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Abstract Traditionally health statistics are derived from civil and/or vital registration. Civil registration in low- to middle-

income countries varies from partial coverage to essentially nothing at all. Consequently the state of the art for public health

information in low- to middle-income countries is efforts to combine or triangulate data from different sources to produce a

more complete picture across both time and space – data amalgamation. Data sources amenable to this approach include

sample surveys, sample registration systems, health and demographic surveillance systems, administrative records, census

records, health facility records and others. We propose a new statistical framework for gathering health and population

data – HYAK – that leverages the benefits of sampling and longitudinal, prospective surveillance to create a cheap, accurate,

sustainable monitoring platform. HYAK has three fundamental components:

• Data amalgamation: A sampling and surveillance component that organizes two or more data collection systems to

work together: (1) data from HDSS with frequent, intense, linked, prospective follow-up and (2) data from sample

surveys conducted in large areas surrounding the Health and Demographic Surveillance System (HDSS) sites using

informed sampling so as to capture as many events as possible;

• Cause of death: Verbal autopsy to characterize the distribution of deaths by cause at the population level; and

• Socioeconomic status (SES): Measurement of SES in order to characterize poverty and wealth.

We conduct a simulation study of the informed sampling component of HYAK based on the Agincourt HDSS site in South

Africa. Compared with traditional cluster sampling, HYAK’s informed sampling captures more deaths, and when combined

with an estimation model that includes spatial smoothing, produces estimates of both mortality counts and mortality

rates that have lower variance and small bias.
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1. New directions for health and population
statistics in low- to middle-income countries

1.1. Background

In most of the developed world, the traditional source of

basic public health information is civil registration and vital

statistics. Civil registration is a system that records births

and deaths within a government jurisdiction. The purpose

is twofold: (1) to create a legal record for each person

and (2) to provide vital statistics. Optimally a civil register

includes everyone in the jurisdiction, provides the basis to

ensure their civil rights and creates a steady stream of

vital statistics [1].

The vital statistics obtained from many well-functioning

civil registration systems include birth rates by age of

mother, mortality rates by sex, age and other characteris-

tics, and causes of death for each death. These basic indica-

tors are the foundation of public health information systems,

and when they are taken from a near-full-coverage civil

registration system, they relate to the whole population.

Although the idea is inherently simple, implementing full-

coverage civil registration is not, and only the world’s richest

countries are able to maintain ongoing civil registration sys-

tems that cover a majority of the population. Civil registra-

tion in the rest of the world varies from partial coverage to

essentially nothing at all [2]. A four-article series titled ‘Who

Counts?’ in the Lancet in 2007 reviews the current state of

civil registration [3–8]. This was followed eight years later

with another four-article series presenting a similar but

slightly more hopeful picture [9–12]. The authors lament

that there has been a half a century of neglect in civil regis-

tration in low- to middle-income countries, and critically,

that it is not possible to obtain useful vital statistics from

those countries [7,8,11].

The Lancet authors argue that in the long-term all coun-

tries need complete civil registration to ensure the civil

rights of each one of their citizens and to provide useful,

timely public health information [3,9], and they explore a

number of interim options that would allow countries to

move from where they are today to full civil registration

[5]. Echoing the Lancet special series are additional urgent

pleas for better health statistics in low- and middle-income

countries [for example: 2, 13–16]. The WHO and its part-

ners and supporters have actively supported improvements

in civil registration and vital statistics (CRVS) over the recent

past [17–19]. These workers clearly identify a need for rep-

resentative data describing sex-, age-, and cause-specific

mortality through time in small enough areas to be meaning-

ful for local governance and health institutions. These cri-

tiques are for the most part discussed in the framework

of civil registration as the ‘primary’ source of data.

Recently, various United Nations (UN) agencies, including

the office of the Secretary General, have articulated strong,

specific support for rapid improvement in the evidence base

for the Sustainable Development Goals (SDG) [20] – the

international target framework that follows from the

Millennium Development Goals (MDGs) [e.g., 21–23]. The

appropriately named Data Revolution [24] is the flagship pro-

gram organized by the UN to address the systematic lack of

data to measure progress toward the SDG targets.

We agree that in order to ensure civil rights and provide

each unique citizen with a legal identity, full-coverage civil

registration is the long-term goal. Acknowledging that, we

propose decoupling the discussion of civil registration

from vital statistics. In particular, we can obtain accurate

and representative vital statistics measurements by making

inferences from carefully adjusted samples.

The sample-based approach drives the production of

population statistics in many other fields, including econom-

ics, sociology, and political science. Borrowing from these

fields public health workers have developed sample-driven

approaches to health statistics that partially substitute for

vital statistics derived from civil registration. India has con-

ducted a sample registration system (SRS) for several dec-

ades [25] that has produced good basic vital statistics, and

more recently Jha et al. [26] have added verbal autopsy

[27] to this system to create the Indian MDS (Million

Death Study). In a similar vein, USAID’s Sample Vital

Registration with Verbal Autopsy (SAVVY) is a program

that combines sample registration with verbal autopsy and

provides general-purpose tools to collect data [28].

USAID’s Demographic and Health Surveys (DHS) [29] and

UNICEF’s Multiple Indicator Cluster Surveys (MICS) [30]

are good examples of traditional household surveys that

describe a select subset of indicators for national popula-

tions at multiple points in time. There are many more similar

sample surveys conducted by smaller organizations and

aimed at specific diseases or the evaluation of specific

interventions.

These approaches generally utilize sampling designs devel-

oped to provide cross-sectional snapshots of the current

state of the population with respect to an indicator. With

the exception of India’s SRS and SAVVY, they lack the

ongoing, prospective, longitudinal structure of a traditional

vital registration system. They also often lack the spatial

resolution to distinguish differences in indicator values

across short distances. Finally, they often miss or under-

count rare events because they typically take one measure-

ment and rely on recall to fill in recent history.

