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The infection competence of the protozoan pathogen Toxoplasma gondii is critically
dependent on the parasite’s ability to inactivate the host complement system.
Toxoplasma actively resists complement-mediated killing in non-immune serum by
recruiting host-derived complement regulatory proteins C4BP and Factor H (FH) to the
parasite surface to inactivate surface-bound C3 and limit formation of the C5b-9
membrane attack complex (MAC). While decreased complement activation on the
parasite surface certainly protects Toxoplasma from immediate lysis, the biological
effector functions of C3 split products C3b and C3a are maintained, which includes
opsonization of the parasite for phagocytosis and potent immunomodulatory effects that
promote pro-inflammatory responses and alters mucosal defenses during infection,
respectively. In this review, we discuss how complement regulation by Toxoplasma
controls parasite burden systemically but drives exacerbated immune responses locally
in the gut of genetically susceptible C57BL/6J mice. In effect, Toxoplasma has evolved to
strike a balance with the complement system, by inactivating complement to protect the
parasite from immediate serum killing, it generates sufficient C3 catabolites that signal
through their cognate receptors to stimulate protective immunity. This regulation ultimately
controls tachyzoite proliferation and promotes host survival, parasite persistence, and
transmissibility to new hosts.

Keywords: complement, Toxoplasma gondii, C4BP, factor H, regulation, immune evasion
INTRODUCTION

Insect and vertebrate complement systems play critical roles in the defense against invading microbial
pathogens and the regulation of inflammatory responses. Apicomplexan parasites, which comprise a
diverse group of obligatory intracellular parasites, have evolved sophisticated strategies to regulate or
inactivate this humoral first line of defense to promote their infection competency in both insects and
mammalian hosts (Belachew, 2018; Shao et al., 2019). These parasites possess complex lifecycles
consisting of both sexual and asexual stages that typically infect multiple hosts, and so, must overcome
a myriad of species-specific immune defenses in order to initiate infection. The most studied among
these parasites include Toxoplasma, Cryptosporidium, Eimeria, and Plasmodium, which cause various
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infectious diseases of human and veterinary importance (Votýpka
et al., 2017). This paper reviews the strategies employed by
Toxoplasma gondii to both inactivate and regulate the
complement cascade and highlights similar strategies employed
by other Apicomplexan parasites to facilitate the establishment of
a persistent, transmissible infection.
THE COMPLEMENT SYSTEM

The complement system is an evolutionarily conserved first line of
defense that rapidly activates against invading pathogens. This
defense system consists of a set of circulating liver-derived soluble
proteins, membrane bound receptors, and regulators that function
in a highly coordinated proteolytic cascade to opsonize and lyse
invading microbes in addition to mobilizing the cellular arm of the
immune response (Figure 1—schematic of complement system
pathway activation and regulation). Activation of this cascade of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
more than 50 molecules and their complement receptors occur via
three different pathways: the classical (CP), lectin (LP), and
alternative (AP) pathways. Activation of these pathways leads to
the formation of pathway-specific complexes known as C3
convertases, in which all three pathways converge to facilitate the
cleavage of the central molecule C3 into effector proteins C3a and
C3b. Successful complement activation culminates in the assembly
of a pore-forming protein on the pathogen surface (referred to as
the membrane attack complex, or MAC) that mediates
pathogen lysis.

