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Abstract: Poor grain filling of inferior spikelets, especially in some large-panicle rice varieties, is
becoming a major limitation in breaking the ceiling of rice production. In our previous studies,
we proved that post-anthesis moderate soil drying (MD) was an effective way to promote starch
synthesis and inferior grain filling. As one of the most important regulatory processes in response to
environmental cues and at different developmental stages, the function of alternative splicing (AS)
has not yet been revealed in regulating grain filling under MD conditions. In this study, AS events at
the most active grain-filling stage were identified in inferior spikelets under well-watered control (CK)
and MD treatments. Of 16,089 AS events, 1840 AS events involving 1392 genes occurred differentially
between the CK and MD treatments, many of which function on spliceosome, ncRNA metabolic
process, starch, and sucrose metabolism, and other functions. Some of the splicing factors and starch
synthesis-related genes, such as SR protein, hnRNP protein, OsAGPL2, OsAPS2, OsSSIVa, OsSSIVb,
OsGBSSII, and OsISA1 showed differential AS changes under MD treatment. The expression of
miR439f and miR444b was reduced due to an AS event which occurred in the intron where miRNAs
were located in the MD-treated inferior spikelets. On the contrary, OsAGPL2, an AGPase encoding
gene, was alternatively spliced, resulting in different transcripts with or without the miR393b binding
site, suggesting a potential mechanism for miRNA-mediated gene regulation on grain filling of
inferior spikelets in response to MD treatment. This study provides some new insights into the
function of AS on the MD-promoted grain filling of inferior spikelets, and potential application in
agriculture to increase rice yields by genetic approaches.
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1. Introduction

Rice (Oryza sativa L.) is a staple food for more than half of the world’s population.
However, its current levels of production cannot meet the demand driven by rapid popu-
lation growth and economic development [1]. Hence, there is an urgent need to improve
global rice production. China officially launched the Super Rice Breeding Program in 1996,
aiming to cultivate new rice varieties with a high yield [2]. However, most of the super
rice cultivars failed to achieve the high yield, mainly due to the poor grain filling of the
later-flowering inferior spikelets [3,4].

The inferior spikelets flower later, exhibit a slower rate of increase in dry weight
during grain development, and have a lower grain weight [4]. Many measures, such as
moderate soil drying (MD) irrigation [5-7], rising CO, concentration, and applications
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of plant hormones [8-10] have been used to improve the grain filling of inferior grains.
The main component of rice endosperm is starch, and defects in starch synthesis will
usually lead to incomplete grain filling. Four classes of enzymes, including ADP-glucose
pyrophosphorylase (AGP), starch synthase (SS), starch branching enzyme (SBE), and starch
debranching enzyme (DBE) are the most important enzymes in rice grain filling, which
determine the grain weight and starch quality [11,12]. Numerous sources have shown
that the manipulation of the starch biosynthesis pathway by modern molecular genetic
techniques will alter the grain filling. It is also well demonstrated that grain filling is
sensitive to different environmental cues [13,14], of which MD treatment has been proven to
be a highly effective means of increasing inferior grain filling and grain yield by improving
the key enzymes in sucrose-to-starch conversion [5,6,15]. The enzyme activities, especially
sucrose synthase (SUS) and AGP in the inferior spikelets, are significantly enhanced by MD
treatment, resulting in am improved inferior grain filling rate, grain weight, and yield [7,16].
Antagonism or synergistic interaction between ABA, ethylene, GA, and IAA play a critical
role during grain filling under MD treatment [5,7,9]. Although it has been demonstrated
that MD treatment regulated the hormonal balance, which thus played facilitatory roles
during the grain filling in the inferior spikelets, the critical mechanism underlying the
regulation of starch biosynthesis has yet to be well established.

