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The human lysosomal cysteine proteases are a family of 11 proteases whose members
include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for
decades because of their lysosomal location and the belief that their function was limited to
the terminal degradation of proteins. In the past 10 years, this view has changed as these
proteases have been found to have specific functions within cells. This review highlights
some of these functions, specifically their roles in matrix remodeling and in regulating the
immune response, and their relationship to lung diseases.
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Introduction

Members of the papain family of cysteine proteases are
found predominantly within the endosomal and lysosomal
compartment of cells. It was initially believed that they
were ‘housekeeping’ genes and that they functioned
exclusively as the cell's garbage disposals, terminally
degrading unwanted, abnormal, or endocytosed proteins.
Recently this view has evolved as members of the family
have been found to have distinctive patterns of expression
(Table 1), have regulated expression, have important roles
in specific biologic processes [1,2], and have been linked
to inherited genetic diseases [3-5].

The first members of the papain family of cysteine pro-
teases included cathepsins B, C, H, L, and S. During the
past ten years six new members have been added, giving
11 (Table 1). Cathepsins B, C, F, H, O, and Z are constitu-
tively expressed in most tissues. Although widely
expressed, some of these proteases are found in signifi-
cantly greater quantities in specific cells within tissues.

Examples include cathepsin C (better known as dipeptidyl
peptidase | or DPPI) (found in the greatest amounts in
cytotoxic T lymphocytes [6], macrophages [7] and mast
cells [8]), cathepsin K (osteoclasts, airway epithelium)
[9,10], cathepsin S [antigen-presenting cells (APCs)], and
cathepsin W (CD8* T cells) [11].

Structurally, members of the papain family of cysteine pro-
teases consist of two domains folded together in a
V-shaped configuration. At the bottom of the V, a cysteine
and a histidine residue form the catalytic diad [12].
Although their overall topographical structure is similar,
each cathepsin has unique features that confer specific
proteolytic activity on the enzyme. Cathepsins B and Z
have a peptide loop overlying their active site that binds
the C-terminus of proteins, making these cathepsins
carboxypeptidases [13,14]. CathepsinH is an amino-
peptidase because a residual eight amino acids of the
propeptide allows only the amino-terminal amino acid of a
protein to access the active site [15]. The aminodipeptidase

APC, antigen-presenting cell; CLIP = class ll-associated invariant chain peptide; DPPI = dipeptidyl peptidase I; li = invariant chain; IL = interleukin;
LHVS = leucyl-homophenylalanine-vinylsulfone; MHC = major histocompatibility complex; SNARE = soluble N-ethylmaleimide-sensitive factor-
attachment protein receptor; t-SNARE = SNARE on target membrane; v-SNARE = SNARE on vesicle.



Table 1
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Human acidic cathepsins

Cathepsin Tissue expression Chromosome Human disease*/mouse phenotype’
B Widespread 8 *Reduced apoptosis
L Widespread 9 tDefective CD4 selection, hair loss
Vv Thymic epithelium 9 -
K Osteoclasts, bronchial epithelium 1921 *Pycnodysostosis
S Antigen-presenting cells 1921 Defective antigen presentation
H Widespread 15 -
W CD8* T cells 11913 -
F Macrophages, ?widespread 11913 -
C Myeloid cells, Pothers 11q14 *Hyperkeratosis, periodontitis
O Widespread 4g31-32 -
4 Widespread 20q13 -

DPPI is an oligomer and has a residual propeptide that
probably blocks its active site as well [16]. The endopepti-
dases cathepsinsF, K, L, O, S, V, and W each have
unique amino acids near the active site that confer their
substrate specificity [12]. These unique structural features
and patterns of expression suggest that the enzymes have
specific roles in the cells and tissues in which they are
expressed. Two examples, which are the focus of this
review, are their role in matrix remodeling and the regula-
tion of the immune response.

Matrix remodeling by cathepsins

Many of the lysosomal cysteine proteases can degrade
components of the extracellular matrix. An example of how
well these enzymes degrade matrix components is their
ability to hydrolyze elastin, a protein notoriously resistant to
proteolysis. In fact, cathepsins K, L, and S are among the
most potent elastases known [1]. /n vitro, cathepsin B
reportedly degrades collagen type IV and X and fibronectin
[17,18]. Cathepsins L, S, and K degrade fibrillar collagens
[19], fibronectin, and laminin, and DPPI cleaves fibronectin
and collagens type |, lll, and IV [20]. One basic requirement
for matrix degradation in vivo is that the proteases must
encounter the matrix molecule in a microenvironment in
which the protease maintains its activity. This might occur
intracellularly on phagocytosed matrix molecules, or extra-
cellularly after secretion of the lysosomal cathepsin.