The complement system is activated upon detection of invading
pathogens through specialized and pathway-specific recognition
molecules that recognize pathogen-associated molecular patterns
(PAMPs). Initiation of the classical pathway requires the
recognition of pathogen bound IgM or IgG by pattern
recognition molecule C1q. The lectin pathway is activated when
microbial sugars are bound by the pattern recognition molecule
mannose-binding lectin (MBL). The alternative pathway, however,
does not rely on a recognition molecule for activation, but rather on
the failure to regulate the continuous low-level spontaneous
hydrolysis of C3 into C3(H2O), which indiscriminately probes
foreign and self surfaces alike. The ability of the AP to
discriminate between self and non-self surfaces relies on the
presence of membrane bound and soluble complement regulatory
proteins. Importantly, the AP is a critical component of host defense
because it amplifies the complement response independent of the
pathway that initiates the response, so it represents a critical target
for regulation by host and pathogens alike. Specifically, the AP
utilizes CP and LP activated C3b as a platform for rapidly
generating new AP C3 convertases which establishes a positive
feedback loop to amplify C3 cleavage (Thurman and Holers, 2006).
Due to its non-discriminatory nature and potential for rapid
amplification, this process must necessarily be tightly controlled
by host regulator proteins to limit inflammation and damage to host
cells. Complement regulators target various points within the
proteolytic cascade, which includes inactivation of proteases
associated with C1q and mannose binding lectin (MBL), cleavage
of active C3b into inactive iC3b and C3dg, accelerating the decay of
C3 and C5 convertases, and preventing insertion of the membrane
attack complex into the plasma membrane (Schmidt et al., 2016).

Protection against pathogens occurs when the complement
system produces several biologically active effector molecules,
which include opsonins (C3b and its catabolites iC3b, C3d and
C3dg), anaphylatoxins (C3a and C5a), and the membrane attack
complex (MAC). The most direct effector function is the lysis of
pathogens through MAC. Because many pathogens have evolved
mechanisms to limit complement activation and prevent the
progression of the cascade, generation of C3b and anaphylatoxins
ensure additional layers of immune defense. These effector
functions are exerted by the interaction between complement split
product effectors and their host receptors to facilitate biological
processes such as phagocytosis, chemotaxis, and inflammation
(Figure 2A). In the absence of antibodies, C3b and its catabolites
(iC3b, C3d, and C3dg) function as major opsonins recognized by
complement receptors 1, 3, and 4 (CR1, CR3, CR4) that are
expressed on myeloid cells and aid in phagocytosis and pathogen
FIGURE 1 | Overview of the Complement System. The complement system
is activated via three separate pathways (classical, lectin, and alternative) that
have distinct recognition mechanisms (C1q, MBL/ficolins, and C3b(H2O),
respectively). Complement activation results in the formation of C3
convertases. All three pathways converge at C3 activation via C3
convertases, which generates effector molecules C3a and C3b. C3b allows
for progression to the terminal pathway by forming C5 convertases, which
cleave C5 into C5a and C5b. The terminal pathway requires C5 activation
product C5b to initiate the assembly of the membrane attack complex (MAC,
C5b-9). The pore inserts into the cell membrane and promotes pathogen
lysis. Complement regulators target complement pathway initiation (C1-INH,
C1 esterase inhibitor), convertase formation (C4BP, C4b-binding protein;
CD46; DAF, decay accelerating factor), and the alternative pathway
amplification loop (Factor H).
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clearance. Anaphylatoxins C3a and C5a are critical danger signals
that exert their function through interactions with cognate receptors
C3aR and C5aR expressed on both immune and non-immune cells.
Signaling through these receptors induces several critical pro-
inflammatory immunological responses, including chemotaxis,
oxidative burst, immune cell activation, vasodilation and
induction of cytokines (Klos et al., 2009). Complement split
products also play a critical role in bridging innate immunity and
adaptive immunity (Figure 2B). For example, C3b inactivation
products C3dg and C3d covalently linked to antigen are recognized
by complement receptor 2 (CR2, CD21) expressed on B cells. Co-
ligation of CR2 with the B cell receptor (BCR) via C3d-antigen
complexes amplifies B cell signaling, lowers the threshold for B cell
activation, and thus this interaction is critical for enhancing B cell
responses (Carroll, 2008). Recent work has also implicated local
intracellular complement activation and the subsequent production
of anaphylatoxins (C3a, C5a) during cognate interactions between
antigen presenting cells (APCs) and CD4+ T cells (Heeger et al.,
2005; Strainic et al., 2008). Upregulation of and signaling through
cognate receptors C3aR and C5aR have been shown to regulate T
cell activation, lineage commitment and proinflammatory Th1
cytokine production (Strainic et al., 2008; Liszewski et al., 2013).
COMPLEMENT ACTIVATION AND
RESISTANCE: THE APICOMPLEXA

