in soft tissue at a depth of 10 mm.(7) This model displays R on the display, but this 
model actually measures personal dose equivalent, Hp(10) in mrem.(1) The specified Hp(10) 
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energy dependence is within ± 25% for 60 keV to 3 MeV, and within ± 35% for 50 keV to 
6 MeV. The PIN Si-Diode is energy compensated with copper filtration. 

The PD-10i employs a Geiger Müller (GM) Tube, energy compensated with aluminum and 
copper filtration.(2) The specified energy response of that the unit is tissue-equivalent to within 
± 25% from 55 keV to 6 MeV. The vendor makes special note that there is a -70% response 
at 40 keV. This unit display scales automatically between μR, mR, and R. The manual uses 
dose equivalent (Sv) and exposure (R) interchangeably, stating that 1 Sv = 100 R.(2) For the 
purpose of this characterization and due to its intended use in the clinic, this dosimeter model 
was assessed under the assumption that the values displayed by the dosimeter are Hp(10).

Landauer Inc. specifies the accuracy of their Luxel+ OSLD, used in numerous institutions 
for tracking exposure to occupational workers, to be within 15% for photons of energy above 
20 keV.(8) EPDs are frequently used in situations where more immediate feedback of personnel 
exposure is necessary. Energy response values of 10% are typically accepted in routine nuclear 
medicine clinical practice. Therefore, in this study we set the threshold for energy response of 
10%, beyond which EPD specific correction factors would be created.

The procedure for characterizing Hp(10) for the EPDs was adapted from ANSI/HPS N13.11-
2009 American National Standard for Dosimetry, Personnel Dosimeter Performance — Criteria 
for testing.(6) 

ANSI/HPS N13.11-2009 Section 3.3 provides the suggested radionuclides, particle beams, 
and ISO 4037-1 filtered X-ray spectra that should be used according to which environments 
the dosimeters will be employed. In our investigations, we used photons of energy 140 keV, 
364 keV, and 511 keV from 99mTc, 131I, and 18F radionuclides, respectively. The closest photon 
sources specified in ANSI compared to those used in this work are Cs-137 with an emission 
energy of 662 keV on the high-energy end, and the filtered X-ray spectra N200 with an  effective 

Fig. 1. RAD-60R (left) and radiograph (right). Arrow indicates the PIN Si-Diode.

Fig. 2. PD-10i EPD (left) and radiograph (right). Arrow indicates the GM tube.
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energy of 166.3 keV on the low-energy end. Table 1 shows typical activities and dose rates 
encountered in the nuclear medicine clinic. The dose rate values are calculated using published 
values of exposure rate constants.(9)

ANSI/HPS N13.11-2009 Section 3.4 specifies that backscatter shall be provided from PMMA 
not less than 15 cm deep, and with a face measuring no less than 30 cm × 30 cm. All phantoms 
for backscatter used in our investigations satisfied these criteria.

ANSI/HPS N13.11-2009 Section 3.5 specifies that the source to sensitive element distance 
shall be no less than 1 m, and that the sensitive element of the dosimeter shall not be placed 
closer than 7.5 cm from the lateral edge of the backscatter phantom. For all acquisitions, the 
sensitive elements of the EPDs and the center of the ionization chambers were placed at 1.2 m 
from the radioactive source.

ANSI/HPS N13.11-2009 Section 3.7 specifies that the air-kerma measurements are to be 
made in the absence of scatter. Scatter was reduced by positioning the center of the ionization 
chambers 108 cm above the floor on top of empty cardboard boxes. Two calibrated Victoreen 
451-B (Fluke Biomedical, Everett, WA) ionization chamber survey meters were used to measure 
the exposure from radionuclides during measurements for the characterizing of Hp(10) for the 
EPDs. The ionization chamber was operated in integration mode to accumulate the total exposure 
over the measurement time interval. The ionization chamber survey meter vendor reports an 
accuracy of ± 10% of the reading.(10) A relative error of 10% stemming from accuracy of the 
ion chamber measurements has been incorporated into the total error estimates for the energy 
response of EPD Hp(10). The energy dependence of the ionization chamber accuracy, Cx, was 
obtained from the vendor’s energy dependence curve and applied to the average exposure 
readings.(10) Air kerma, Ka, was calculated by applying the usual conversion from exposure 
readings, X–, to air kerma, via 0.87 mrad/mR such that