Intracellular matrix degradation by cathepsins

The extracellular matrix of most tissues contains a vast
network of different collagens. This mixture of collagens is
not static; rather they are subjected to continuous degrada-
tion and turnover. For complete degradation, several pro-
teases can act in concert both extracellularly and

intracellularly [18,21]. Extracellularly, collagens can be
degraded by collagenase, gelatinases A and B, stromelysin,
and the cathepsins. Extracellular degradation of collagen
can be incomplete, leaving fragments to be phagocytosed
by cells such as fibroblasts, macrophages and smooth
muscle cells [22]. Within these cells, the collagen-contain-
ing phagosome fuses with lysosomes, in which cathepsins
complete the degradation of the collagen molecules.

This process of collagen phagocytosis and degradation
can be regulated by hormones, cytokines and growth
factors. Studies with periosteal fibroblasts have demon-
strated that interleukin-1a and cortisol decrease the
uptake of fibrillar collagen, whereas transforming growth
factor-B enhances phagocytosis [22,23]. Furthermore, a
decrease in collagen breakdown products is found in the
culture medium when collagen phagocytosis and intracel-
lular collagen digestion are reduced.

A disease that illustrates the importance of intracellular
collagen degradation is pycnodysostosis. Pycnodysosto-
sis is an autosomal recessive disease caused by muta-
tions of the gene encoding cathepsin K and is
characterized by osteosclerosis, short stature, bone
fragility, clavicular dysplasia, and skull deformities [4].
These mutations result in an absence of cathepsin K activ-
ity and inadequate intracellular degradation of the organic
bone matrix. This is demonstrated by ultrastructural exami-
nation of osteoclasts from affected individuals, showing
vacuoles containing undigested collagen fibrils [24].
Using pycnodysostosis as a model, it is reasonable to
propose that a loss of cathepsin activity in resident lung
cells might contribute to pathologic lung diseases, such as
idiopathic pulmonary fibrosis, where decreased collagen
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phagocytosis and intracellular digestion lead to the build-
up of collagen fibers in the extracellular space, favoring
tissue fibrosis.

Extracellular matrix degradation by cathepsins
In addition to the intracellular degradation of collagens,
cathepsins can also degrade matrix proteins extracellu-
larly. Before this action, the cathepsins must first be
released into the extracellular space. Cells found to
release cathepsins include macrophages (cathepsins B, L,
S, and K) [25], mast cells (cathepsinL and DPPI) [8],
smooth muscle cells (cathepsins S and K) [26], fibroblasts
(cathepsin B), and tumor cells (cathepsins B, L, and S)
[27]. The two major mechanisms of release are altered
trafficking of newly formed enzyme and regulated release
from endosomes and lysosomes.

Cathepsins are synthesized in the endoplasmic reticulum
as pre-proproteins consisting of a signal peptide, a
propeptide and a catalytic region of the enzyme. The
signal peptide serves to target the cathepsin to the Golgi
apparatus, where it is glycosylated with high-mannose car-
bohydrates. These carbohydrates bind to one of the two
mannose-6-phosphate receptors and the complex is trans-
ported to the prelysosomal compartment, where the acidic
environment causes dissociation of the enzyme-receptor
complex and activation of the enzyme. In some disease
states, a decrease in affinity for, or number of, mannose-6-
phosphate receptors can result in mistrafficking and
secretion of cathepsins. Examples include the observation
that pro-cathepsin B released by some tumor cells has a
different glycosylation pattern from that of control cells
[28], and that a decrease in the number of mannose-6-
phosphate receptors in transformed mouse squamous-cell
carcinoma cells results in the secretion of cathepsin B
[29]. However, there are probably alternative explanations
for the mistrafficking of cathepsins, because recent
reports have suggested that mechanisms independent of
mannose-6-phosphate exist for the targeting of cathepsins
to lysosomes [30].