Alternative splicing (AS), a process that generates multiple distinct transcripts from a
single multi-exon gene, is prevalent in plants and responds to environmental changes and
stress treatments [17,18], including ultraviolet (UV) irradiation [19], temperature stress (cold
and heat) [20,21], and cadmium stress [22]. As an important factor in gene regulation, AS is
an emerging research area related to post-transcriptional regulation [23], and significantly
affects crop growth and development. For instance, the pre-mRNA splicing of the OsFCA
gene controls the developmental switch from the vegetative to the reproductive phase in
Arabidopsis [24]. In addition, the Waxy gene encodes a granule-bound starch synthase that
is necessary for the synthesis of amylose in endosperm. Alternative splicing, caused by a
single mutation in the 5’ splice site of Waxy, results in a reduced level of amylose [25,26].
Most recently, AS of OsGS1;1 affected grain filling by regulating the amylose content and
sugar metabolism [27]. These studies indicate that AS affects plant development and is also
involved in regulating grain filling.

MicroRNAs (miRNAs), another post-transcriptional regulation mechanism, can be clas-
sified as either intergenic miRNAs or intronic miRNAs [24]. In animals, pre-mRNA splicing
has been shown to participate in both intergenic and intronic miRNA processing [28,29].
This mechanism has also been conducted in plant miRNA primary transcripts [30,31].
MiRNAs play roles usually through regulating their target genes [32], which would be
interrupted by the AS-induced disruption of miRNA binding sites [33]. It was shown that
the additional regulation conferred by alternative splicing may link spliceosome activity
to the regulation of certain miRNA-target interactions [33]. Recent works suggest that
miRNAs, including miR1861, miR1432, and miR397, contribute to grain filling by regulating
the starch synthesis and phytohormone biosynthesis in response to MD treatment [34-37].
However, the function of AS and its interaction with the miRNAs induced by MD treatment
in regulating grain filling has not been reported. The aim of the present investigation was
to identify AS events and the regulatory mechanism of grain filling in rice inferior spikelets
under MD treatment at the most active stage of grain filling. We expect to propose a
mechanism of MD-induced AS and its interaction with miRNAs in regulating the grain
filling of inferior spikelets.

2. Results
2.1. AS Events of Rice Inferior Spikelets in Response to Moderate Soil Drying during Grain Filling

RNA-seq and small-RNA analysis at the most active grain filling stage (9 days after
anthesis (DAA)) revealed that both starch synthesis and phytohormone biosynthesis are
both regulated directly by MD treatment and indirectly regulated through differentially
expressed miRNAs in inferior spikelets in response to MD treatment [7,34]. Another
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significant advantage of RNA-seq analysis is that differences in splicing can be detected
from the sequences of the various transcripts. In this study, rMATS was utilized to identify
the frequency of the different classes of differential splicing in rice inferior spikelets in
response to MD treatment during grain filling.

There are several AS mechanisms, including skipped exon (SE), alternative 5’ splice
site (A5SS), alternative 3’ splice site (A3SS), mutually exclusive exon (MXE), and retained
intron (RI) (Figure S1, Supplementary Materials). Each of these AS events can result in
distinct transcripts, and hence diverse biological functions. The AS events of the rice infe-
rior spikelets were analyzed using the rMATS software (http:/ /rnaseq-mats.sourceforge.
net/index.html; Version 4.1.0, accessed on 11 July 2022). As shown in Figure 1A and
Table S1, Supplementary Materials, large numbers of AS events (CK, 14,264; MD, 15,788)
were detected in the rice inferior spikelets during grain filling. Intriguingly, all of the AS
types, including SE, A5SS, A3SS, MXE and RI, were significantly increased under MD
treatment. Moreover, SE represented the largest proportion of AS events, at 45.57%. The
percentages of MXE, A5SS, RI, and A3SS over the total AS event types were 2.42%, 12.38%,
17.44%, and 22.18%, respectively (Figure 1B).
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Figure 1. Summary of AS type of rice inferior spikelets under CK and MD conditions. (A) Number
of the identified AS events. SE, skipped exon; A5SS, alternative 5 splice site; A3SS, alternative 3/
splice site; MXE, mutually exclusive exon; R, retained intron; (B) Summary of AS type, represented
as percentages.