 Ka = X– * 0.87 * 
1
Cx

 (1)

ANSI/HPS N13.11-2009 specifies that the personal dose equivalent at 10 mm, Hp(10), shall 
be assigned as follows:

 Hp(10) = cK,d,αKa (2)

where Ka is the measured air kerma in the absence of scatter, and cK,d,α is the energy depen-
dent conversion coefficient of air kerma, Ka, to Hp(10) provided by ICRU Report 57 in its  
Table A.24.(6,11) The table of conversion factors provided in ICRU 57 were calculated by via 
Monte Carlo simulations for monoenergetic photon beams. The conversion factors specific 
to the energies of interest in this study were calculated via linear interpolation from the table 
provided in ICRU 57 and are listed in Table 2.

Table 1. Typical radionuclides, energies, activities, and dose rate range in the nuclear medicine clinic at 1 m. The 
dose rate values are calculated from exposure rate constants from Cherry et al.(9)

  Half Life Energy Activity Range Low Dose Rate High Dose Rate
 Radionuclide (hr) (keV) (mCi) (mrem/hr) (mrem/hr)

 Tc-99m 6.01 140 1-50 0.12 6.14
 I-131 192.47 346 1-250 0.28 69.07
 F-18 1.83 511 1-20 0.69 13.91
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A.  Hp(10) energy response
In order to assess the energy response of the EPDs with respect to emissions of varying energies, 
simultaneous irradiations were made of the EPDs with backscatter (Fig. 3) and of the ionization 
chambers with no backscatter (Fig. 4) per ANSI/HPS N13.11-2009. The center of the ioniza-
tion chambers and the center of the sensitive elements of the EPDs were placed 1.2 m away 
from the radionuclide of interest (Fig. 5). The centers of the sensitive elements of the EPDs 
were positioned height-wise in the center of the PMMA phantoms. The center of the sensitive 
elements of the ionization chambers, the sensitive elements of the EPDs, and the radionuclide 
source were placed 108 cm above the floor in an effort to minimize scatter contributions from 
the concrete floor. We conservatively estimate that setup of ionization chambers and EPDs was 
within 10 mm of the reported values. An error of ± 10 mm would translate via the inverse-square 
dependence to an uncertainty of ± 2.0% on the ionization chamber and EPD measurements. A 
relative error of 2% stemming from distance uncertainty has been incorporated into the total 
error estimates for the energy response of EPD Hp(10). Multiple (6 to 10) measurements of 
energy response were performed for each of the EPDs at each of the different energies. In order 
to account for radioactive decay during the measurements, the ionization chambers and EPDs 
were operated in integration mode to accumulate the total exposure over the measurement 
time interval. Table 3 summarizes the radionuclide exposure rates, acquisition times, number 
of repeat acquisitions, and other relevant information regarding data acquisition. For each 
measurement, the expected value of Hp(10) was calculated according to Eq. (2). The energy 
response of each Hp(10) measurement for each EPD was calculated by taking the ratio of each 
of the EPD Hp(10) readings to the corresponding ionization chamber values for expected Hp(10). 
The mean energy response for each EPD tested at a given energy was determined by averaging 
the energy response values over the multiple measurements made at that energy; the standard 
error for the energy response was also calculated. A two-tailed z-test was performed based on 

Table 2. Ka to Hp(10) values used in this work derived via linear interpolation of values provided by ICRU Report 
57, Table A.24. The energy dependence of the ionization chamber accuracy used to correct the ion chamber readings 
is also reported.

