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Abstract

We designed a behavioural paradigm for vibro-tactile detection to characterise the

sampling time and performance in the rat whisker sensory system. Rats initiated a

trial by nose-poking into an aperture where their whiskers came into contact with

two meshes. A continuous nose-poke for a random duration triggered stimulus

presentation. Stimuli were a sequence of discrete Gaussian deflections of the mesh

that increased in amplitude over time – across 5 conditions, time to maximum

amplitude varied from 0.5 to 8 seconds. Rats indicated the detected stimulus by

choosing between two reward spouts. Two rats completed more than 500 trials per

condition. Rats’ stimulus sampling duration increased and performance dropped

with increasing task difficulty. For all conditions the median reaction time was longer

for correct trials than incorrect trials. Higher rates of increment in stimulus amplitude

resulted in faster rise in performance as a function of stimulus sampling duration.

Rats’ behaviour indicated a dynamic stimulus sampling whereby nose-poke was

maintained until a stimulus was correctly identified or the rat experienced a false

alarm. The perception was then manifested in behaviour after a motor delay. We

thus modelled the results with 3 parameters: signal detection, false alarm, and

motor delay. The model captured the main features of the data and produced

parameter estimates that were biologically plausible and highly similar across the

two rats.

Introduction

In a sensory decision task, humans and macaque monkeys extend their sampling

time of visual stimuli according to ambiguity. In one such example, subjects view

a field of moving dots, and make a judgment about the dominant direction of
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motion. The task is made non-trivial by manipulating the coherence of the dot

field. Subjects adjust their sampling time to maintain performance in the task [1]:

with noisy signals (i.e. with low dot coherence), subjects sampled longer to get

reliable information on which to make their judgments. Hence subjects sample

longer to attain better accuracy. This also is broadly the case for rats; recent

research [2] indicates that rats sample stimuli longer to improve performance, but

it is a limited trade; their reaction time is partly pre-determined and affected by

confidence in their decision.

It appears that rats’ ability to wait to allow for information accumulation may

be limited to vision. Uchida and Mainen [3] found that rats never extended

sampling time during an olfactory task. They trained rats to determine which of

two scents was dominant in a sample. Unlike the findings in the primate visual

task, when rats were given unlimited time to sample the odour mixtures, they did

not increase their stimulus sampling for the difficult condition. This finding has

been contentious. A later study [4] found that mice appear to sample difficult-to-

discriminate stimuli longer in a go/no-go task. The go/no-go paradigm

necessitates longer sampling if a mouse falsely makes a no-go decision, which it

can later correct. Another study found [5] that when mice were forced to sample a

stimulus for longer times, their performance improved. But they did not do this

voluntarily.

Hence the evidence currently suggests that when rodents use their olfactory

system they do not voluntarily sample stimuli longer, even though they can do so

for visual stimuli. Why is this? There are multiple possible ways to account for this

discrepancy between the visual and olfactory data. We emphasise one in

particular; the discrete nature of olfactory sampling of strong scents. The olfactory

stimulus is not sampled continuously over time but in a single, punctate, burst – a

sniff. When sampling is discrete rather than continuous, a compromise between

sampling time and performance is difficult to observe; during the protocol, from

one instant to the next, the rodent goes from no stimulus information to a packet

of stimulus information. There is no intermediate delivery of stimulus

information.

Here we investigate sampling in the rat whisker system.

The rat whisker system is anatomically and functionally well described [6, 7].

Whiskers provide rodents with rapid access to ecologically relevant information.

For example, a rat can quickly obtain sufficient information to detect or

discriminate between whisker vibrations either in head-restrained [8–10] or freely

moving paradigms [11–14]. Movement of the whiskers in all three dimensions can

drive neuronal response [15] and behavioural experiments indicate that rats are

specifically sensitive to the velocity of their whiskers [9, 12]. Importantly, whiskers

sample the environment both in discrete quanta as well as in a continuous stream.