2.2. MD-Induced AS Might Be Involved in Regulating Grain Filling of Rice Inferior Spikelets

On detailed analysis of the AS events, we found that the known AS events were
the major event of rice inferior spikelets, accounting for 85.89% of the total AS events
(Figure 2A). A total of 1840 differentially alternative splicing (DAS) events involving
1392 genes between the CK and MD treatments in inferior grains were obtained (Figure 2B).
Compared with all of the AS types (Figure 1B), the percentages of A3SS and A5SS of
DAS types increased by 8.25-9.14%, while MXE, RI, and SE had a 1.31-14.40% reduction
(Figure 2C), suggesting that the AS events in inferior spikelets showed various susceptibili-
ties to MD treatment.

Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis (Figure 2D,E) were performed to identify the potential functions of
these DAS genes. Of these, based on the GO database, the GO terms in the DAS genes
were enriched in functions of biological process, including “Branched-chain amino acid
metabolic process”, “Hexose metabolic process”, “Starch metabolic process”, “ncRNA
metabolic process”, “Monosaccharide metabolic process”, “Starch biosynthetic process”
and “RNA processing” (Figure 2D). The KEGG analysis of the DAS genes revealed that
most of the genes were enriched in functions of “metabolism” and “genetic information
processing”. “Other glycan degradation”, “RNA transport”, “Spliceosome” and “Starch
and sucrose metabolism” were the most enriched KEGG pathways (Figure 2E). We then
investigated the DAS genes related to the spliceosome pathway (Figure S2, Supplemen-
tary Materials), which showed that the parts of the splicing factor encoding genes and
the RNA recognition motif containing proteins were affected in the MD-treated grains
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(Figure S2, Supplementary Materials), such as serine/arginine-rich (SR) protein subfamily
gene (LOC_Os07g47630), RS domain with zinc knuckle protein (RSZ) subfamily gene
(LOC_0Os02g54770), plant-specific SC35-like splicing factor (SCL) (LOC_Os12g38430), het-
erogeneous nuclear ribonucleoprotein particle (hnRNP) protein gene (LOC_0Os02g12850),
and pre-mRNA-splicing factor SF2 (LOC_Os01g21420) (Figure 3). All of those genes may
greatly alter the protein isoforms in comparison with the control group, and function
as essential factors for constitutive and alternative splicing [38—40], which might in turn
explain the increase in the AS events under MD treatment (Figure 1).
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Figure 2. Identification of DAS events and most enriched GO and KEGG pathways of DAS genes in
inferior kernels in the comparison of CK and MD at 9 DAA. (A) Proportion of known AS in all AS
events; (B) Proportion of DAS in all AS events; (C) Summary of DAS type, represented as percentages;
(D) The top 20 most enriched GO pathways of DAS genes; (E) The top 20 most enriched KEGG
pathways of DAS genes. Several prominent signaling pathways were annotated with red arrow.