    451-B Energy
  Energy Hp(10) / Ka Correction
 Radionuclide (keV) (Sv/Gy) Factor Cx

 Tc-99m 140 1.64 1.08
 I-131 364 1.32 1.03
 F-18 511 1.25 1.01

Fig. 3. Setup of EPD irradiation with backscatter from PMMA per ANSI/HPS N13.11-2009. The EPDs are located 120 cm 
away from the radioactive source and 108 cm above the floor.
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the standard error with a threshold value of p = 0.05 to identify EPDs whose energy response 
diverged significantly from unity. The mean energy response and its range were calculated for 
the population of RAD-60R and PD-10i EPDs tested at all energies. The overall uncertainty in 
energy response for each dosimeter was computed by adding the 2% relative error from dis-
tance uncertainty and the 10% relative error from ion chamber accuracy to the standard error 
in quadrature. The entire group of fifteen RAD-60R EPDs was characterized with Tc-99m. 

Fig. 4. Setup of ionization chambers for exposure-rate measurements concurrent with EPD irradiation. The ionization 
chambers are located 120 cm away from the radioactive source and 108 cm above the floor.

Fig. 5. Schematic of the setup for simultaneous irradiation of the EPDs and ionization chambers.

Table 3. Summary of data acquisition. Tc-99m data were acquired on two separate days.

 Radionuclide Tc-99m Tc-99m I-131 F-18

 Half Life (hr) 6.01 6.01 192.47 1.83
 Beginning dctivity (mCi) 100 105.9 3.86 18
 # Acquisitions free-in-air 0 8 6 8
 # Acquisitions with scatter 10 8 6 8
 # EPDs irradiated free-in-air 0 17 17 17
 # EPDs irradiated with backscatter 6 12 8 8
 Initial exposure rate @ 1.2 m (mR/hr) 5.04 5.36 0.63 7.5
 Final exposure rate @ 1.2m (mR/hr) 3.38 1.44 0.57 1.5
 Initial exposure time (min) 16 15 100 10
 Final exposure time (min) 24 55 112 50
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However, only six RAD-60R EPDs were characterized with I-131 and F-18 radionuclides. 
Both of the PD-10i EPD units were characterized at all energies.

B.  Dependence of EPD energy response on the presence of backscatter 
To assess the impact of backscatter provided by the PMMA on the EPD energy response, the 
EPDs were irradiated with and without backscatter from PMMA under identical conditions at 
all energies. The experimental setup for the EPD acquisitions with backscatter was the same as 
in the Materials & Methods section A above. To irradiate the EPDs without scatter, they were 
placed on top of cardboard boxes at a distance of 1.2 m from the source, and with the center of 
the respective sensitive elements placed at a height of 108 cm (Fig. 6). During all acquisitions, 
the ionization chambers were simultaneously irradiated with the same setup as in the Materials 
& Methods section A. Table 3 summarizes the data acquisitions.

As in section A above, the expected value of Hp(10) for each EPD was calculated for each 
acquisition. The reading of each EPD for each acquisition was normalized to the expected value 
of Hp(10). The backscatter factor, defined as the ratio of the mean normalized readings with 
backscatter to the mean normalized readings without backscatter, was calculated for each EPD 
unit. In addition, the mean and range for backscatter factor were determined for the population 
of RAD-60R and PD-10i for all energies. A paired, two tailed t-test with a threshold value of 
p = 0.05 was performed for each dosimeter model to assess differences in the mean readings 
of the each EPD model population with and without backscatter at each energy.

 

III. RESULTS 

A.  Hp(10) energy response
At all energies for both EPD models, the energy response of the EPDs for both models did not 
diverge from unity by greater than 25%, and thus all were operating within the manufacturers’ 
energy response specifications of ± 25% for energies between 60 keV and 3 MeV. 

At 140 keV, the 15 RAD-60R EPDs had a mean energy response of 0.85, with a minimum 
value of 0.76 and a maximum value of 0.96; 14 units were significantly different from 1.0 
(p < 0.05), and 13 had energy response values that diverged by more than 10% from unity. At 
364 keV, the six RAD-60R EPDs tested had a mean energy response of 1.03, with a minimum 
value of 1.00 and a maximum value of 1.07; none of the units were significantly different from 
1.0 (p > 0.05), and none had energy response values that diverged by more than 10% from 
unity. At 511 keV, the six RAD-60R EPDs tested had a mean energy response of 1.11, with 
a minimum value of 1.08 and a maximum value of 1.17; three of the units were significantly 

Fig. 6. The set-up for free-in-air irradiation of EPDs. The EPDs are located 120 cm away from the radioactive source 
and 108 cm above the floor.
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different from 1.0 (p < 0.05), and three had energy response values that diverged by more than 
10% from unity.   