The current state of the art for public health information in

low- to middle-income countries involves efforts to combine

or triangulate data from multiple sources to produce a more

complete picture across both time and space. The usual

sources of data include: non-representative, low-coverage,

poor quality vital registration data; roughly once-per-decade

census data; snapshot or repeated snapshot data from (some-

times nationally representative) household surveys; one-off

sample surveys conducted for a variety of specific reasons

by a diverse array of organizations; sample registration sys-

tems; and finally, a hodgepodge of miscellaneous data sources
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that may include health and demographic surveillance systems

(HDSS), sentinel surveillance systems, administrative records,

clinic/hospital records, and others.

Combining data from different sources with multiple sam-

pling schemes present a myriad of statistical challenges. We

use data pooling as a broad term that describes methods that

adjust for bias due to differences in representativeness

across data from different sources. The global burden of dis-

ease study by the Institute for Health Metrics and Evaluation

[31] is a highly visible example of data pooling. As another

example, [32] pool survey data to produce fine geographical

scale Plasmodium falciparum malaria endemicity. Data amal-
gamation also uses data from multiple sources but is differ-

entiated by active engagement in the data collection process.

Data amalgamation uses proactive (e.g. HYAK) or adaptive

mechanisms that actively adjust the data collection process

to optimize a set of metrics – minimize bias, minimize vari-

ance, minimize cost, etc. A recent study of malaria preva-

lence by [33] is an example of data amalgamation in which

survey locations are adaptively chosen to minimize the vari-

ance of a target; see [34] for statistical details. In the survey

sampling literature, adaptive cluster sampling has a relatively

long history [35], and has been used extensively in surveys of

rare animal and plant species; we are not aware of any appli-

cations in the context considered here. In short, we use data

pooling for situations where researchers combine several

datasets not necessarily collected to measure the indicator

of interest, whereas data amalgamation is an intentional

strategy that incorporates multiple heterogeneous data

sources into the design process.

In the spirit of earlier work on master sampling frames,

the United Nations Statistical Division [36–38] describe a

system of ‘integrated, continuous surveys’ that would pro-

duce ongoing, longitudinal monitoring of a variety of out-

comes – a proactive engagement with the data collection

process in keeping with our definition of amalgamation.
Data from such a system could be representative with

respect to population, time and space and thereby substitute

for and improve on traditional vital statistics data. The idea is

to systematize the nationally representative household sur-

veys already implemented in a country, conduct them on a

regular schedule with a permanent team and institute rigor-

ous quality controls. The innovation is to turn traditional

cross-sectional surveys into something quasi-longitudinal

and to ensure a level of consistency and quality. This con-

cept appears to still be in the idea stage without any real

methodological development or real-world testing. More

in the spirit of data amalgamation, Bryce et al. [39] use a var-
iety of data sources to conduct a multi-country evaluation of

Integrated Management of Childhood Illness (IMCI) inter-

ventions. This evaluation does develop some ad-hoc meth-

ods for combining and interpreting data from diverse

sources.

Victora et al. [40] articulate a similar vision for a national

platform for evaluating the effectiveness of public health

interventions, specifically those targeting the MDG. The

authors argue that national coverage with district-level

granularity is necessary, and like Rowe and Bryce, that con-

tinuous monitoring is required to assess changes and

thereby intervention impacts. That article contains signifi-

cant discussion of general survey methods, sample size con-

siderations, and other methodological requirements that

would be necessary to evaluate MDG interventions. Again

however, there are no methodological details that would

allow someone to design and implement a national, pro-

spective survey system of the type described.

Several authors who work at HDSS sites have described

an idea for carefully distributing HDSS sites throughout a

country in way that could lead to a pseudo representative

description of health indicators in the country through

time [41]. Although these authors do not provide details

for how this could be done or evidence that it works, the

basic idea is supported by work from Byass et al. [42]

who examine the national representativeness of health

indicators generated in individual Swedish counties in

1925. Byass and colleagues discover that any of the not-

obviously-unusual counties produced indicator values that

were broadly representative of the national population –

the counties being roughly equivalent to an HDSS site, and

Sweden in 1925 being roughly equivalent to low- and

middle-income countries today.

Jha [43] summarizes all of this in his description of five

ideas for improving mortality monitoring with cause of

death. His five ideas include SRS systems with verbal aut-

opsy, improving the representativeness of HDSS (similar

to Ye et al. [41]), coordinating representative retrospective

surveys (similar to Rowe and Bryce) and finally using what-

ever decent-quality civil registration data might be available.

We find only two fully implemented and demonstrated

examples of data amalgamation in the public health sphere.

Before the DHS surveys routinely collected HIV biomarkers

that could be used to estimate population HIV prevalence at

the national level, several groups developed methods that

drew on multiple sources of data to generate reasonable

national-level estimates of HIV prevalence. Alkema et al.
[44,45] working with the UNAIDS Reference Group on

Estimates, Modelling and Projections develop a Bayesian

statistical method that simultaneously estimates the para-

meters of an epidemiological model that represents the

time-evolving dynamics of HIV epidemics and calibrates

the results of that model to match population-wide esti-

mates of HIV prevalence. The epidemiological model is fit

to sentinel surveillance data describing HIV prevalence

among pregnant women who attend antenatal clinics, and

the population-wide measures of prevalence come from

DHS surveys. Interestingly the second example relates to a

similar problem. Lanjouw and Ivaschenko at the World

Bank [46] describe a method to amalgamate population-level

data from DHS surveys and HIV prevalence data from a sen-

tinel surveillance system. The DHS contains representative
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information on a variety of items but not HIV prevalence,

and the sentinel surveillance system describes the HIV

prevalence of a select (non-representative) subgroup, again

pregnant women who attend antenatal clinics. Building on

ideas in small-area estimation, they develop and demonstrate

a method to adjust the sentinel surveillance data and then

predict the HIV prevalence of the whole population.