Apicomplexan parasites, not unlike bacteria, viruses, and fungi,
activate the complement system. Complement evasion is a
critical step in the establishment of infection, hence parasites
have evolved multiple sophisticated strategies to overcome serum
killing. Mechanisms of parasite complement evasion include the
recruitment of host regulators by parasite surface molecules,
expression of complement regulator protein orthologs, and
expression of parasite-encoded proteins that target and/or
inactivate complement function (recently reviewed by Shao
et al., 2019).

While parasites share common evasion strategies, these
mechanisms are achieved by unique parasite-specific factors.
Plasmodium spp. evades both mosquito and human complement
systems to facilitate the survival and transmission of the parasite
from vector to host. Genetic studies have identified the 6-CYS
protein Pfs47 as a critical factor facilitating parasite transmission in
mosquitos by its ability to regulate the insect complement-like
immune system (Molina-Cruz et al., 2013). Additional recently
identified parasite factors that recruit human regulator Factor H to
facilitate C3b inactivation include pfGAP50 expressed by gametes
in the mosquito midgut and Pf92 expressed during the blood-stage
(Simon et al., 2013; Kennedy et al., 2016). In addition, parasites
bind plasminogen during the intraerythrocytic stage and mediate
its conversion to plasmin in order to inactivate C3b, however the
parasite factor(s) that facilitate this interaction have not been
determined (Reiss et al., 2021).

Complement evasion by Cryptosporidium and Toxoplasma, on
the contrary, is less extensively studied. While studies have
established that Cryptosporidium parvum binds C3 and classical
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(C1q) and lectin (mannose-binding lectin, MBL) pathway
molecules (Petry et al., 2008), little is known about resistance
mechanisms. Our group has confirmed earlier work
demonstrating that Toxoplasma inactivates C3 (Fuhrman and
Joiner, 1989; Sikorski et al., 2020) but the precise molecular
details have only recently been elucidated. We utilized improved
strategies to study complement interactions with T. gondii using
flow cytometry, leading to a significant advancement in our
understanding of complement activation and regulation by T.
gondii. Our work has for the first time revealed important
contributions of the lectin pathway as well as parasite genotype to
A

B

FIGURE 2 | Effector Functions of Complement Split Products. (A) Innate
immunity. (Left) C3a is recognized by cognate receptor C3aR to mediate
recruitment of innate immune cells (mast cells, monocytes, neutrophils) and
promote inflammation. (Right) C3b is covalently coupled to pathogen surfaces
and promotes opsonization. C3b is recognized by complement receptors
(CR3, CR4) to promote phagocytosis. (B) Adaptive immunity. (Left) Co-
ligation of complement receptor 2 with the B cell receptor (BCR) on B cells
via C3dg-antigen complexes amplifies B cell signaling and lowers the
threshold for B cell activation. (Right) The local activation and secretion of
complement anaphylatoxins (C3a, C5a) and upregulation of cognate
receptors (C3aR, C5aR) is triggered during T cell-APC interactions. Autocrine
and paracrine signaling through C3aR and C5aR promote Th1 cytokine
production (IL-12, IFN).
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complement activation. Our studies showed strain-specific
differences in C3b deposition between Type I and Type II strains
that was partially attributed to the differences in surface glycans and
lectin pathway activation, indicating that increased C3b deposition
on Type II strains correlated with greater lectin binding and MBL
recognition. However, despite these differences, both strains were
equally capable of inactivating C3b and were resistant to serum
killing. Our data showed that resistance to serum killing was due to
the ability of T. gondii to recruit the alternative pathway regulator
Factor H (FH) and classical and lectin pathway regulator C4b-
binding protein (C4BP) to the parasite cell surface (Fuhrman and
Joiner, 1989; Sikorski et al., 2020). The importance of the alternative
pathway was highlighted by its critical role mediating serum
resistance, irrespective of its limited contribution in the initiation
of the complement system. Our studies demonstrated that blocking
Factor H, but not C4BP, resulted in greater C5b-9 deposition and
greater parasite susceptibility to serum killing, suggesting that the
AP functions principally as a potent mediator that amplifies
complement activation and is thus an important target for T.
gondii regulation. Although the T. gondii parasite factor(s) that
bind C3b, FH, and C4BP have not been identified, their discovery
would directly address the role of individual and cumulative parasite
factors in the molecular basis of protection against serum killing,
and would further provide an opportunity to unearth potential
targets for therapeutic intervention to render parasites more
susceptible to complement attack. Collectively, these studies
demonstrate how apicomplexan parasites employ multiple
strategies to target C3 in order to successfully resist serum killing.
COMPLEMENT: PROTECTIVE AND
PATHOLOGICAL ROLE DURING
T. GONDII INFECTION