At 140 keV, the two PD-10i EPDs had a mean energy response of 1.20, with a minimum 
value of 1.18 and a maximum value of 1.21; both units were significantly different from 1.0 
(p < 0.05), and both had energy response values that diverged by more than 10% from unity. 
At 364 keV, the two PD-10i EPDs had a mean energy response of 1.04, with a minimum value 
of 1.03 and a maximum value of 1.06; one unit was significantly different from 1.0 (p < 0.05), 
and neither had energy response values that diverged by more than 10% from unity. At 511 keV, 
the two PD-10i EPDs had a mean energy response of 1.04, with a minimum value of 1.02 and 
a maximum value of 1.06; one unit was significantly different from 1.0 (p < 0.05), and neither 
had energy response values that diverged by more than 10% from unity. 

The calculated energy response values for the EPDs investigated are summarized in Table 4. 
Figures 7 and 8 show the energy response of the EPDs together with their overall 1-sigma uncer-
tainty as a function of photon energy for the six RAD-60R and two PD-10i EPDs, respectively. 
The mean overall uncertainty for all EPDs tested at all energies was calculated as 10.7% with 
a maximum of 13.6%. A plot of the average energy response for each EPD model along with 
their 95% confidence limits versus photon energy is shown in Fig. 9.

Table 4. The mean, minimum, and maximum Hp(10) energy response for the population of two EPD models investi-
gated. Also tabulated are the fractions of dosimeters whose measured Hp(10) energy response (μ) deviated by greater 
than 10% from unity and the fraction of dosimeters with a p-value < 0.05 for a two-tailed z-test.

 RAD-60R PD-10i
      # EPDs Two-tail     # EPDs Two-tail
 Energy #    0.9 <	 z-test #    0.9 <	 z-test
 (keV)  EPDs Mean Min Max μ	< 1.1	 p < 0.05	 EPDs Mean Min Max μ	< 1.1 p < 0.05

 140 15 0.85 0.76 0.96 2/15 14/15 2 1.20 1.18 1.21 2/2 2/2
 364 6 1.03 1.00 1.07 6/6 0/6 2 1.04 1.03 1.06 0/2 1/2
 511 6 1.11 1.08 1.17 3/6 3/6 2 1.04 1.02 1.06 0/2 1/2

Fig. 7. The observed energy response of six RAD-60R evaluated together with their overall 1-sigma uncertainty as a 
function of photon energy. Errors bars for all dosimeters are of similar magnitude, but have been plotted for one EPD 
only, for clarity. 



431  Meier et al.: Characterization of electronic personal dosimeters 431

Journal of Applied Clinical Medical Physics, Vol. 16, No. 6, 2015

B.  Dependence of energy response on the presence of backscatter
At all energies, the mean backscatter factor for either EPD model was greater than or equal to 
1.10, implying that the presence of backscatter material increased the EPD measurement by 
greater than or equal to 10%. At 140 keV, the 10 RAD-60R EPDs had a mean backscatter fac-
tor of 1.32 (significantly different than 1.0 with p<0.001), with a minimum value of 1.23 and 
a maximum value of 1.37. At 364 keV, the six RAD-60R EPDs had a mean backscatter factor 
of 1.12 (significantly different than 1.0 with p < 0.003), with a minimum value of 1.06 and a 
maximum value of 1.23. At 511 keV, the six RAD-60R EPDs had a mean backscatter factor 
of 1.14 (significantly different than 1.0 with p < 0.003), with a minimum value of 1.05 and a 
maximum value of 1.21.

At 140 keV, the two PD-10i EPDs had a mean backscatter factor of 1.25 (marginally dif-
ferent than 1.0 with a p-value of 0.03, with a minimum value of 1.23 and a maximum value of 
1.27. At 364 keV, the two PD-10i EPDs had a mean backscatter factor of 1.19 (not statistically 
different from unity), with a minimum value of 1.14 and a maximum value of 1.24. At 511 keV, 
the two PD-10i EPDs had a mean backscatter factor of 1.10 (not statistically different from 
unity), with a minimum value of 1.06 and a maximum value of 1.15. 