Although these are two specific applications of data amal-

gamation, it is this level of conceptual and methodological detail
that are necessary in order to amalgamate data from different
sources to produce representative, probabilistically meaningful
results. The population, public health, and evaluation litera-

tures are full of urgent requests for better data and more

useful methods to amalgamate data from different sources

to answer questions about cause and effect and change at

the national and subnational levels, but there is very little

in any of those literatures that actually develop the new con-

cepts and methods that are necessary to deliver the

required new capabilities. Chipeta et al. [34] describe an

adaptive design whose aim is to estimate disease prevalence.

1.2. A new statistical platform

Taking account of the situation described in the literature

and firmly in the spirit of ‘data amalgamation’, we aim to

develop a system that provides high quality, continuously

generated, representative vital statistics, and other popula-

tion and health indicators using a system that is cheap and

logistically tractable. We are confident that such a system

can provide highly useful health information at all important

geographical (and other) scales: nation, province, district,

and perhaps even subdistrict.

As we argue above, we strongly believe that a sample-
based approach is both appropriate and sufficient to pro-

duce meaningful, useful public health information, and we

do not believe it is fiscally responsible to attempt to cover

the entire population with a public health information sys-

tem. That argument must be made on the basis of guaran-

teeing human rights alone.

1.3. Design criteria

What we want is a cheap, sustainable, continuously operated
monitoring system that combines the benefits of both sam-

ple surveys (representativity, sparse sampling, logistically

tractable) and surveillance systems (detailed, linked, longitu-

dinal, prospective with potentially intense monitoring – e.g.

of pregnancy outcomes and neonatal deaths) to provide use-
ful indicators for large populations over prolonged periods

of time, so that we can monitor change and relate changes

to possible determinants, including interventions. More spe-

cifically, ‘useful’ in this context means an informative balance

of accuracy (bias) and precision (variance) – i.e. minimal but

probably not zero bias accompanied by moderate variance.

We want indicators that are close to the truth most of the time,
and we want an ability to study causality properly. Critically,

we want the whole system to be cheaper and more sustain-

able than existing systems, and perhaps offer additional

advantages as well.

1.4. HYAK

We propose an integrated data collection and statistical

analysis framework for improved population and public

health monitoring in areas without comprehensive civil

registration and/or vital statistics systems. We call this plat-

form HYAK – a word meaning ‘fast’ in the Chinook Jargon of

the Northwestern United States.

HYAK is conceived as having three fundamental

components:

• Data amalgamation: A sampling and surveillance compo-

nent that organizes two data collection systems to work

together to provide the desired functionality: (1) data

from HDSS with frequent, intense, linked, prospective

follow-up and (2) data from sample surveys conducted

in large areas around the HDSS sites using informed sam-

pling so as to capture as many events as possible.

• Verbal autopsy [27] to estimate the distribution of deaths

by cause at the population level, and

• Socioeconomic status (SES): Measurement of SES at house-

hold, and perhaps other levels, in order to characterize

poverty and wealth.

HYAK uses relatively small, intensive, longitudinal HDSS sites

to understand what types of individuals (or households) are

likely to be the most informative if they were to be included

in a sample. With this knowledge the areas around the

HDSS sites are sampled with preference given to the

more informative individuals (households), thus increasing

the efficiency of sampling and ensuring that sufficient data

are collected to describe rare populations and/or rare

events. This fully utilizes the information generated on an

on-going basis by the HDSS and produces indicator values

that are representative of a potentially very large area

around the HDSS site(s). Further, the information collected

from the sample around the HDSS site can be used to cali-

brate the more detailed data from the HDSS, effectively

allowing the detail in the HDSS data to be extrapolated to

the larger population. For an example of how this has

been done in the context of antenatal clinic HIV prevalence

surveillance and DHS surveys, see Alkema et al. [44].

Another way to do this is to build a hierarchical Bayesian

model of the indicator of interest, say mortality, with the

HDSS being the first (informative) level and the surrounding

areas being at the second level. Thus the surrounding area

can borrow information from the HDSS but is not required

to match or mirror the HDSS.

In the remainder of this work, we focus on the informed

sampling component of HYAK. Informed sampling seeks to

capture as many events as possible. This is critical for

the measurement of mortality, and especially for the

cambridge.org/gheg



measurement of cause-specific mortality fractions (CSMF) at

the population level. In order to adequately characterize the

epidemiology of a population, it is necessary to measure the

CSMF with some precision, and to do this a large number of

death events with verbal autopsy are required, especially for

rare causes. Informed sampling aims to make the measure-

ment of mortality rates and CSMFs as efficient as possible.

Below we present a detailed example of the informed

sampling idea and a pilot study based on information from

the Agincourt HDSS site1 in South Africa [47,48]. The

Agincourt HDSS is situated in the rural northeast of South

Africa and covers an area of 420 km2 comprising a sub-

district of 27 villages. The site monitors roughly 90 000 peo-

ple in 16 000 households. The villages and households are

dispersed widely across this area, and there is a functional

road network linking them all. The epidemiology of the

site is typical for South Africa with generally low mortality

except for the effect of HIV at very young and middle

ages, and in terms of wealth/poverty, the population is typ-

ical of a middle-income country [e.g. 49–54]. The Agincourt

HDSS is the canonical HDSS, not extreme along any dimen-

sion, and generally representative of what an HDSS site is.