This system exhibits two modes of operation: generative and receptive [7, 13]. In

the generative mode, rats move their whiskers forwards and backwards in a

rhythmic sweeping action called ‘‘whisking’’ [16, 17]. One ‘‘whisk’’ therefore

constitutes a unit of sensory information, like a sniff. In the generative mode, the

interaction between whisker and object can provide information about object
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properties such as location or surface texture [17, 18]. Conversely, in the receptive

mode, rats immobilise their whiskers to optimise the collection of motion signals

innate to an object.

Here, we trained rats to detect a sequence of discrete vibro-tactile stimuli with

their whiskers in the receptive mode. The rats were free to sample the stimuli as

long as they wanted before making a behavioural choice. We found that rats

sample difficult stimuli longer and achieve a lower level of performance. A simple,

3-parameter model is used to characterise the rats’ sampling time and

performance at five levels of difficulty.

Results

Behavioural paradigm and simple analysis

Two rats were trained in the behavioural paradigm (Fig. 1A). Each trial started by

a nose-poke into the central aperture where whiskers came in contact with two

independent meshes, to the left and right of the snout. The rat was required to

maintain nose-poke for a variable delay of 605 to 705 ms (uniform distribution)

in order to trigger stimulus presentation on one of the two meshes. The stimulus

consisted of a sequence of discrete deflections of increasing amplitude (see inset of

Fig. 1A). The task of the rat was to identify the stimulation side and turn to the

corresponding reward spout to collect sucrose water. Selecting the reward spout

on the opposite side of the stimulus resulted in no reward on that trial. Following

reward delivery or reward cancellation, the rat had to wait 1.5 seconds before the

next trial could be initiated; during this period a nose-poke by the rat did not

trigger a trial. Fig. 1B illustrates the temporal profile of nose-poke departure

across all stimuli. Rats learned the temporal structure of the task: the false alarm

rate did not reach 5% until 500 ms (i.e. for 95% of trials rats remained in the

central nose-poke longer than 500 ms); and only for 15% of trials they left nose-

poke before the stimulus presentation (i.e. the premature trials).

On each trial, one of five rates of increment in amplitude was used. The trials

were randomly interleaved in order to characterise how difficulty affected the

speed and accuracy of the detection task. The maximum stimulus amplitude was

set to 30 mm. The five levels of difficulty could thus be identified in terms of the

time to reach the maximum amplitude (or time-to-maximum, TTM) of 0.5, 1, 2,

4, and 8 seconds. Fig. 1C shows that this manipulation was effective in varying the

difficulty of the detection task. Although, both rats performed above chance for all

conditions, their performance was best in the conditions with the shortest TTM.

Fig. 1D plots the mean reaction time across condition. For both rats, easier

conditions had faster reaction times than difficult conditions (which have slower

time to maximum amplitude). Together, Fig. 1C and D illustrate a strong

modulation of sampling time and performance by condition; rats perform better

and faster in the easy condition compared to the difficult.
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Performance improves with stimulus sampling duration

Fig. 2 examines the behaviour of the two rats in more detail by plotting the

frequency of each decision type (premature, correct and incorrect) relative to

stimulus onset. For both rats, correct and incorrect decisions were generally of

equal frequency for early decisions made less than 150 ms after stimulus onset (we

discuss deviations from this pattern below). There was then a rapid increase in the

frequency of correct – but not incorrect – decisions as a function of time; hence

Fig. 1. The behavioural paradigm and elementary analysis. A) The behavioural paradigm; each panel represents a stage of a valid trial. The stages had
to be completed in the order illustrated. B) The temporal profile of nose-poke departure across all stimuli. The x-axis is time with respect to stimulus onset
and y-axis is number of departures at each time. One panel per rat. C) Task performance as a function of difficulty. Difficulty is proportional to the time taken
for the stimulus to reach maximum amplitude; longer times correspond to more difficult conditions. D) Mean reaction time as a function of difficulty.

doi:10.1371/journal.pone.0116357.g001
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proportionally rats perform better when they sampled the stimulus longer. This is

supported by the median reaction times for correct and incorrect: for both rats in

all conditions, the median reaction time for correct decisions was always longer

than that for incorrect decisions (see black and red dashed lines in Fig. 2; across

every level of difficulty, Friedman test, p value,0.05, for both rats).