The regulated release of lysosomal contents is a second
mechanism by which cathepsins can be secreted from
cells. Many cells of hematopoietic origin (T-cells, neu-
trophils, and mast cells) have secretory granules that are
released in a regulated manner when their contents are
needed to destroy target cells (T-cells), or to control a
bacterial (neutrophil) or parasitic (mast cell) infection.
These cells also have granules that can be identified as
lysosomes by the presence of lysosomal markers (for
example, lysosomal-associated membrane protein [LAMP]
and vesicle-associated membrane protein [VAMPI]-2 or
cathepsins). In mature hematopoietic cells, many granules
contain both lysosomal and secretory markers and seem
to have dual functions (that is, secretory lysosomes) [31].
Functionally, these doubly labeled granules act as lyso-

somes and secretory granules, and release both their
secretory and lysosomal constituents when the cells are
activated to do so. Examples include the release of DPPI
by natural killer cells and mast cells [8,32], and cathep-
sins B, L, K, and S by macrophages [25].

The secretion of lysosomal contents does not seem to be
limited to ‘secretory lysosomes’ of hematopoietic cells and
might be a feature of lysosomes in other cells. This is sup-
ported by the recent observation that smooth muscle cells
stimulated with interferon-y synthesize and secrete
cathepsin S [26]. Similarly, the activation of fibroblasts by
calcium ionophore causes the release of lysosomal (3-hex-
osaminadase [33]. Thus, the regulated secretion of lyso-
somes is a feature of many cells and might represent a
primitive secretory function in these cells.

The observation that lysosomal contents are released by
increasing the intracellular concentration of Ca2* ions is
intriguing and might provide a clue to the mechanism of
how this occurs. An understanding of how secretory gran-
ules are released has been developing for several years
[34]. One of the basic mechanisms involved is the interac-
tion of proteins integrated into the membrane of secretory
vesicles (v-SNAREs; SNARE stands for soluble N-ethyl-
maleimide-sensitive factor-attachment protein receptor)
with proteins integrated into the target cell membrane
(t-SNARESs). The interaction of these proteins seems to
promote membrane fusion by bringing the secretory
vesicle into close apposition with the outer cell membrane.
An example of this phenomenon is the Ca?*-dependent
release of neurotransmitters triggered by the interaction of
the v-SNARE synaptotagmin | with the t-SNAREs syntaxin
and SNAP-25 (in which SNAP stands for soluble N-ethyl-
maleimide-sensitive fusion protein attachment protein)
[35]. After depolarization, intracellular concentrations of
Ca?* ions increase within the nerve. Ca?* ions then bind
to Ca2*-binding regions on synaptotagmin | (C2-domains)
[36], giving the molecule a more positive charge and facili-
tating an interaction with the negatively charged
t-SNAREs (for example, syntaxin 1) and phospholipids on
the cell surface.

Of the 11 members of the synaptotagmin family, synapto-
tagmins |, Il, Il V, and X are expressed exclusively in the
nervous system [35]. The others are expressed ubiqui-
tously, suggesting that they have functions that are more
general in non-neuronal cells. One possibility is that, simi-
larly to the regulation of neurotransmitter release by synap-
totagmin I, specific synaptotagmins might also regulate
the release of lysosomal constituents from non-neuronal
cells. This is supported by a recent study reporting that
synaptotagmin VIl regulates the Ca2*-dependent exocyto-
sis of lysosomes from normal rat fibroblasts [37]. Lysoso-
mal constituents, including cathepsins, can therefore be
released from many cells, and this exocytosis might be



regulated by v-SNAREs and t-SNAREs, including the
synaptotagmins.

Most cathepsins have optimal activity at an acidic pH and
lose their activity quickly at a neutral pH (exceptions
include cathepsin S and DPPI) [8,38]. Consequently, to
maintain their activity extracellularly, the cathepsins must
also be released into an acidic environment. This might
occur in pathologic conditions, such as pyogenic infections
or malignancy, which are known to be associated with
acidic extracellular environments. In these disease states,
the acidic environment is due to several factors associated
with the disease process as a whole rather than an individ-
ual group of cells that release the cathepsins.