We generate virtual populations based on information

from the Agincourt site, and then we simulate applications

of traditional two-stage cluster and HYAK sampling designs.

We estimate sex–age-specific mortality rates for children

ages 0–4 years (last birthday) and compare and discuss the

results. In the Conclusions section, we describe how verbal

autopsy methods can be integrated into the HYAK system

and the ‘demographic feasibility’ of HYAK.

We are thinking about existing data collection methods

and these objectives in a unified framework, and we are

starting by experimenting with sampling and analytical fra-

meworks that work together to provide the basis for a

measurement system that is representative, accurate and effi-

cient in terms of information gained per dollar spent (not

the same as cheap in an absolute sense because estimation

of a binary outcome like death is still bound by the fundamen-

tal constraints of the binomial model; i.e. relatively large num-

bers of deaths are needed for useful measurements).

A measurement system like this would be among the

cheapest and most informative ways to monitor the mor-

tality of children affected by interventions that cover large

areas and exist for prolonged periods of time. With this in

mind, the pilot project we present below focuses on child-

hood ages 0–4.

2. Pilot study of HYAK informed-sampling via
simulation

2.1. Methodological approach

In this section, we describe our approach to sampling and

analysis. To be concrete, we suppose that the outcome of

interest is alive or dead for children age 0–4. There are

two novel aspects to our approach:

• Informed Sampling: Using existing information from a

HDSS site we construct a mortality model based on

village-level characteristics. On the basis of this model,

we subsequently predict the number of outcomes of

interest in each village of the study region. We then set

sample sizes in each village in proportion to these

predictions.

• Analysis: We model the sampled deaths as a function of

known demographic factors and village-level characteris-

tics, and then we employ spatial smoothing to tune the

model to each village and exploit similarities of risk in

neighboring villages.

2.1.1. Notation

Given our interest in the binary status alive or dead, our
modeling framework is logistic regression with random

effects. Specifically, let i = 1, . . . , I represent villages within
the study region and j = 1, . . . , 4 index strata, which we

take as the four levels of sex (F, M) and age (Young: [0, 1)

years, old: [1, 5) years). Households within areas will be

represented by k = 1,…, Ki, for i = 1, . . . , I. The quantity

of interest is Yij, the unobserved true number of deaths in

village i and in sex/age stratum j. We assume that the popu-

lations Nij are known in all villages. Also assumed known are

village-specific covariates Xi (for example, the average SES in

village i, a measure of water quality, or proximity to health

care facilities).

The probability of dying in village i and stratum j is

denoted by pij, which is the hypothetical proportion of chil-

dren dying in a hypothetical infinite population in area i and
strata j. We stress that we are carrying out a small-area esti-

mation problem so the target of interest is Yij and the prob-

ability is just an intermediary which allows us to set up a

model. If the full data were observed, we would take the

probability to be the observed frequency p̃ij = Yij/Nij. The

1 From [47]: The Agincourt health and socio-demographic surveillance

system (HDSS), located in rural northeast South Africa close to the

Mozambique border, was established in 1992 to support district health

systems development led by the post-apartheid ministry of health. At baseline

in 1992, 57 600 people were recorded in 8900 households in 20 villages; by

2006, the population had increased to 70 000 people in 11 700 households.

This increase is partly due to Mozambican in-migrants overlooked in the

baseline survey and to a new settlement established as part of the

post-apartheid governments Reconstruction and Development Program. In

2007, the study area was extended to include the catchment area of a new

privately supported community health centre established to provide HIV

treatment before public sector roll-out of HAART. By mid-2011, the

population under surveillance comprised 90 000 people residing in 16 000

households in 27 villages. Households are self-defined as people who eat from

the same pot of food. Given sustained high levels of temporary labor

migration in southern Africa, we included temporary migrants residing for <6

months/year who retain close ties with their rural homes in the HDSS. There

have been 17 census and vital event update rounds conducted strictly annually

since 2000. Participation is virtually complete, with only two households

refusing to participate in 2011.
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survey design problem corresponds to choosing nij, the

number of children in stratum j that we sample in village i.
Of these, yij are recorded as dying.

In the next section, we describe models that will be used

to analyze the data; once we have estimated probabilities

from a generic model, p̂ij, we use the estimator:

Ŷ ij = yij + (Nij − nij) × p̂ij, (1)
where yij is the observed number of deaths and (Nij− nij) is the
number of unsampled individuals in village i and stratum j.

2.1.2. Models

In this section, we describe models that may be fit to the

sampled data.

I Naïve model: This baseline model simply estimates

p̂ = y/n, i.e. a single probability is applied to the

unsampled individuals in each village. The predicted num-

ber of deaths in each village is then (1) with p̂ij = p̂.
II Strata model: This model estimates p̂j = yj/nj, so that esti-

mates of four stratum-specific probabilities are calcu-

lated. The predicted number of deaths in each village is

then (1) with p̂ij = p̂j.
III Covariate model: This approach fits a model to data from

all villages where sampling was carried out and estimates

stratum effects along with the association between risk

and village-level covariates xi. We assume a logistic form,

logit pij = xiβ + γj, (2)
where j = 1, . . . , 4. Hence, we have a model with a sep-

arate baseline for each stratum and with the covariates

having a common effect across stratum and village, so

there is no interaction between covariates and stratum,

and covariates and area. We use the maximum-likelihood

estimates γ̂j and β̂ to obtain fitted probabilities:

p̂ij = expit(x îβ + γ̂j) =
exp(x îβ + γ̂j)

1+ exp(x îβ + γ̂j)
,

which may be used in (1).