Fig. 3A uses a Q-Q plot to compare the temporal distribution of the correct

responses in the easiest condition against the most difficult condition. It

demonstrates that the difference in reaction times plotted in Fig. 1D is not the

result of anomalous outliers, but is present across the distribution of reaction

times. Median reaction times for correct responses in the easy and difficult

conditions in rat 1 were 0.23 s and 0.27 s and in rat 2 were 0.21 s and 0.33 s

respectively. Both medians were significantly different according to the Wilcoxon

rank sum test (p,0.001 for both rats). Fig. 3B further investigates how

performance evolved over time, as a function of condition difficulty. Here,

cumulative performance (proportion correct) is plotted as a function of stimulus

sampling duration, separately for each condition. Consistent with the results in

Fig. 2, performance improved as the rats sampled the stimulus longer. Easier

detections reached higher asymptotes (maximum performance) and showed a

systematic left-ward shift in the sigmoidal functions (i.e. performance had a faster

rise as a function of stimulus sampling duration). To better quantify the rate of

improvement, Fig. 3C illustrates the time at half height of the sigmoid – half

height corresponds to half of the rat’s maximum performance. For both rats, the

easiest conditions show the fastest improvement.

We next asked how rats determine when to leave the nose-poke. We consider

two alternatives: (i) Dynamic sampling; they sample the stimuli and then leave

Fig. 2. An illustration of the rats’ decisions relative to stimulus onset. Each row represents the results for one rat and each column represents a level of
difficulty; difficulty increases from left to right as indicated by the time to maximum amplitude. The continuous green line indicates premature decisions, the
dotted green line represents valid decisions (combined correct and incorrect). The red line indicates incorrect decisions, and the black line indicates correct
decisions. The red dashed line indicates median incorrect decision time and the black dashed line indicates median correct decision time.

doi:10.1371/journal.pone.0116357.g002
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only when they correctly detect a vibration or as a result of experiencing a false

alarm. (ii) Static sampling; they sample for a pre-determined duration and leave

regardless of explicit detection. The systematic differences in stimulus sampling

durations as a function of task difficulty support the dynamic sampling strategy.

We further established this by quantifying how stimulus onset affected the leaving

time. Given that the stimulus onset came from a uniform distribution (605 to

705 ms after nose-poke), at 655 ms, the trials can be divided into two halves,

those with a stimulus and those without. Fig. 4A investigates the differences in the

leaving time between these groups. If the rats’ decision to leave were unaffected by

stimulus onset the profile of leaving times should be the same for the two groups.

This is not the case, trials with early stimulus onset (green) result in systematically

earlier departures compared to trials with late stimulus onset (red). The Q-Q plot

of the distributions are plotted in 4B and the difference between the two leaving

time profiles is presented in Fig. 4C. Altogether, Fig. 4 supports dynamic

sampling strategy, whereby the stimulus onset affects leaving time on a trial by

trial basis.

Fig. 3. A detailed analysis of reaction time and performance as a function of difficulty. A) Quantile-
Quantile (Q-Q) plot of the temporal distribution of the correct responses in the easiest (x-axis) and most
difficult (y-axis) conditions. B) The cumulative performance (cumulative proportion correct) plotted as a
function of stimulus sampling duration. Each condition is indicated by a separate line; darker shades are
easier conditions. C) The sampling time at half maximum performance in Fig. 3B, plotted as a function of task
difficulty. Data point shade follows the line convention in Fig. 3B.

doi:10.1371/journal.pone.0116357.g003
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A simple 3-parameter model captures the behaviour