The backscatter factors for both EPD models are summarized in Table 5. The plots of average 
backscatter factors for both EPD models as a function of energy are shown in Fig. 10, along 
with their 95% confidence limits.

 

Fig. 8. The observed energy response of two PD-10i evaluated together with their overall 1-sigma uncertainty as a function 
of photon energy. Errors bars for both dosimeters are of similar magnitude but have been plotted for one EPD only, for clarity.

Fig. 9. The average energy response for the RAD-60R and PD-10i dosimeter models. The error bars represent the 95% CIs. 
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IV. DISCUSSION

A.  Hp(10) energy dependency
Characterizations of EPDs have been conducted by others, and they have shown that there is 
a very broad performance in the energy response of the many EPDs that are available on the 
market with respect to radiation type, photon energy, photon beam quality, and the dose rate.(3-5)  
Although all evaluated EPDs operated within the manufacturers’ energy response specifications 
of ± 25%, our results show that both of the EPD models investigated exhibited an energy-
dependent response, at least between 140 to 511 keV. At 140 keV, the energy response of 
both EPD models diverged on average by greater than 10% from unity; the RAD-60R under-
responded by 15%, whereas PD-10i over-responded at 20% (Fig. 9). The majority of the EDPs 
did not meet our energy response expectation of 10% accuracy at 140 keV. The average energy 
response of the EPDs trends toward unity as the photon energy increased to 662 keV, the energy 
at which the EPDs were initially calibrated (Fig. 9). Even though this trend might suggest that 
corrections are not needed at higher energies, at 511 keV, three of the six RAD-60R EPDs 
had energy response values that were greater than 10%, the highest being 1.17. The range of 
energy response values that was observed in the EPDs tested, and the range of performance 
that has been shown by others, suggest the need to characterize the performance appropriate 
to the intended use of the EPDs prior to implementation. Therefore, we recommend that users 
consider the need to establish EPD-specific correction factors prior to clinical use, at least at 
140 keV. The EPD-specific correction factors are calculated by taking the inverse of the EPD 
energy response (see Results section A) at each energy. The correction factor is utilized by 
taking the product of the actual EPD reading and the EPD-specific correction factor as the 
corrected Hp(10) value in mrem. 

Table 5. The backscatter factors for the two EPD models investigated. The significance threshold p-value for the 
paired two-tailed t-test is 0.05.

 RAD-60R PD-10i
 Energy     Paired t-test     Paired t-test
 (keV) # EPDs Mean Min Max p-value # EPDs Mean Min Max p-value

 140 10 1.32 1.23 1.37 p < 0.01 2 1.25 1.23 1.27 0.03
 364 6 1.12 1.06 1.23 p < 0.01 2 1.19 1.14 1.24 0.15
 511 6 1.14 1.05 1.21 p < 0.01 2 1.10 1.06 1.15 0.22

Fig. 10. The average backscatter factor for the RAD-60R and PD-10i dosimeter models. The error bars represent the 
95% CIs.
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The energy response of EPD Hp(10) readings was assessed multiple times as the radionuclide 
decayed; the initial and final exposure rates are reported in Table 3. We analyzed the resultant 
Hp(10) values and determined that there was no statistically significant dependence on dose 
rates, at least at dose rates present in the nuclear medicine clinic. The mean overall uncertainty 
in Hp(10) values for all EPDs tested at all energies, that includes the uncertainty contributions 
from ionization chamber survey meter readings (~ 10%), distance errors (~ 2%), and random 
errors in measurements (~ 3%), was calculated as 10.7% with a maximum of 13.6%.