IV Spatial covariate model: This approach requires sufficient

villages to have sampled data, so that spatial random

effects can be estimated. Specifically, we assume a

Bayesian implementation of the model:

logit pijk = xiβ + γj + ei + Si + hk, (3)
where j = 1, . . . , 4. We have three random effects in this

model. The unstructured village- and household-level

error terms ϵi∼ iidN(0, σϵ
2) and hk∼ iidN(0, σh

2), respect-

ively, are independent and allow for excess-binomial vari-

ability. The household-level random effects also allow for

dependence within households. The Si error terms are

village-level spatial random effects that allow the smooth-

ing of rates across space. There are many different forms

that these random effects could take. A model-based

geostatistical approach [55] would assume the collection

[S1, . . . , Sn] arise from a multivariate normal distribution,

with covariances a function of the distance between vil-

lages. We go a different route and use an intrinsic condi-

tional auto-regressive (ICAR) model [56] in which:

Si|Sj, j [ ne(i) � N(Si, σ2s /ni),
where ne(i) is the set of neighbors of village i and ni is the
number of such neighbors. This model assumes that the

prior distribution for the spatial effect in area i, given its

neighbors, is centered on the mean of the neighbors,

with a variance that depends on the number of neighbors

(with more neighbors reducing the prior variance). We

describe our ‘shared boundary’ neighborhood scheme

in the next section. We use the posterior means

β̂, γ̂j, ê i, and Ŝi to obtain fitted probabilities:

p̂ij =
exp(x îβ + γ̂j + ê i + Ŝi)

1+ exp(x îβ + γ̂j + ê i + Ŝi)
,

which may be used in (1); we do not include the

household random effects as these are not relevant

to predicting an area-level summary, but rather

account for within-household clustering. Until relatively

recently, fitting this model was computationally chal-

lenging within the context of a simulation study

(which requires repeated fitting). However, Rue et al.
[57] have described a clever combination of Laplace

approximations and numerical integration that can be

used to carry out Bayesian inference for this

model – the integrated nested Laplace approximation

(INLA). The INLA R package implements the INLA

method. A Bayesian implementation requires specifica-

tion of priors for all of the unknown parameters,

which for model (3) consist of β, γ, σϵ
2, σs

2, and σh
2.

We choose flat priors for β, γ, and Gamma(a, b) priors
for σϵ

−2, σs
−2, and σh

−2.

2.1.3. The simulation study region

We describe the study region that we create for the simu-

lation study, in order to provide a context within which the

different sampling strategies can be described. The study

region is based on the Agincourt HDSS site in South

Africa [47,48]. We assume N individuals reside in one of

20 villages and that there are between 1400 and 14 000 chil-

dren in each village, Ni∼Unif(1400, 14 000). In addition for

each village, we assume half the children are boys and half

are girls, with 20% in the age range 0−1 years and 80% in

the age range 1−5 years. Within each village, we assume

that households contain between one and five children

and follow the distribution

• P(household with one child) = 75/470 = 0.16

• P(household with two children) = 100/470 = 0.21

• P(household with three children) = 125/470 = 0.27
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• P(household with four children) = 100/470 = 0.21

• P(household with five children) = 70/470 = 0.15.

We sample a single population of N children and then

take S = 100 repeated draws from this population under

the four sampling schemes described below. Beginning

with the denominators Nij, we sample the observed deaths

yij using a binomial with probabilities given by (2).

We sample a second population of N children and treat

this population as a historical cohort. It is from this popula-

tion that we treat three of these villages as HDSS sites for

which we have extensive and complete information.

We form a Voronoi tessellation of the village boundaries

based on the 20 coordinate pairs that describe the centroids

of the villages. This operation forms a set of tiles, each asso-

ciated with a centroid and is the set of points nearest to that

point. This is a standard operation in spatial statistics [e.g.

58]. We can then define neighbors (for the spatial model)

as those villages whose tiles share an edge. Figure 1 shows

the study region along with village centroids and associated

village polygons (as defined by the Voronoi tesselations),

along with edges showing the neighborhood structure.

2.1.4. Sampling strategies

In this section, we describe the sampling strategies that we

compare. In each strategy, we consider four different sample

sizes, n, for the total number of children sampled: 1300,

2600, 3900, and 5200.

• Two-stage cluster sampling: This is the design most com-

monly used by the DHS, MICS and similar household sur-

veys. Randomly select five villages and randomly sample

(n/5)/3 households within each of the villages (since each

household contains, on average, three children).

Additional households will be sampled as needed until at

least n/5 children are obtained from each village. This is

an example of a two-stage cluster sampling plan, a com-

mon design.

• Stratified sampling: Randomly sample n/20 children from

each of the 20 villages. This strategy lies between the clus-

ter sampling and informed sampling designs.

• HYAK – HDSS with informative sampling: The number of chil-

dren sampled from each village is proportional to the pre-

dicted number of deaths based on the HDSS data. In

particular, we select all children from the three HDSS vil-

lages in the historical cohort and we fit model (2). On the

basis of the estimated β, γ, we obtain predicted counts of

deaths for all villages, using the village-level covariates xi,
i = 1, . . . , I. Let β*, γ* be the estimated parameters based

on the historic HDSS data only and p*ij be the associated vil-
lage and stratum-specific probabilities. We estimate pi* via

p∗i =
∑J

j=1

Nij

Ni
p∗ij .

Then, the predicted numberof deaths are Ỹi = Ni × p∗i .We

then select sample sizes as the (rounded versions of) ni / Ỹi
so that villages with more predicted deaths are sampled

more heavily. Specifically, we take ni = n× Ỹi/̃Y+ where

Ỹ+ is the total predicted number of deaths. The observed

number of deaths from ni is yi.
• Optimum allocation: As in the HYAK sampling design, we

obtain the village-level estimates of the probability of

death, pi*, based on the historic HDSS data only. We

then select sample sizes as the (rounded versions of)

ni = n×
Ni

����������
p̂i(1− p̂i)

√
∑

i′ Ni′

������������
p̂i′ (1− p̂i′ )

√ .