To what extent could we predict the rats’ behaviour using a simple model based

on the dynamic sampling framework? The model is based on a simple moment-

to-moment signal detection framework (Fig. 5). Two factors can trigger a

decision: either a legitimate detection of the stimulus or a false alarm. Once a

decision has been reached there is a motor delay and thereafter the decision is

expressed in the rats’ behaviour. These three factors are explicitly captured in the

parameters: f, a moment-to-moment probability of false alarm, D(s), the

moment-to-moment probability of stimulus detection, which is a function of

signal strength, s, at that moment, and motor delay, m, in milliseconds. The

probability of detection is related to signal strength with a simple non-linear

function:

D(s)~sg ð1Þ

where g is the gain on the signal strength.

We fit the 3 parameters simultaneously to all conditions. The model provided a

good fit to the data (Fig. 6) with R2 values of 0.94 and 0.92 for Rat 1 and Rat 2

respectively. Proportion of correct versus incorrect are equal at the onset of the

Fig. 4. Rats’ leaving is triggered by the stimuli. A) Proportion of trials in which the rats left the nose-poke, as a function of time from nose-poke onset.
Trials were divided into two categories: early onset - those in which the stimulus was active by 655 ms (i.e. those that start within the green rectangle) and
late onset - those in which the stimulus became active after 655 ms (those that start within the red rectangle). The black line indicates the proportion of active
stimuli. The green line indicates the proportion of trials in which the rat has left nose-poke when the stimuli began before 655 ms, the red line after 655 ms.
B) A Q-Q plot, with 10% quantiles, comparing the distributions in panel A. C) A plot of the difference between the cumulative proportion of nose-poke leaving
in early onset trials versus late onset trials; i.e. the cumulative difference between the red and in green curves in 4A.

doi:10.1371/journal.pone.0116357.g004
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stimulus (i.e. f/2), like the data, but the correct decisions rapidly increase. The

model captures both the magnitude and the timing of the peak of correct

decisions across all conditions; thus accounting for the relative performance

across conditions – with higher performance in the easy condition than the hard.

Importantly, the fitted parameters were biologically plausible values and similar

across the two rats: For Rat 1, the probability of false alarm was 0.07 per 65 ms,

the motor delay was 103 ms and the gain was 0.59. For Rat 2 the probability of

false alarm was 0.05 per 65 ms, the motor delay was 109 ms and the gain was 0.48.

Fig. 5. An illustration of the model. A false alarm, f, or a detection, D, can trigger a decision. There is a
motor delay, m, and then the observed behavioural outcome.

doi:10.1371/journal.pone.0116357.g005

Fig. 6. A comparison of the model fit and the data for both rats. The data points are from Fig. 2, following the same convention, but plotted in 65 ms time
bins. The continuous lines are the model fits. Black lines indicate proportion correct decisions and red lines indicate proportion incorrect.

doi:10.1371/journal.pone.0116357.g006
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Based on the estimated motor delay, we estimated the number of deflections the

rat received before initiating leaving. Median reaction time for rat 1 suggests that

the rat sampled only two deflections in the easiest condition and three deflections

in all other conditions. The same analysis for rat 2 revealed a similar pattern,

except for the hardest condition where it tended to wait for four deflections on

average. This analysis allows us to estimate the smallest deflection sizes that

potentially trigger motor initiation: deflections as small as 0.6 mm (rat 1) and

0.9 mm (rat 2) could trigger leaving. However, as we argue in the discussion, the

rats may continue to sample the stimulus over the motor delay period, which

would indicate a further 100 ms of sampling, and potentially the inclusion of

another deflection of larger amplitude. Recent recording of barrel cortex neurons

[19] indicate typical threshold for multiunit activity is approximately 3 mm in an

unadapted state. Rats may be using the most sensitive barrel cortex neurons, or

averaging across many barrel cortex neurons to achieve the observed sensitivity

[20].

A simple threshold model

In our paradigm, the stimulus amplitude increases with time within each trial.