In other circumstances, cells releasing cathepsins might
promote extracellular proteolysis by directly acidifying the
pericellular space in which the cathepsins are released.
One example, reported by Punturieri et al [25], is the acidi-
fication of the pericellular environment by macrophages
during elastinolysis. /n vitro, monocyte-derived macro-
phages adhere tightly to elastin particles and form a
sequestered environment between the cell membrane and
the elastin particle to be degraded. The macrophage then
acidifies this pericellular space by using a vacuolar type
H*-ATPase to pump protons from the cytoplasmic space
to the extracellular space. Concurrently, the macrophage
releases elastinolytic cathepsins L, S, and K into the acidic
microenvironment, where they can degrade the elastin.
Furthermore, these tight junctions might also promote
extracellular proteolysis by cathepsins in vivo by prevent-
ing the interaction of secreted cathepsins with cysteine
protease inhibitors, such as cystatin C, that are found in all
tissues and body fluids.

Lung cancer or chronic inflammatory conditions such as
asthma, emphysema, and idiopathic pulmonary fibrosis are
lung diseases in which the regulated secretion of lysoso-
mal cathepsins might be important in disease progression.
In lung cancer, degradation of the stroma surrounding
tumors by cathepsins might promote the growth and
metastasis of lung cancer. This is suggested by findings in
vitro that non-small cell lung carcinomas secrete cathep-
sins B and L [27], that squamous cell carcinomas can
invade matrigel (a surrogate of extracellular matrix), and
that this invasion can be inhibited by heterologous expres-
sion of the cysteine protease inhibitor cystatin C [39].
Although data in vivo supporting a role for cathepsins in
tumor progression are lacking, the study of tumor models
in cathepsin knockout mice should provide more definitive
answers in the future.

Emphysema is characterized by the proteolytic degrada-
tion of lung extracellular matrix, especially lung elastin. The
elastinolytic cysteine proteases cathepsinsK, L, and S
might be important in this process [40]. As discussed
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above, two highly abundant cell types in the lung,
macrophages and smooth muscle cells, can synthesize
and secrete cathepsinsK, L, and S, which might then
degrade lung elastin. Recent studies suggest novel mech-
anisms by which this might occur. Elias and colleagues
have established transgenic murine models of inducible
expression of cytokines along alveolar surfaces (with the
murine CC10 promoter). Remarkably, the induction of
interleukin-13 (IL-13) overexpression in mice six to eight
weeks old results in alveolar space enlargement and a
loss of alveolar attachment sites, morphological hallmarks
of emphysema, on a timescale of weeks to months [41].
Increased levels of both active metalloproteases and cys-
teine proteases develop along the alveolar surfaces and
presumably in lung tissues. Mice given the cysteine pro-
tease inhibitor E64 or leupeptin have markedly attenuated
emphysematous changes, implying an important role for
cysteine proteases in IL-13-induced emphysema. It is
noteworthy that matrix metalloprotease inhibitors also
attenuated the process, indicating the probable involve-
ment of multiple enzyme systems.

The fact that these cytokines affect both mesenchymal
and hematopoietic cells suggests that not only
macrophages but also multiple cells in the cytokine-
exposed lung might contribute to tissue cathepsin activity,
underscoring the complexity of matrix remodeling in this
disorder. Whether IL-13 or other cytokines already shown
to induce the secretion of elastinolytic cathepsins (for
example, interferon-y) promote emphysema and COPD in
cigarette smokers remains to be established.

Innate immunity

Lysosomal cysteine proteases can be important for the
regulation of innate immunity. An example is the activation
of granule-associated serine proteases (namely, neutrophil
elastase, cathepsin G, granzymes A and B, and mast cell
chymase) by DPPIl. These enzymes are synthesized as
proproteins with a two-residue propeptide (or activation
dipeptide) that maintains them in an inactive conformation.
Proteolytic removal of the activation dipeptide induces a
conformational change and activation of the serine pro-
tease. The activation dipeptides of the granule-associated
serine proteases are similar, suggesting that they might be
removed by the same protease or proteases [42].
Because of DPPI's amino-terminal dipeptidase activity, it
was a logical candidate for an activator of these serine
proteases. By using a DPPI-specific inhibitor, or recombi-
nant proenzymes, it was shown that DPPI could activate
neutrophil elastase, cathepsin G, granzymes A and B, and
mast cell chymase in vitro [42,43]. To test this possibility
in vivo and to determine whether other proteases could
compensate for DPPI's activity, DPPI knockout mice were
generated [44]. In characterizing the protease activity in
leukocytes of these animals, it was found that DPPI is
essential for the activation of granzymes A and B.
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Figure 1
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Invariant chain (li) undergoes stepwise C-terminal degradation to
generate class ll-associated invariant chain peptide (CLIP), which
occupies the peptide-binding groove of major histocompatibility
complex (MHC) class Il molecules until its exchange with antigen
peptides. The figure depicts distinct intermediates in li chain
processing, leading to the formation of CLIP. li undergoes progressive
carboxy-terminal processing within endosomes by distinct cysteine
proteases to generate CLIP. The enzymes responsible for the
generation of lip24 and lip10 remain to be defined, although in purified
form cathepsin S can generate CLIP from intact li. Mice deficient in
cathepsin S accumulate lip10 but not li or lip24 in their B cells and
dendritic cells, implying that additional important enzymes in this
process remain to be defined.