Toxoplasma gondii is a highly prevalent and successful protozoan
parasite that can infect any nucleated cell in all mammals. Non felid,
intermediate hosts acquire T. gondii by ingesting oocysts from
contaminated water or food, or by eating infected meat
containing tissue cysts. Upon ingestion, parasites excyst and
invade the intestinal epithelium where they differentiate and
rapidly replicate asexually as tachyzoites. The parasites then
disseminate systemically to distal organs to mediate acute
infection before establishing a chronic infection by the formation
of tissue cysts (Dubey et al., 1997). The pathogenic tachyzoite form
can be easily grown in vitro and chronic stages can be maintained in
animal models, thus mice represent an experimentally tractable
model system optimal for studying this host-pathogen interaction.

Until recently, T. gondii complement resistance mechanisms
and the biological significance of the complement system in vivo
during acute infection were unknown. The role of complement
during systemic T. gondii intraperitoneal infection was recently
evaluated using complement deficient C57BL/6 mice. In the
absence of C3, mice died acutely and exhibited higher parasite
loads whereas control mice survived. This study demonstrated
that both the presence of C3 as well as the parasite’s ability to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
inactivate C3 are important factors regulating parasite
proliferation and contributing to host survival in vivo (Sikorski
et al., 2020). One limitation of using C3 deficient animals is that
the protective effect observed could not be specifically assigned to
either C3a or C3b split product effector function (Sikorski et al.,
2020). The observed reduction in T. gondii-specific antibodies in
this model was, however, consistent with the known function of
C3dg tagged antigen to enhance humoral responses (Sikorski
et al., 2020), suggesting that C3b opsonization of T. gondii
antigen is critical for priming humoral immunity. Importantly,
this study suggested that T. gondii strikes a critical balance in fine
tuning complement system activation, by evading serum killing
to promote parasite persistence, while preserving the ability of
complement effectors C3a and C3b to activate sufficient host
immunity to regulate parasite proliferation and promote both
host survival and parasite transmissibility.

Other studies have attempted to elucidate the role of
anaphylatoxin signaling in acute T. gondii infection. Anaphylatoxin
signaling has been implicated in regulating Th1 responses, which are
critical in host resistance to T. gondii infection. The first studies
demonstrated increased susceptibility of C5ar1−/− C3ar1−/− double
knockout (DKO) mice to T. gondii infection. Intraperitoneal
injection of 20 Me49 cysts resulted in acute death within 12
days in the DKO mice whereas all WT mice survived for greater
than 50 days, the longest time point studied. The DKO mice had
significant reductions in IL-12 and IFN-g secretion in splenic
cultures stimulated with STAg (soluble Toxoplasma antigen) and
supported a protective role for anaphylatoxin receptor signaling
(Strainic et al., 2008). These findings are consistent with an
established role for locally produced C3a and C5a in regulating
Th1 responses through autocrine and paracrine C3aR/C5aR
receptor signaling (Strainic et al., 2008; Liszewski et al., 2013).
More recently, infection studies in C5ar1−/− mice showed that
these mice also die acutely, but with a much less dramatic
phenotype or kinetic than the DKO mice (Briukhovetska et al.,
2020). In this study, 50 cysts of the Type II strain Me49 were
injected intraperitoneally. At this dose, both WT and C5ar1−/−