The behaviour of the rats could thus potentially be explained by a conceptually

simpler model: when the stimulus amplitude reaches a fixed threshold, the rats

detect the stimulus and make their decision. We tested this model by

incorporating a fixed detection threshold as the key parameter to model the

behaviour along with the false alarm rate and the motor delay. Thus the simple

threshold model also has three parameters and quantifies the contribution of the

power law approximation in our probabilistic model (Equation 1). We found that

this simple threshold model provides an inferior fit to the data (Rat 1 R250.61,

Rat 2 R250.60) compared to our main model.

Random walk model

Finally, we fitted a random walk simulation [21] to our data set using a fixed

Gaussian noise distribution and varied four parameters: g, m – as before – as well

as t, a threshold parameter and c a scaling parameter. We found that the random

walk model provided inferior description of the data (Rat 1 R250.88, rat 2

R250.84) in spite of having the greater number of parameters.

Discussion

Recent studies have explored behavioural capacities of the whisker sensory system;

how whisker touch represents key aspects of the animals’ environment such as

object location [18] and surface texture [22]. Vibration detection and

discrimination are behavioural tasks at which rats excel [11, 12]. To further

investigate rats’ expertise we designed a behavioural paradigm for vibration

detection to characterise the sample time and performance in the rat whisker
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sensory system. We measured the performance and reaction times of two rats on a

two-alternative forced-choice somatosensory task. We found that as we increased

task difficulty the rats were able to increase their stimulus sampling duration

although performance decreased. We also saw that for all conditions the median

reaction time was longer for correct trials than incorrect trials, indicating that rats

will wait for more information. Previous research [2] using visual stimuli found

that rats tended only to increase mean, not median sample times; suggesting that

only already large sample times are increased. In contrast we find a shift of the

whole distribution. We simulated the behaviour using a simple 3-parameter

model: signal detection, false alarm, and motor delay. The model captured the

main features of the data and produced biologically plausible estimates of the false

alarm probability and the motor delay. This is in contrast to some previous results

from the rat olfactory sampling reported previously [3]. This demonstrates that

rats, like primates, are behaviourally able to increase sampling time to improve

performance in some sensory systems and supports Uchida et al’s argument that

the olfactory system has a qualitatively different mode of operation for supra-

threshold scents: its sampling is discrete rather than continuous.

It is striking how rapidly the rats’ performance increases as a function of

sampling duration, and this raises an obvious question: Why do the rats not wait

longer to attain higher performance? Performance across all conditions for Rat 1

and 2, at their median reaction time, is 73.0% and 78.5%. Were their median

reaction times only 100 ms later, the rats’ performance would be dramatically

increased to 85.2% and 88.7% respectively. This is consistent with Uchida and

Mainen [3]. We suggest three candidate triggers of rats’ early responses: 1) Rats

are willing, on a fraction of trials, to forego a certain reward for the prospect of a

fast reward. 2) Rats experience false alarms. The rate of false alarms may be such

that their behaviour is optimised towards attaining a particular rate of reward. 3)

Finally the rats might decide to initiate leaving before detecting a stimulus, in the

expectation that they may still experience the stimulus before the nose-poke-

leaving motor command is initiated and completely executed (see below).

Although we have demonstrated that the rats can wait for information over an

extended period of time instead of from a pre-programmed discrete window, we

did not need to assume integration of the information over the time period to

simulate the rats’ behaviour. Indeed, previous research [23] suggests that

integration of stimulus signals in barrel cortex is limited to a window of

approximately 25 ms, an estimate that is mirrored in behavioural responses. We

used mesh deflections interspersed with 50 ms gaps. Therefore, we formulated a

‘‘memory-less’’ model. It describes detections and false alarms as independent,

moment-by-moment, events, followed by a motor delay. This is qualitatively

different to the classic random walk and accumulator models of perceptual

decision making, which integrate both signal and noise from the sensory

apparatus over time. When we compared a random walk simulation [21] to our

data it gave an inferior description of the data despite having more parameters.