Details are provided in the appendix.

2.1.5. Measures of predictive accuracy

Given N total children, broken into the four stratum, we can

set risks pij (details of which appear in the section

‘Simulation’) for each village/stratum and then simulate

counts Yij. We take this set of {Yij : i= 1, . . .,20; j= 1, . . .,4}
as fixed, and then subsample from these counts, under

each of the four designs and repeat s= 1, . . .,S times.

The estimated number of deaths in survey villages in simu-

lation s is

Ŷ
(s)
ij = y(s)ij + (Nij − nij) × p̂

(s)
ij ,

where the p̂(s)ij are obtained from one of the models we

described in the section ‘Models’.

To estimate the frequentist properties of the simulation pro-

cedure, we summarize the results by examining various sum-

mary measures. An obvious measure of accuracy is the

mean-squared error (MSE) associated with the predicted num-

ber of deaths. The MSE of an estimator of the number of deaths

in area i and strata j, Ŷij averaged over villages and strata is

MSE(̂Yij) = E yij − Ŷ ij
( )2[ ]

,

where yij is the true number of deaths (which recall, is fixed),

and the expectation is over all possible samples that can be

Fig. 1. The 20 villages of the Agincourt region with Voronoi

tesselations defining neighborhood structure. Gray lines indicate

neighboring villages.
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taken (for whichever design we are considering). This MSE is

estimated based on S simulations:

MSE(̂Y) = 1

S

∑S
s=1

∑20
i=1

∑4
j=1

(̂Y (s)ij − Yij)2

=
∑20
i=1

∑4
j=1

(̂Yij − Yij)2 + 1

S

∑S
s=1

∑20
i=1

∑4
j=1

(̂Y (s)ij − Ŷ ij)2

=
∑20
i=1

∑4
j=1

Bias(̂Yij)2 +
∑20
i=1

∑4
j=1

Var(̂Yij),

(4)
where Yij is the true number of deaths in village i and stratum
j and

Ŷ ij = 1

S

∑S
s=1

Ŷ
(s)
ij

is the average of the predicted counts over simulations in vil-

lage i and stratum j. The decomposition in terms of bias and
variance is useful since it makes apparent the trade-off

involved in modeling.

2.2. Simulation

We assume that there are two village-level covariates so

that the length of the β vector is 2. Both of the village-level

covariates xi1 and xi2 are generated independently from uni-

form distributions on 0 to 1, i = 1, . . . , 20. Based loosely on

the real values from the Agincourt HDSS in South Africa,

the parameter values we use in the simulation are:

• The risk of death in young girls is expit(γ1) = 0.050.

• The risk of death in young boys is expit(γ2) = 0.117.

• The risk of death in older girls is expit(γ3) = 0.032.

• The risk of death in older boys is expit(γ4) = 0.077.

• The first village-level covariate has exp(β1) = exp(−2.2)
= 0.111, so that a unit increase in x1 leads to the odds

of death dropping by one-ninth.

• The second village-level covariate has exp(β2) = exp(1.4)
= 4.05, so that a unit increase in x2 leads to the odds of

death quadrupling.

• We set σϵ
2 = 0.22 to determine the level of unstructured

variability at the village level. This leads to a 95% range

for the residual unstructured village-level odds being

exp(+1.96× �����
0.22

√ ) = [0.40, 2.51].
• We set σs

2 = 0.48 to determine the level of structured

variability at the village level. This operation requires

some care because the ICAR model does not define a

proper probability distribution. The ICAR variance is

not interpretable as a marginal variance (and so is not

comparable to the other random effects variances, σϵ
2

and σh
2) and so instead Fig. 2 shows a simulated set of Si,

i = 1, . . . , 20 values, with darker values indicating higher

risk. The spatial dependence is apparent, with this realiza-

tion producing high risk to the West of the region and low

risk in the East.

• We set σh
2 = 0.08 to determine the level of unstructured

variability at the household level. This leads to a 95%

range for the residual unstructured household-level odds

being exp(+1.96× �����
0.08

√ ) = [0.57, 1.74].

For the strata and covariates models, the covariate rela-

tionship is estimated from the villages that produced data,

and then model (2) is used to obtain fitted probabilities

that are applied to the unsampled villages, using the popula-

tion and covariate information that is assumed known for

each village.

Combining all of the elements of the model, we generate

deaths Yij for village i and stratum j by randomly drawing

from a binomial distribution with probabilities given by (3).

This yields the predicted probabilities for all 20 villages

and for each of the four stratum displayed in Fig. 3. The his-

toric cohort is generated in the same fashion. Details of the

village-level characteristics for both cohorts are provided in

Appendix A.2.

The HDSS villages are selected by taking the villages with

both large x1 and large x2, small x1, and small x2, followed by

a randomly sampled third village.

A Gamma(5, 1) prior is used for the spatial and non-

spatial random effects in the spatial models (model IV).

2.3. Results

Table 1 summarizes the results of the simulation study for

n = 5200. Results for the smaller sample sizes are shown

in Tables A3–A5 in Appendix A.3 The number of average

sampled deaths and bias, variance and MSE from (4) are

displayed for each combination of sampling strategy and

analytical model.

Overall, the HYAK sampling strategy captures more deaths

and is generally more accurate. Across sampling schemes

and sample sizes, HYAK generally has the smallest MSEs.

Further examination of the components of the MSE reveals

that: (i) HYAK yields smaller bias, and (ii) pays for this by sac-

rificing some variance. The overall comparison between the

Fig. 2. The simulated spatial random effects for the Agincourt

region.
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Fig. 3. The predicted probabilities of dying for the Agincourt region: (a) young girls, (b) young boys, (c) older girls, (d) older boys.