Given the GO and KEGG analysis results and the essential role of starch metabolism
in grain filling, we focused on the DAS events of the starch synthesis-related genes and
found that several DAS genes involved in starch synthesis had several AS forms under CK
and MD treatments (Figure 4; File S1). ADP-glucose pyrophosphorylase genes (OsAGPL2,
LOC_Os01g44220; OsAPS2, LOC_Os08g25734), key genes in regulating starch synthesis
and grain filling [41] were reported that allosteric regulation on translated proteins of those
genes has altered the catalytic activity of the cytoplasmic AGPase and starch biosynthe-
sis [42]. In the present study, the several AS forms of the AGPase genes were identified
under CK and MD treatments, including the known and novel AS events (Figure 4; File S1).
Furthermore, several variants of other starch synthase-related gene transcripts, including
OsAGPL2, OsAPS2, starch branching enzyme gene (OsSBEI, LOC_Os06g51084), granule-
bound starch synthase gene (OsGBSSII, LOC_Os07g22930), soluble starch synthase genes
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(OsSSIVa, LOC_0Os01g52250; OsSSIVDb, LOC_0Os05g45720), phosphoglucose isomerase
gene (OsPgi, LOC_Os08g37380), isoamylase gene (OsISA1, LOC_Os08g40930; OsISA3,
LOC_0Os09g29404) and glucan phosphatase gene (OsSEX4, LOC_0Os03g01750). These
results indicated that the promotion of starch biosynthesis by MD treatment in inferior
spikelets was partially mediated by the MD-induced AS during grain filling.
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Figure 3. Quantitative visualization (Sashimi plot) of some DAS events of spliceosome pathway
genes of rice inferior spikelets in the comparison of CK and MD at 9 DAA. (A) LOC_01g21420;
(B) LOC_02g12850; (C) LOC_02g54770; (D) LOC_05g30140; (E) LOC_06g14470; (F) LOC_07g47630;
(G) LOC_08g01840; (H) LOC_11g47760; (I) LOC_12g38430. Each track visualizes the splicing event
within the biological replicates for the CK (orange) and MD (red) treatment samples. Count values
on curved lines describe the coverage within the splice junction. The left scale presents the coverage
depth in the range of the AS region. IncLevel are presented on the right side for each track. AS

models are indicated below the figure.
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Figure 4. Quantitative visualization (Sashimi plot) of some DAS events of starch synthesis-related
genes of rice inferior spikelets in the comparison of CK and MD at 9 DAA. Known AS events
(A-H) and novel AS events (I-K) of starch synthesis-related genes in inferior kernels under CK and
MD treatments. (A) LOC_01g44220; (B) LOC_08g25734; (C) LOC_06g51084; (D) LOC_07g22930;
(E) LOC_05g45720; (F) LOC_08g37380; (G) LOC_08g40930; (H) LOC_09g29404; (I) LOC_01g44220;
(J) LOC_01g52250; (K) LOC_03g01750.

2.3. MD-Induced AS Event Influenced Primary miRNA Expression

The biogenesis of miRNAs relies on the coupled interaction of Pol-Il-mediated pre-
mRNA transcription and intron excision [43], during which the accurate splicing of the
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intron is critical for the efficient processing of the mRNA [21]. For this reason, we identified
all of the RI-type AS events and the related intronic miRNAs in the inferior spikelets of
rice under MD treatments. Hundreds of the RI-type AS events are organized in each
chromosome, four of which identified a significant association between the AS events
and intronic miRNAs (Figure 5). MiR439f, miR1847, miR444b, and miR1867 are located
within the intronic regions of LOC_Os01g35930, LOC_Os01g36640, LOC_0Os02g36924, and
LOC_0Os03g53190, respectively (Figure 5). The expression of miR439f and miR444b were
reduced in MD-treated inferior spikelets, detected by small RNA-seq in our previous
study (Figure 54, Supplementary Materials) [34]. Those intronic miRNAs putative targets
were predicted in previous studies [34,44], including MADS-box family gene (MADS)
genes, AP2-like ethylene-responsive transcription factor genes, NAC domain-containing
protein genes, and other transcription factors or genes. A granule-bound starch synthase
gene (OsGBSSII) was found to be regulated by miR1867, as revealed by the 5-RACE and
degradome analysis [45]. These results indicate that AS acts as a regulatory mechanism for
the miRNA processing in response to MD treatment, and might regulate grain filling via
their target genes.
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Figure 5. Distribution of RI-type AS events and the related intronic miRNAs in inferior spikelets of
rice under CK and MD treatments. The location of the RI-type AS events with intronic miRNAs are
indicated with red stars.