However, we have a unique stimulus: the deflection amplitudes deliberately

increased over time, and so performance of our model increased over time. Had
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we used constant amplitude deflections our model could not have produced

crucial within-condition speed/accuracy trade-off. This phenomenon is easily

produced with drift-diffusion models. A simple way to adjust our model to

account for this is to assume that the rats’ threshold for a correct detection or false

alarm varies from trial-to-trial. In some trials false alarm rate would be

comparatively higher: rats would tend to leave earlier but choose more

inaccurately; in other trials it would be lower: the trials would tend to be longer,

and more trials would be triggered by stimulus detection and the consequential

correct response. This can be incorporated into our model by assigning Gaussian

variability into the false alarm rate, so that f varies from trial-to-trial.

Furthermore, the variability in threshold need not be random; it could be made to

reflect rats’ preferences for speed/accuracy across an experimental session.

Indeed, for the purposes of our simple model, we have treated the false alarms

as homogenous in cause and unchanging over time. We assumed that the rats’

leaving on incorrect and some correct trials is triggered by physical or sensory

noise. However, it is possible that rats sometimes leave early before detecting a

signal in order to earn chance rate of reward; hence not all errors stem from false

alarms. We also expect that having learnt the temporal structure of the paradigm

rats may discount or ignore early false alarms to prevent very premature

responses. This implies that false alarm rate is not constant over time. Future work

could explore whether f changes systematically across trials, perhaps driven by

motivational state.

Our simple model provides a plausible direct estimate for the motor delay

(103 ms for Rat 1, and 109 ms for Rat 2). It is difficult to find other estimates of

rats’ motor planning and execution times, but the estimated values are in

agreement with primate’s estimates of ‘‘non-decision’’ in other reaction time

tasks. Estimates range from 20–25 ms for saccade generation in humans [24] and

Macaques [25] to 80–100 ms or more for macaque reaching [26]. Our estimates

are slightly longer, but involve the planning and motion of multiple body parts,

rather than isolated organs or limbs.

Our data also provided evidence that the rats are able to sample the stimuli even

after initiating the decision to leave nose-poke; this is particularly evident in the

performance of Rat 1 in the easiest two conditions: the top left two panels of Fig. 2

indicate that the rat has a good performance within 50 ms of stimulus onset. This

is an implausibly small reaction time. This indicates that on a fraction of trials, the

triggering of the rat’s leaving was independent of later stimulus detection, or that

the rats’ decision to leave is triggered by a false alarm but the initial sensory

impression was over-written by subsequent stimulus input. Stanford et al’s recent

experiment [27] provides precedent for this: Stanford et al trained macaques to

initiate eye-movements to targets before they received the information necessary

to choose the correct saccade target; the macaques were trained to respond before

there was sufficient stimulus information. Analogously, the rats might have

learned to anticipate the arrival of stimulus information and program their motor

output to minimise their sampling time.
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The model transforms the signal strength with a simple power (Rat 1 g50.59,

Rat 2, g50.48) to estimate the probability of detecting the stimulus at any given

moment. We also tried a conceptually simpler model, based on a simple variable

threshold rather than a gain function of stimulus strength; however, its fit to the

data was not as good. We suggest that the gain function works because it captures

two stages of neural processing: 1) an approximation of the process of the

transformation of the physical stimuli applied to the whiskers into a

representation of the signal in a population of neurons in barrel cortex. 2) The

larger this signal, the more likely putative ‘‘read-out neurons’’ are to trigger a

behavioural response.

Previous electrophysiological studies revealed that cortical neurons encode

sinusoidal vibrations in terms of the mean speed of whisker movement [28, 29],

and that this representation forms the basis of sensation in awake rats [9, 12, 30].

Our model could couch its first stage of decision processing in the whisker barrel

cortex – a prime candidate area for online recording of neuronal activity; although

we note that some types of behavioural task do not require barrel cortex and may

use other neural structures [13, 31]. The consequent decoding of the population

activity by read-out neurons poses difficult questions; which neurons are pooled

and used, what manner of threshold is applied and how learning affects these

factors are key questions for future investigation.