mice were susceptible to intraperitoneal infection, with 60% of
WT mice dead within 30 days compared to 80% of C5ar1−/−

infected mice, which exhibited a statistically significant higher
parasite load during acute disease (Briukhovetska et al., 2020). The
authors argued that C3b and its degradation products likely
promoted the release of the anaphylatoxin C5a that bound the
C5aR1 expressed on CD8a+ dendritic cells (DCs) which were
activated by T. gondii-induced TLR signaling to amplify IL-12 and
IFN-g production (Briukhovetska et al., 2020). Evidence for
decreased levels of serum proinflammatory cytokines and
increased IL-10 serum levels in C5ar1−/− mice, and the reduction
of IL-12 secretion from C5ar1−/− splenic DCs in response to STAg
in vitro suggested that complement signaling was important for
priming appropriate Th1 responses to control parasite replication.
Collectively, these studies suggest that loss of systemic complement
and anaphylatoxin receptor signaling play a significant role in
the failure to sense or initiate proper humoral and cytokine
responses against acute T. gondii infection, respectively, which is
necessary to control parasite proliferation during acute disease.
February 2021 | Volume 11 | Article 634610
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To better understand the relative and contributing roles of
complement effectors C3, C3b, and associated anaphylatoxin
receptor signaling on immunological priming and control of
parasite proliferation, we infected C57BL/6J mice perorally with
40 cysts of the Me49 strain. C57BL/6 mice develop an acute, Th1
CD4+ T cell-mediated lethal ileitis within 8 days of Toxoplasma
peroral infection that results in tissue destruction and necrosis of
the intestinal mucosa. This immunopathology is associated with
exacerbated Th1 immune responses, which include increased
production of the inflammatory mediators IFNg, TNF-a, nitric
oxide (Liesenfeld et al., 1996; Khan et al., 1997; Liesenfeld et al.,
1999), Th1 and Th17 cytokines (Rachinel et al., 2004;
Vossenkämper et al., 2004), and shifts in the intestinal
microbiota (Heimesaat et al., 2006; Molloy et al., 2013; Wang
et al., 2019). Systemic complement and anaphylatoxin receptor
signaling is emerging as an important component of the
intestinal immune response by its ability to regulate epithelial
barrier integrity, the microbiota, and oral tolerance (Pekkarinen
et al., 2013; Nissilä et al., 2017; Zhang et al., 2018; Benis et al.,
2019; Qi et al., 2020), however the contribution of complement
in the protection of mucosal barriers during acute T. gondii
infection has not been directly addressed.

To investigate this question, we infected C57BL/6J WT and
C3 deficient animals with 40 Me49 tissue cysts perorally and
assessed survival. As a control, we also infected WT and C3
deficient animals with 25 tachyzoites of the Type I RH strain
intraperitoneally to demonstrate that C3 is protective during
infection regardless of parasite genotype (Figure 3A). In stark
contrast to the i.p. model in which all mice die acutely, 100% of
C3 deficient mice survived T. gondii infection whereas all WT
mice died acutely, within 10 days (Figure 3B). Histologic
examination of the spleen and intestines at days 4, 6, and 8
(Figures 3C, D) post infection showed striking differences in
pathology, highlighted by areas of necrosis in the white pulp of
the spleen of infected WT mice compared to C3−/− mice, and a
severe necrosis of the ilea, predominantly within the villi, with
significant inflammation, a loss of columnar epithelial cells and a
large accumulation of granulocytes that was largely absent in the
C3−/− infected mice. Parasite load was determined by plaquing a
portion of the spleen and small intestine of WT versus C3
deficient mice at day 6 post infection and showed a similar
level of parasites present (with no significant difference detected
in the tissues examined; data not shown).