Table 1. Deaths, bias, variance, MSE for cluster sampling, stratified sampling, HYAK, and optimum sampling for n = 5200

Design Model Deaths Bias Variance ( × 103) MSE ( × 103)

Cluster I. Naïve 459 1067 174 1312

II. Strata 459 874 188 951

III. Strata/Covariates 459 651 386 810

IV. Strata/Covariates/Space 459 – – –

Stratified I. Naïve 460 1058 5 1124

II. Strata 460 866 15 765

III. Strata/Covariates 460 651 16 439

IV. Strata/Covariates/Space 460 183 80 113

HYAK I. Naïve 538 1162 7 1357

II. Strata 538 969 18 956

III. Strata/Covariates 538 635 16 419

IV. Strata/Covariates/Space 538 182 66 100

Optimum I. Naïve 477 1072 5 1154

II. Strata 477 880 18 792

III. Strata/Covariates 477 632 17 416

IV. Strata/Covariates/Space 477 167 74 102

Results from S = 100 simulations. There were 11 299 deaths in the simulated population from which samples were taken. ‘Cluster’ is

shorthand for Two-stage Cluster Sample; ‘HYAK’ for HDSS with Informative Sampling; ‘Strata/Covariates’ for Logistic Regression Covariate

Model and ‘Strata/Covariates/Space’ for Logistic Regression Random Effects Covariate Model. It is not possible to fit the spatial model (IV)

to the two-stage cluster sampling scheme since there are data from five villages only.

cambridge.org/gheg



sampling strategies clearly favors HYAK. This partly reflects

the careful choice of HDSS villages so that they contain sub-

stantial variation in terms of village-level covariates.

Comparing the analytical models also produces an

encouraging result. Within each sampling strategy, the

Logistic Regression Random Effects Covariate model

(model IV) performs best overall (smaller MSEs). Within

HYAK, this outperforms the others. Similar patterns are

observed across all sample sizes. This suggests that account-

ing for unmeasured factors and taking advantage of the spa-

tial structure of mortality risk is significantly worthwhile.

The trade-off between bias and variance is clearly

revealed by a closer look at the distributions of the esti-

mated probability of dying produced by each model.

Figure 4 displays these distributions for models I, III, and

IV – Naïve, Covariates and Covariates & Space under the

HYAK sampling strategy for n = 5200, while Figs A.1–A.3 in

Appendix A.3 display these same distributions for n =
3900, n = 2600, and n = 1300, respectively. The Naïve
model estimates are very condensed, always miss the truth

and have clear bias; estimates from the Covariates model

also have very little spread, almost always miss the truth

and have some bias; and finally, estimates from the

Covariates & Space model have large spread; however, the

distributions nearly always include the truth, and have

much less bias. Clearly the Covariates & Space model displays

the balance we are seeking: small bias and manageable

spread, and importantly, distributions that include the

truth. This combination of sampling strategy and analytical

approach provides our key objective: an indicator that is

close to (and around) the truth most of the time.

Figure 5 displays the average village- and strata-specific

estimates for the (unobserved) population counts of death

plotted against the true values across each of the four

models under the HYAK sampling scheme for n = 5200,

while Figs A.4–A.6 in Appendix A.3 display the same for

the smaller sample sizes. (See Figs A.7–A.18 in Appendix

A.3 for the remaining sampling schemes for all sample

sizes.) In general, the average estimates from the spatial

model tend to follow the y = x line quite closely, indicating

we are estimating the true number of deaths in each village

quite well. Estimates tend to be closer under the HYAK sam-

pling strategy and for larger sample sizes, thus confirming

(visually) our previous results.

3. Discussion

3.1. Key conclusions

The key conclusion of this pilot study is that the statistical

sampling and analysis ideas supporting the HYAK monitoring

system are sound: a combination of highly informative data

such as those produced by a HDSS site can be used to judi-

ciously inform sampling of a large surrounding area to yield

estimated counts of deaths that are far more useful than

those produced by a traditional cluster sample design.

Further, HYAK combined with an analytical model that

includes unstructured random effects and spatial smoothing

produces the most accurate and well-behaved estimates.

The improvements are dramatic and clearly justify additional

work on these ideas.

Another crucial idea underlying HYAK is the notion that

very detailed information generated by an HDSS site can

be extrapolated to the much larger surrounding population

by calibrating that information with carefully chosen and

much less detailed data from the surrounding population.

This idea has already been demonstrated convincingly by

Alkema et al. [44] and is currently being applied by

UNAIDS to produce global estimates of HIV prevalence.

This relies on the assumption that the population monitored

by the HDSS is similar enough to the population surround-

ing the HDSS that the relationships between covariates and

the outcomes of interest are the same or very similar. The

degree to which this is true will vary among specific settings.

In particular, when HDSS sites also serve as research and

intervention testing sites, it is possible that there will be

Hawthorne Effect issues – i.e. the intensively studied HDSS

population will be different from the surrounding population

that has not participated in studies and trials. This may affect

the key covariate–outcome relationships that drive HYAK.

This is something that must be studied, initially with a real-

world pilot study of HYAK, and then in an ongoing way by

occasionally verifying these relationships through an over-

sample of the surrounding population, or through small

add-on studies conducted whenever a census is done in

the surrounding areas to update the sampling frame.

Although this is a concern, it is unlikely to make HYAK infeas-

ible or invalidate HYAK results. An explicit goal of a pilot

study will be to characterize the uncertainty created by

Fig. 4. The distributions of the estimated probability of dying

from models I, III, and IV under the HYAK sampling strategy for

n = 5200.
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possible Hawthorne Effect issues and build them into HYAK

estimates.