Materials and Methods

Ethics statement

The experiments were conducted in accordance with the Australian and the

international guidelines for the treatment of animals and were approved by the

Animal Care and Ethics Committee at the University of New South Wales (ACEC

number 10/47B).

Behavioural paradigm, training and vibration stimuli

Two adult male Wistar rats, weighing 250 g at the beginning of the experiment,

were trained to perform the following procedure. Rats were put into a Plexiglas

chamber of size 30 cm (length) 625 cm (width) 625 cm (height) with an

aperture (666 cm) in one wall. The floor of the chamber comprised of metal bars

spaced at 1 cm intervals with a metal tray containing saw dust beneath. At their

own volition, rats started a trial by nose-poking into an aperture within which

there were two independent meshes, left and right. The two meshes (35635 mm)

were positioned 2 mm from the edges of the aperture slanted toward each other at

a 50˚ angle. The meshes were attached to piezoelectric ceramic bars (Morgan

Technical Ceramics) that delivered vertical movements to the whiskers. Beyond

the reach of the rats’ whiskers outside of the box we placed a second pair of

piezoelectric bars, one on the left of the aperture which vibrated with the right

aperture mesh and one to the right of the aperture which vibrated with the left
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aperture mesh. The aim of this was to render any potential sound cues non

informative. We additionally played a sufficiently loud white noise to mask any

potential residual auditory cues from the mesh.

In the walls of the chamber, either side of the aperture, were two drinking

spouts; one to the left of the aperture and one to the right. The rats’ nose-poke

broke an infra-red light beam, which was detected by a sensor triggering the trial

onset. Rats were required to wait between 605 and 705 ms without leaving the

aperture. The exact waiting period varied from trial to trial and followed a

uniform distribution. The stimulus began thereafter: one of the meshes –left or

right– produced a sequence of discrete Gaussian deflections.

Each Gaussian deflection, sigma 3.4 ms, lasted 15 ms and was followed by a

50 ms pause before the next deflection, yielding a total cycle time if 65 ms and a

frequency 15.4 Hz. Within each sequence deflections increased in amplitude

linearly over time. The maximum stimulus amplitude was set to 30 mm and

maximum piezo velocity was 6.8 mm/s. Five rates of increase in amplitude were

used. The stimuli were thus characterised in terms of the time to reach maximum

amplitude (or time-to-maximum, TTM) of 0.5, 1, 2, 4, and 8 seconds. We chose

this convention because larger numbers indicate a more difficult detection.

Stimuli were generated in MATLAB (Mathworks) using an analog output

(National Instruments) at a 44.1-kHz sampling rate and sent to the piezoelectric

bars through an amplifier (25.4 dB gain). The rats were given a reward (5%

sucrose solution) if and only if they selected the drinking spout on the side on

which the mesh vibrated. Selecting the spout on the opposite side of the aperture

cancelled the reward on that trial. Departure from the nose-poke was detected by

the optical sensor and led to the termination of the stimulus. Stimulus sampling

duration was defined as the time between stimulus onset and departure from

nose-poke. Following reward delivery or reward cancellation, the rats had to wait

1.5 seconds before the computer allowed the next trial to be initiated; during this

period a nose-poke by the rat did not trigger a trial. The trial was terminated if the

rat left the aperture 100 ms before the predetermined stimulus onset for that trial.

This was to discourage premature departure from the nose-poke aperture. This

schedule allowed a relatively small number of trials to be rewarded without the rat

being exposed to any stimulus, and thus encouraged a certain degree of false

alarm. We observed that the trained rats held their heads static and did not whisk

during the stimulus period. The proportion of the stimulus presentation at each

side was adaptively chosen based on the inverse proportion of the history of the

responses that rat made toward either side in the last 30 trials. This adaptive

strategy prevented the rats from forming a response bias by ensuring that roughly

equal numbers of choices were made toward either spout.