2.4. Identification of miRNA Binding Sites Disturbed by AS of Rice Inferior Spikelets under
Moderate Soil Drying Post-Anthesis

Plant miRNAs recognize their target mRNAs through perfect or near perfect base
pairing, which can be blocked by disrupting the miRNA binding sites (MBS) by AS [33,46].
OsAGPL2, a key gene in regulating starch synthesis, has seven different transcripts with a
varying length of 5 UTR (ranging from 218 bp to 600 bp) by AS (Figure 6). Based on the
transcriptome results and AsmiR tools (http:/ /forestry.fafu.edu.cn/bioinfor/db/ASmiR/;
accessed on 1 April 2022), there was an AS region in the interval of 25,354,183-25,355,073
bp on Chrl at the 5 UTR of OsAGPL2 that contains a functional binding site for miR393b.
Several alternatively spliced transcripts of rice inferior spikelets do not contain the MBSs.
Therefore, the miR393b-OsAGPL2 interaction network in rice spikelets might be disrupted
by AS on the binding sites under CK and MD treatments, which could be a potential novel
mechanism of MD-promoted grain filling of inferior spikelets.
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Figure 6. Alternative splicing of the miR393b binding site of OsAGPL2 5’ UTR of rice inferior spikelets
under moderate soil drying post-anthesis. White boxes represent noncoding exons and shaded boxes
represent coding exons. Dashes indicate Watson—Crick base pairing, colons indicate G-U base pairing,
and asterisks indicate other non-canonical pairs.

3. Discussion
3.1. DAS Events in Response to MDD Treatment Participate in Starch Biosynthesis and Contribute
to Increased Grain Filling in Inferior Spikelets

The AS of the pre-mRNAs from multiexon genes allows organisms to increase their
coding potential and regulates the gene expression through multiple mechanisms. AS
is involved in most of the plant processes, including plant growth, development, and
responses to external cues [47]. The function of AS on grain filling and yield has been a
research hotspot for many years [26,27,48-52]. A single mutation at the 5'splice site of
Waxy affects the alternative splicing of its pre-mRNA, resulting in the reduced levels of
amylose [25]. The AS of OsbZIP58 may contribute to heat tolerance, and have an effect
on some of the starch-hydrolyzing «-amylase genes during grain filling [52]. Alternative
splicing of OsLG3b has also been reported to control grain length and yield in rice [50].
WhenTnGS3 undergoes AS, it produces five splicing variants, resulting in opposite effects
on grain weight and grain size [51]. Recently, a study also demonstrated that the AS of
GS1,1 affects grain amylose content and sugar metabolism in rice [27]. In the present study,
a total of 1840 DAS events, including OsbZIP58, OsLG3b, and OsAGPL2, were identified
under CK and MD treatments in inferior spikelets (File S1), suggesting that the AS events in
response to MD treatment also participate in starch biosynthesis and contribute to increased
grain yield.

Furthermore, by analyzing the GO and KEGG signaling pathways of the DAS genes,
starch biosynthetic and sucrose metabolism were also represented in the most enriched
KEGG pathways (Figure 2D,E), including OsAGPL2, OsAPS2, OsSSIVa, OsSSIVb, OsGBSSII,
OsISA1, etc. In rice seed endosperm, the cytosolic AGP isoform, the OsAGPS2b/OsAGPL2
complex, catalyzes the limiting step and plays a key role in starch synthesis [41,53]. SSIV
is considered important for the initiation of starch granules [54]. OsISA1 is one of the
most important genes determining the starch structures in rice grains, which is directly
involved in the synthesis of amylopectin [55]. These results indicate that the MD promotion
of starch synthase and biosynthesis was mediated partially by the MD-induced AS during
grain filling.
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3.2. AS of Pre-mRNAs of Splicing Factors Increases the Complexity of Inferior Grain Filling
Response to MDD Treatment