Consistent with phenotypes observed in other murine models
of inflammatory-driven acute colitis, complement deficient mice
were protected from T. gondii-induced lethal ileitis and survived.
We hypothesize that dysregulation of the local complement
response contributed detrimental inflammation and led to the
pathogenesis of acute infection. Similar phenotypes have
previously been observed in perorally infected mice deficient in
the inducible NO synthetase enzyme (iNOS−/−) and may suggest
that complement likewise plays an analogous role by
exacerbating the immunopathology observed in this oral model
of acute ileitis. Nitric oxide is an important mediator restricting
intracellular pathogen growth. iNOS−/− mice exhibited greater
dissemination and parasite burden but survived significantly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
longer than control mice infected perorally (Khan et al., 1997;
Scharton-Kersten et al., 1997). Whereas control mice exhibited
exacerbated cytokine production and necrosis, the prolonged
survival of iNOS−/− mice was attributed to control of the
dysregulated inflammatory response that occurs in B6 mice.
Unlike the C3 deficient mice, iNOS−/− mice eventually
succumb to infection, largely the result of their inability to
control parasite proliferation (Khan et al., 1997). These studies
indicated that iNOS and NO production is critical for parasite
killing. Further, these findings suggest that acute ileitis is
critically dependent on the level of IL-10 present, a critical
meditator of immune homeostasis during proinflammatory
Th1 responses, both in genetically susceptible C57BL/6 mice and
resistant BALB/c. Indeed, mice deficient in IL-10 show an
increased susceptibility to T. gondii infection compared to
control animals (Gazzinelli et al., 1996; Suzuki et al., 2000). The
increased susceptibility was not attributed to increases in parasite
burden, but rather to the inability to control the pro-inflammatory
response. Together, the studies highlighted illustrate that several
immunological factors contribute toward tipping the balance
towards immunopathology in T. gondii-induced ileitis, and
further investigations are required to determine how protective
versus pathological roles of complement contribute to the
immunopathology associated with oral infection of genetically
susceptible C57BL/6 mice. In the next section, we discuss how
studies addressing the role of complement in other intestinal
inflammatory disorders may provide insight into the observed
dichotomous role for complement in the pathogenesis of acute T.
gondii peroral infection.
ADDITIONAL INSIGHTS AND
OUTSTANDING QUESTIONS

The intestinal pathology induced by oral T. gondii infection
shares similarities with human inflammatory bowel disease
(IBD) (Liesenfeld, 2002). Recent studies in the IBD field
support a model in which complement has both a pathogenic
and a protective role and specifically, that local complement
production plays a central role in the pathophysiology of these
inflammatory diseases, including the established experimental
mouse model of acute dextran-sulfate induced (DSS) colitis, a
model for human inflammatory bowel disease. Complement is
also produced extra-hepatically by immune cells and epithelial
cells, including intestinal enterocytes, and may have specific
functions at local sites (Morgan and Gasque, 1997; Lubbers
et al., 2017). Mice deficient in C3 or Factor B were protected
from acute colitis induction 5 days post DSS treatment and
exhibited improved clinical outcome (Elvington et al., 2015). In
contrast to previous studies (Lu et al., 2010), complement
deficient mice unexpectedly died within 5 days of the DSS
recovery period, indicating a protective role for complement
after induction of colitis (Schepp-Berglind et al., 2012). Mortality
was attributed to impaired epithelial barrier function in the
absence of complement, leading to translocation of commensals
February 2021 | Volume 11 | Article 634610
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and increased endotoxins, and reduction of mucosal tissue
proliferation during the repair process (Schepp-Berglind et al.,
2012; Elvington et al., 2015). C5 deficiency in an earlier study was
also shown to make mice more susceptible to colitis after 10 days,
supporting this protective role (Deguchi et al., 2005). Reported
discrepancies in phenotypes across various studies are likely due to
differences in disease severity attributed to dose of DSS and mouse
genotype. Thus, understanding the contributions of complement
to dual protective and pathogenic functions in T. gondii infection
may not only rely on host genotypes but also parasite genotype
and dose and thus requires further study.