At 140 keV, the average response of the RAD-60R is 0.85, while that for the PD-10i is 1.20. 
This difference in energy response between the two models could possibly be explained by 
noting the difference in the detecting element of the two models — the RAD-60R using a PIN 
Silicon Diode energy compensated with copper filtration, and the PD-10i using a GM tube 
energy compensated with aluminum and copper filtration. The PD-10i converts each count 
from the GM tube into dose via a linear calibration factor.(2) A GM tube treats any interaction 
of any photon energy that is sufficient to induce an avalanche in the sensitive volume as one 
count. This linear conversion factor which converts one count into a corresponding dose is only 
appropriate for energies in the range of the calibration source. As the photon energies decrease 
from 662 keV, it then follows that the energy response of the PD-10i would increase above 
unity (as observed in our measurements). The PD-10i manufacturer also states that, at 40 keV, 
there is a -70% response. This could be explained by the fact that the energy compensation 
copper and aluminum filtration surrounding the GM tube attenuates a significant portion of the 
40 keV and lower energy photons. It is expected for the RAD-60R that the PIN diode would 
decrease in energy response as the energy of the photos decreases from the calibration energy 
of 662 keV (as observed in our measurements). Interactions inside of the PIN diode create sig-
nal that is proportional to the energy deposited, in contrast to the GM tube in which the same 
amount of signal is produced with any amount of energy deposited from an individual event. 
For the RAD-60R, as the photon energy decreases, the copper filtration surrounding the PIN 
diode attenuates more of the incoming photons, thus causing the decrease in energy response, 
which is reflected in our data.

B.  Assessment of the necessity for providing backscatter during calibrations
Our results showed, across all energies tested, that the mean backscatter factor is greater than 
or equal to 1.10, and that the range of the average backscatter factor ranged between 1.10 and 
1.32. Given an energy response expectation of ± 10%, our data show that in the energy range 
relevant to nuclear medicine clinics from 140 keV to 511 keV, it is necessary to perform energy 
response characterizations that include backscatter from PMMA. As expected, the backscatter 
factor decreased with increasing photon energy (Fig. 10) because Compton-scattered photons 
at higher energies are distributed preferentially in the forward direction. 

C.  Periodic testing and EPD-specific correction factors
The characterization methods aforementioned are labor-intensive and time-consuming due 
primarily to the fact that in our case we used unsealed radionuclides of relatively low activ-
ity, and secondly because it is very laborious to set up four 15 inch PMMA slabs to perform 
simultaneous irradiations of all of the EPDs with PMMA. Due to the irradiation distances that 
ANSI/HPS specifies, the dose rate in our case is relatively low and the acquisition lengths are 
relatively long, in comparison with the rates and times used by others who used filtered X-ray 
beams and Cs-137 and Co-60 irradiation vaults with much higher dose rates and much shorter 
acquisition lengths. To avoid the long acquisition times and setup of the acquisitions with 
PMMA, routine testing and in-house, EPD-specific correction factors could be carried out in 
the absence of scatter. The readings of the EPDs irradiated in the absence of scatter would be 
multiplied by the user-determined, EPD-specific backscatter factors to provide a value equal 
to that which would be read in the presence of scatter. These normalized readings could then 
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be compared to the true value of Hp(10), measured with the procedure outlined in the Material 
& Methods section A. 

After the initial energy-dependent assessment of energy response of EPDs, further simpli-
fication of periodic testing could be achieved by foregoing the direct measurement of Hp(10) 
with ionization chambers, but rather focus on relative change in performance over time. The 
EPDs could be tested at much closer irradiation distances (higher dose rates) —  for example, 
locate the entire EPD population to be tested in a ring around a NIST traceable Cs-137 standard 
that nuclear medicine clinics routinely utilizes for dose calibrator constancy. The user would 
then determine the ratio of the EPD reading to the activity of the standard, as labeled on the 
radioactive source. Provided that the same irradiation conditions are used, and by accounting for 
source decay, the EPD constancy could be easily assessed on a yearly or more frequent basis. 

 
V. CONCLUSIONS

The RAD-60R and the PD-10i units have energy response values that significantly diverge 
from unity at 140 keV, but trend toward unity as the incident photon energy increases to 511 
keV. In the energy ranges investigated in this study, both EPD models were shown to have sig-
nificant increases in reading in the presence of backscatter from PMMA. Our data demonstrate 
that, if these EPD models are to be used as the dose of record or to be used to preemptively 
change worker assignments, then testing and calibrations of EPD specific to the environment 
of deployment is a prerequisite. We recommend that the user perform periodic testing that is 
commensurate with the intended application of the EPDs. 
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