Behaviour of the rat (nose-poke and the response at either reward spout) was

continually registered into a data acquisition card (National Instruments) using

custom-built optical sensors. A MATLAB script controlled the presentation of the

stimuli, registered the behaviour along with the corresponding time stamp of each

behavioural action, and controlled the delivery of the sucrose rewards through
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two separate water pumps. The behaviour was also monitored during the

experiment using an infrared camera positioned in front of the aperture.

The behavioural data was acquired over 125 sessions for rat 1 and 123 sessions

for rat 2. To achieve the desired behaviour we applied the following shaping

procedure. Rats were placed on a mild food and water deprivation (50 ml of

water, 20 g of rat chow per day). Rats were not trained during weekends, when

they had ad libitum access to food and water. They were weighed at least weekly to

ensure they retained a safe weight. At the end of the experiments rat 1 weighed

531 g and rat 2 weighed 515 g. The shaping was done in gradations, but involved

the following major steps. Rats learnt that the drinking spouts provided sugar

water after a bilateral (square wave) mesh vibration that was triggered by a nose

poke. Next, unilateral vibration was introduced, until performance reached 75%

correct. The mesh vibration was changed to have a Gaussian rather than square

wave pattern of displacement and the gap between Gaussian displacements was

increased, effectively lowering the frequency of the vibration. Then multiple levels

of amplitude were introduced. Finally the linear ramping on the vibrations were

introduced and the maximum amplitude was reduced to 30 mm.

The 3-parameter model

One unit of stimulation lasted 65 ms (15 ms deflection and 50 ms inter-

deflection-interval). To simplify the model we considered the 65 ms period to be a

single unit of time with the maximum amplitude deflection to be the signal

strength within that time unit. This finessed the model complexity necessary for a

higher level of temporal precision. Hence, at any time step (t565 ms), the

stimulus strength, s, is a single value and increases monotonically over time until

its maximum value is reached (or a decision is made). The signal strength varied

from 0.0 to 1.0.

Fig. 5 summarises the conceptual basis of the model. Two factors trigger a

decision: either a legitimate detection of the stimulus or a false alarm. Once a

decision has been reached there is a motor delay and thereafter the decision is

expressed in the rats’ behaviour. The three factors of interest are thus expressed in

the parameters f, a moment-to-moment probability of false alarm, D(s), the

moment-to-moment probability of stimulus detection, and motor delay, m, in

milliseconds.

The probability of detection is related to signal strength with a gain function:

D(s)~sg ð1Þ

where g is the gain on the signal strength.

To fit this model (and other variants described in the paper) we first plotted the

‘‘error space’’ of the model; that is plots of models’ deviation from the data

(quantified with the sum of squared errors) as a function of the models’

parameters. The varied parameters were f, g and m. From these plots we estimated

the optimal starting point of the automated curve fit and were able to avoid local

minima. After the starting point had been selected, we fitted the models to the
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experimental data using MATLAB’s lsqcurvefit function. The function numeri-

cally solves non-linear curve fitting problems by minimising the sum of squared

errors (differences between the model and data). Data for all conditions were fit

simultaneously.

The probability of false alarm in any 65 ms step was a constant value f across all

trials and conditions. On every trial, the rat could be correct because of a true

detection of the stimulus, with the probability D(s), or simply because of a false

alarm to the correct side. Given that there are 2 choices, the probability of

producing a false alarm to the correct side is f/2. The probability of a correct

choice can thus be determined as:

pcorrect~D(s)z(1{D(s))|f =2 ð2Þ

Similarly the probability of an incorrect choice is calculated as follows:

pincorrect~(1{D(s))|f =2 ð3Þ

These probabilities were calculated at every 65 ms step up to 3 seconds, practically

accounting for all trials. For the simple threshold model we replace Equation 1

with the following:

D(s)~
0 if svt

1 if swt

�
ð4Þ

Where t is the threshold.
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