Anaphylatoxin receptor signaling has also been shown to play
a role in regulating pro-inflammatory responses at the intestinal
barrier. Reports of a pathogenic role for C5a in colitis models are
supported by the amelioration of disease pathology in mice and
rats using C5aR deficient animals (Johswich et al., 2009), C5a
blockade (Chen et al., 2011) or treatment with C5a agonists
(Woodruff et al., 2003). Complement activation also contributed
to the development of colitis-associated colorectal cancer (CAC),
supported by tumor repression in complement deficient mice
(C3, C5, or C5aR) (Ning et al., 2015). Mechanistic studies
revealed that complement deficiency reduced proinflammatory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
cytokine production produced by neutrophils (IL-1b and IL-17)
in the colonic tissues, indicating that C5a is a potent inducer of
this response. While C3aR deficiency in BALB/c was partially
protective in DDS-induced colitis, there was no significant effect
observed in C57BL/6 mice (Wende et al., 2013), indicating that
differences between these two mice strains are important factors in
these phenotypes. Given this evidence and the recently
demonstrated role of C5aR signaling in systemic T. gondii
infection (Briukhovetska et al., 2020), it is highly likely that
anaphylatoxins play an important role in promoting
inflammation in the gut during T. gondii infection.

It is tempting to speculate that complement at mucosal
barriers may need greater regulation. IBD in humans and mice
is associated with increased complement activation (Ahrenstedt
et al., 1990; Elvington et al., 2015; Preisker et al., 2019) and
reduced expression of complement regulatory proteins in the gut
epithelium (Berstad and Brandtzaeg, 1998; Scheinin et al., 1999).
Accordingly, mice deficient in DAF (CD59) are more susceptible
to DSS-induced colitis (Lin et al., 2004). In the previously
discussed studies, while complement deficient mice died by day
5 after DSS recovery, the wild type mice treated with complement
inhibitors survived the DSS treatment, suggesting complement
FIGURE 3 | Lethal ileitis in Toxoplasma gondii perorally infected C57BL/6J mice is dependent on C3. (A) Survival of 6- to 8-week-old C57BL6/J (n = 5, closed
circle) and C3−/− (n=5, open square) female mice infected with 25 tachyzoites injected intraperitoneally of the RH strain of Toxoplasma gondii. Data shown are for
one of two independently performed experiments. (B) Survival of 6- to 8-week-old C57BL6/J (n=5, closed circle) and C3−/− (n=5, open square) female mice infected
by oral gavage with 40 cysts of the Me49 strain of Toxoplasma gondii. Data shown are for one of two independently performed experiments. (C) Histological
examination of the spleen of C57BL6/J or C3−/− mice stained with hematoxylin-eosin (HE) at day 8 post-infection with 40 cysts of Me49 by oral gavage. (D)
Histological examination of the small intestine of C57BL6/J or C3−/− mice stained with hematoxylin-eosin (HE) at day 8 post-infection with 40 cysts of Me49 by
oral gavage.
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regulation or inhibition over deficiency is more protective and
may have important therapeutic implications for inflammatory
conditions (Schepp-Berglind et al., 2012; Elvington et al., 2015).