A key advantage of HYAK sampling strategy is that it cap-
tures significantly more deaths. Verbal autopsy methods [27]

can be applied to all or a fraction of these deaths to assign

causes (immediate, contributing, etc.). This cause of death

information can then be used to construct distributions of

deaths by cause – CSMFs – which illuminate the epi-

demiological regime affecting the population, and if this is

monitored through time, how the epidemiology of the

population is changing. Critically, this provides a means of

measuring the impact of interventions on specific causes

of death and the distribution of deaths over time. The

increased number of deaths captured with informed sam-

pling increases the accuracy and precision of measurements

of CSMFs.

A final benefit of the HYAK system is that it provides two

types of infrastructure: the HDSS and the sample survey. In

addition to providing information with which to sample, the

HDSS provides a platform on which a wide variety of

longitudinal studies can be undertaken – linked observa-

tional studies; randomized, controlled trials, all kinds of

combinations of these, etc. Moreover, the permanent

HDSS infrastructure also provides a training platform that

can support a wide variety of health and behavioral science

training, mentoring and apprenticing/interning and experi-

ence for young scientists or health professionals. Having

the sample survey infrastructure provides a means of quickly

validating/calibrating studies conducted by the HDSS and

provides another learning dimension for the educational

and training activities that the system can support.

A potential limitation of any mortality monitoring system

is ‘demographic feasibility’, that is the ability to capture

enough deaths in a given population to measure levels

and/or changes in mortality, potentially by cause, through

time. Death is a binomial process defined by a probability

of dying, and as such, is governed by the characteristics of

the binomial model. That model specifies in simple terms

the number of deaths necessary to estimate the probability

of dying within a given margin of error with a given level of

confidence. No amount of sophistication will release us

from that basic set of facts. The HYAK system addresses

this challenge by providing a means through which to choose

the best possible sample given what we know about the

Fig. 5. The average village- and strata-specific estimates for the (unobserved) population counts of death plotted against the true values

across each of the four models under the HYAK sampling scheme for n = 5200. Plotting symbols indicate village numbers, and colors

indicate model number with key in the upper-left plot. The spatial model IV (purple) symbols are in general closest to the y = x line of

equality.
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population, and this in turn maximizes our ability to capture

deaths. The fundamentals of the binomial model require that

one must observe relatively large numbers of deaths to

measure mortality precisely and especially to measure

changes in mortality with both precision and confidence.

So in light of those inescapable realities, the HYAK system

produces the most information per dollar spent, because

it captures more deaths per dollar spent.

Finally and perhaps most importantly, the HYAK monitor-

ing system is cheaper to run over a period of years com-

pared with the traditional cluster sample-based survey

methods. Combined with the fact that HYAK also produces

more useful information, this makes HYAK highly cost effect-

ive – more bang for less buck.
Importantly, there are implementation considerations

that must be addressed before HYAK can be used at provin-

cial or national scale to provide population-representative

estimates. These will need to be resolved through additional

theoretical work, simulation, and ultimately through a pilot

study that conducts HYAK on a large population dispersed

over a large physical space. Among many, these critical ques-

tions need to be answered:

• How big do HDSS sites need to be to provide enough

information for effective informative sampling?

• How many HDSS sites are necessary for effective

informed sampling with respect to key demographic and

epidemiological indicators?

• How should HDSS sites be dispersed geographically?

• How well does HYAK work to provide disaggregated (fine-

grained) estimates of key indicators by sex, age, wealth/

poverty, space, time, etc?

• How much does the sampling frame affect HYAK results,

and what cheap, feasible solutions are there to obtaining

frequently updated sampling frames?

• A detailed costing and cost comparison needs to be done

comparing the costs of the HDSS site; the additional

census, sampling, and interviewing needed for HYAK; and

a traditional household multi-stage cluster sample survey

(such as DHS) conducted in the same area.

• How the method can be scaled up to a larger geographical

area. We envisage that only a subset of villages will be

sampled, and then a geostatistical model [59] can be

used for spatial prediction to unobserved villages (a critical

question is the number of villages needed to train the spa-

tial model). Another important issue is to deal with the

potential problem of preferential sampling [60] in which

sampling locations are selected based on the expected

size of the response. In order to inform sampling historical

data (e.g., DHS surveys) may be used to model to create a

predictive surface, upon which sampling may be based.

Investigating this idea will be the subject of a future paper.

• When confronted with the potential to locate new HDSS

sites so that they are maximally useful in a HYAK-type

setup in the future, the most important question is

where exactly to locate the HDSS sites. A partial answer

motivated by the design of HYAK is that an HDSS site

should be located in each (mostly) homogeneous region

– so that it is reasonable to assume that the relationship

between the HYAK selection variable (SES in the work

we present here) and the outcomes of interest is the

same throughout the HYAK area, critically including the

HDSS. What needs further theoretical and practical inves-

tigation is how similar the HDSS and surrounding areas

need to be, and how HYAK estimates break down as the

HDSS and surrounding area become less similar.

Finally, the rapid improvement of CRVS systems is an

important priority for many developing countries and fun-

ders who support the production of population and health

data. The HYAK idea has the potential to play an important

role in the transition to fully functioning CRVS in many

such countries. Using the same combination of informed

sampling and spatiotemporal smoothing, it may be possible

to leverage different sources of data to produce good esti-

mates of the vital rates that one expects from a high-quality

vital statistics system. A variety of administrative records

could stand in for the HDSS site, and sampled vital registra-

tion systems could play the role of the household survey.

Both types of data collection system already exist and func-

tion well in some developing country settings. Thinking

through, simulating, and pilot testing this type of integration

is likely the highest pay-off next step in developing HYAK.
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