SR proteins and hnRNP proteins are the main families of splicing factors, which
guide spliceosomal components and thereby the spliceosome to the respective splice
sites [47,56,57]. They are essential splicing factors required for both constitutive and
alternative splicing [17]. Several reports indicate that various biotic and abiotic stresses
influence the AS of pre-mRNAs of many spliceosomal proteins. The SR proteins, in
particular, undergo extensive alternate splicing [17,18,20]. Accumulating evidence suggests
that manipulating SR protein expression subsequently alters the splicing of other pre-
mRNAs, including SR pre-mRNAs [17,57]. In this study, the spliceosome pathway was
also one of the most enriched pathways in the inferior spikelet under MD conditions
(Figure 2E), leading to an increase in the AS events. The spliceosome-related genes undergo
AS to produce multiple transcripts under MD treatments, including SR protein subfamily
genes, RSZ subfamily genes, plant-specific SCL subfamily genes, and other splicing factors
genes (Figure 3). This result may also in turn explain the increase in the AS events under
MD treatment (Figure 1). Thus, the MD-induced AS of pre-mRNAs of splicing regulators
increases the complexity of gene regulation, which may also contribute to the increased
grain filling in the inferior spikelets.

3.3. MD-Induced AS Provides a Mechanism for the Regulation of miRNAProcessing, Leading to
Increased Grain Filling in Inferior Spikelets

The AS of pre-mRNAs are widespread in eukaryotes, and generate different mature
RNA isoforms from the same primary transcript, ensuring the proper expression of the
genome and the higher proteome diversity [33]. Several intronic miRNAs have been
discovered in plants [58,59], some of which have potential AS isoforms that may be affected
by the AS events triggered under specific conditions [58,60]. The miR400 case nicely
illustrates this issue, providing direct evidence that AS acts as a regulatory mechanism for
miRNA processing [21]. In this study, we identified all of the RI-type AS events containing
miRNAs. Four relating events particularly attracted our attention (Figure 5). MiR439f,
miR1847, miR444b, and miR1867 are located within the intronic regions of its host, whose
expressions were reduced in MD-treated inferior spikelets (Figure S4, Supplementary
Materials), indicating that intronic splicing may regulate the miRNA expression in response
to MD treatment. Recently, growing evidence has demonstrated that the miRNAs also play
crucial roles in controlling grain filling [34,35,44,61]. As reported previously, miR1867 was
highly expressed during grain filling, and can regulate the genes implicated in the starch
synthesis pathways in rice [45]. Therefore, we conclude that the MD-induced AS provides a
possible mechanism for the regulation of microRNA processing, which may also contribute
to the increased grain filling in inferior spikelets.

3.4. AS of Target Genes Increases the Complexity of miRNAs Regulation of Starch Biosynthesis

As key post-transcriptional regulators, miRNAs regulate their target genes by binding
to the complementary MBS in the target mRNAs. A higher frequency of AS at MBSs and
alternatively spliced MBSs enhances the regulatory complexity of the miRNA-mediated
gene networks [33]. For example, AS produces multiple SPL4 mRNA isoforms, with or
without the binding site for miR156, resulting in an accelerated rate of flowering induction
and significantly fewer adult leaves [33]. Os01g31870.8, one of the shortest transcript
variants of OsNramp6, were downregulated by miR7695, which was the only transcript
containing MBSs complementary to miR7695 [62]. OsAGPL2, a AGPase gene, plays a
pivotal role in starch biosynthesis in higher plants, whose activity is directly determined
by the population of the allosteric regulation [42]. The genomic data indicated that seven
transcript variants of OsAGPL2 were produced by alternative splicing (Figure 6). Among the
various OsAGPL2 splice variants, only three transcript variants contained complementary
sites for miR393b-derived small RNAs, which were located at the 5’ UTR region of those
transcript variants. All of those results indicate that the AS of OsAGPL2 may attenuate
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miR393b-mediated gene regulation and ultimately lead to altered levels of enzyme activity.
Furthermore, the miR393-overexpressed transgenic lines have smaller seed size compared
with the wild type [63]. The expression of miR393b-3p was also reduced by MD treatment
in the inferior spikelets [34]. Thus, the MD-induced AS of MBS increases the complexity of
the miR393b-OsAGPL2 gene regulation and function on starch biosynthesis regulation.