Lastly, the interaction between intestinal complement, commensal
bacteria, and Toxoplasma during acute infection remains to be fully
elucidated. T. gondii infection is associated with microbial dysbiosis
(Molloy et al., 2013; Wang et al., 2019) and emerging evidence for the
role complement plays inmaintaining gut homeostasis and regulating
commensal microbiota is a factor that must be carefully evaluated
(Benis et al., 2019; Qi et al., 2020). Equally important is to consider
whether the interaction of T. gondii with complement and its
regulators may contribute adversely to the outcome of this complex
environment. Our previous work has shown that parasite genotype
impacts complement deposition. Additional studies are required to
test if the capacity of Type II strains, that show greater C3b deposition
(Sikorski et al., 2020) could potentially induce greater local levels of
C3a and C5a, which play a role in pro-inflammatory signaling by
their cognate anaphylatoxin receptors. It is also possible that greater
opsonization of Type II strains may contribute to the increased
internalization of Type II strains via phagocytosis. Recent studies have
shown that avirulent Type II strains preferentially enter macrophages
through phagocytosis but avoid elimination by escaping the
phagolysosome in murine macrophages (Zhao et al., 2014), in
which the authors hypothesized this mode of entry promotes an
enhanced immune stimulation and greater control of acute infection.

The identification of parasite factors that activate and regulate
complement are critical for determining whether direct parasite
activation and regulation of the complement system is occurring
in vivo. Studies from the Plasmodium field have identified several
developmentally regulated 6-CYS surface proteins that regulate
complement in both the mosquito and human host (Molina-
Cruz et al., 2013; Kennedy et al., 2016). Comparative modeling
studies and the crystal structure of Pf12 has determined that the
6-CYS proteins share tertiary structural homology with T. gondii
SRS (SAG-1 related sequences) surface proteins (He et al., 2002;
Gerloff et al., 2005; Arredondo et al., 2012; Tonkin et al., 2013).
This evidence points to a potential role for the structurally
homologous T. gondii SRS surface proteins (Gerloff et al., 2005;
Tonkin et al., 2013) to possess an analogous role. Though the
mechanism for Factor H recruitment by the Plasmodium 6-CYS
protein Pf92 remains elusive, it is well established that FH is
recruited to host cell surfaces through its ability to bind host
ligands such as sialic acid and sulfated proteoglycans (SPGs)
(Blaum, 2017). Toxoplasma is known to interact with both sialic
acid and SPGs via microneme proteins 1 and 4 (MIC1, MIC4)
and SRS57, and thus these proteins are prime candidates for
future study to determine their capacity in recruiting FH
(Ortega-Barria and Boothroyd, 1999; Dzierszinski et al., 2000;
Jacquet et al., 2001; Sardinha-Silva et al., 2019). Interestingly,
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recent analyses done in our lab have determined that the
developmentally regulated SRS superfamily of surface proteins
are significantly expanded in T. gondii (Jung et al., 2004;
Wasmuth et al., 2012). While the biological significance of this
expansion remains elusive, it is tempting to speculate that the
SRS superfamily plays a role in overcoming immunological
barriers to establish successful infection in a wide host range.
Specifically, are there stage-specific surface or secreted proteins
that activate or regulate complement in a species-specific
manner, i.e. intermediate versus definitive host, or does a
universally expressed SRS protein facilitate this process across
several species? All of these intriguing questions require
additional studies.
CONCLUDING REMARKS

The data presented in this review highlight a protective and
pathogenic role for the complement system during acute T.
gondii infection, depending on the route of infection. We are
just beginning to understand how parasite modulation of
complement activation may impact complement effector
functions required to strike the optimal balance in the
intermediate host. Evading serum killing ensures parasite survival,
persistence and transmission to new hosts, while maintaining the
generation of critical effector proteins (iC3b, C3a, C5a) that are
required for stimulating sufficient humoral and Th1 immunity to
regulate tachyzoite proliferation. We argue that future investigations
will further unravel the immunomodulatory role of complement
activation and regulation during T. gondii infection in the gut.
Additional studies into the parasite factors that interact with and
regulate complement are required to better understand the
dynamics that occur between parasite and host systemically and
locally in the gut.
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