4. Materials and Methods
4.1. Plant Material and Experimental Design

The plant materials and growth conditions were described in detail in our previous
article [7]. Briefly, the experiment was conducted in a greenhouse in the normal rice growing
season in Changsha, China. Nipponbare (Nip) was used in this study. The seedings were
raised at a hill spacing of 0.2 mx 0.2 m and two seedings per hill. Fertilizer and pesticide
treatments were applied, according to normal agricultural practices, as described previously
by Zhang et al. [16]. All of the plants were maintained well-watered up to 6 DAA. The soil
water potential was monitored in the MD treatment with two tensiometers (Institute of
Soil Science, Chinese Academy of Sciences, Nanjing, China) installed at a depth of 30 cm.
The pots were not irrigated until the soil water potential reached —25 kPa. The CK plants
were used as a blank control. The inferior kernels from each treatment were sampled
at 9 DAA with three biological replicates, and preserved in a refrigerator at —80 °C for
RNA sequencing.

4.2. RNA-seq Analysis

The RNA sequencing and analysis were performed by Majorbio Bio-pharm Technol-
ogy Co., Ltd. (Shanghai, China). The data were analyzed on the online platform Majorbio
Cloud Platform (www.majorbio.com; accessed on 1 November 2020). Briefly, the total
RNA was extracted using Plant RNA Purification Reagent, according to the manufac-
turer’s instructions (Invitrogen, Carlsbad, CA, USA). The construction of the sequencing
libraries, analysis, qualification, and paired-end RNA-seq sequencing were described by
Teng et al. [7]. The transcriptomic data were submitted to the NCBI, and the relevant
accession number is PRJNA728244.

4.3. Alternative Splicing Analysis

The rMATS software with default settings was used to detect the differential al-
ternative splicing events from RNA-seq data [64]. The online platform PlantSPEAD
(http:/ /chemyang.ccnu.edu.cn/ccb /database /PlantSPEAD; accessed on 1 November
2020) was used to perform the splicing factors” analyses [65]. The mRNA-Seq alignment
files generated by HISAT?2 (http://ccb.jhu.edu/software/hisat2 /index.shtml; accessed on
1 November 2020) were used as an input for the rMATS analysis. The rice genome annota-
tion project (http://rice.plantbiology.msu.edu/; accessed on 1 November 2020) was used
as a reference, with default parameter settings. Finally, the rMATS was used to calculate the
p-value for the AS events among the different treatments. The DAS events were extracted
with a p-value < 0.05. Splicing models of some of the DAS events were exported from the
rMATS software and processed. To visualize the rMATS results and splicing model of DAS
events, Majorbio Cloud Platform was used.

4.4. GO and KEGG Pathway Analyses

In addition, functional enrichment analysis, including GO and KEGG was performed to
identify which DAS genes were the top 20 most enriched in GO (http:/ /www.geneontology.
org/; accessed on 1 April 2022) and KEGG (http://www.genome.jp/kegg/; accessed on
1 April 2022) database, compared with the whole-transcriptome background.

5. Conclusions

Taken together, the RNA-sequencing and small RNA-sequencing were used to reveal
the interaction between AS and miRNAs in inferior spikelets under moderate soil drying.
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The results show that post-anthesis moderate soil drying differentially affected the AS of
genes, many of which function on spliceosome and starch and sucrose metabolism. The
MD-induced AS could be a potential mechanism modulating the expression of intronic
miRNAs and their function on grain filling. Alternatively, the AS of MBSs is also a plausi-
ble mechanism for miRNA-mediated gene regulation on inferior grain filling under MD
treatment. To summarize, this study expands our understanding of the AS function on the
MD-promoted grain filling of inferior spikelets.
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