This absence of DPPI activity, and consequently serine
protease activity, has been shown to have important bio-
logic consequences in both mice and humans. By activat-
ing granzymes A and B, DPPl might regulate the
lymphocyte-mediated cytotoxicity of virally infected or
malignant cells [45]. Cytotoxic T lymphocytes and natural
killer cells eradicate abnormal cells by the simultaneous
release of granzymes A and B and perforin. Perforin forms
a pore in the target cell through which the granzymes
pass. Once inside the cell, the granzymes trigger apopto-
sis directly by activating the caspase cascade (granzyme
B) or by other less well defined processes (granzyme A).
DPPI might also have a role in defense against Gram-neg-
ative bacterial infections in mice by activating neutrophil
elastase. Neutrophil elastase then destroys Gram-negative
bacteria by hydrolyzing outer-membrane protein A on their
cell walls [46,47]. Therefore, by regulating the activity of
serine proteases DPPI is important in the primary host
defense against both bacterial and viral infections in mice.

DPPI also seems to be important for the primary host
defense in humans. This is suggested by recent findings
that patients with Papillon-Lefevre syndrome have muta-
tions of the gene encoding DPPI and an absence of DPPI
activity [3,5]. Papillon—Lefévre syndrome is a disease
characterized by early periodontitis, skin hyperkeratosis
and a predisposition to bacterial infections such as pneu-
monia, liver abscesses, and furuncles. Although exact
explanations for these phenotypic features are currently

unknown, findings in the DPPI knockout mice suggest that
the general susceptibility to bacterial infections may be
due to decreased amounts of neutrophil elastase and
cathepsin G activities [44]. Furthermore, periodontitis
might also be due to a subclinical infection. The pathogen-
esis of the hyperkeratosis is unexplained but suggests that
DPPI might have a role in cell growth or in matrix degradation.

Adaptive immunity

Endosomal proteolysis directs the efficiency and character
of major histocompatibility complex (MHC) class Il-depen-
dent antigen presentation by fulfiling two important roles:
generation of antigenic epitopes and degradation of the
invariant chain (li), an MHC class ll-associated molecular
chaperone [48,49]. li binds to the peptide-binding groove
of newly synthesized MHC class Il a/f3 heterodimers, pre-
venting their premature association with endogenous
polypeptides, and promoting, by means of a cytoplasmic
endosomal targeting sequence, li/MHC class Il trafficking
through the endosomal compartments of APCs. Within
these compartments, the li luminal domain undergoes step-
wise proteolytic degradation to smaller fragments (Fig. 1).

The first major intermediate, lip24, interacts avidly with
MHC class Il and is not easily displaced by peptide. lip24
accumulates in human APCs treated with the cysteine pro-
tease inhibitor E64 [50,51]. The smallest fragment contain-
ing both the retention sequence and the C-terminal
extension through the classll peptide groove has been
termed lip10. lip10 is converted subsequently to CLIP (a
roughly 3 kDa class Ill-associated invariant chain peptide).
CLIP-bearing MHC class Il molecules are now mature and
competent to load peptide because CLIP, but not larger
fragments of |i, rapidly dissociates from MHC class Il dimers
in the presence of a second MHC-like molecule, HLA-DM,
within endosomal compartments [62,53]. Thus the endoso-
mal proteolysis of lip10 to CLIP generates the substrate for
HLA-DM and allows the efficient loading of MHC class I
molecules with peptides generated from endocytosed
protein. Once free from endosomal retention, peptide-
loaded MHC class Il dimers move to the cell surface.

As indicated in Table 1, cysteine proteases are of two
general types: exopeptidases (aminopeptidases and car-
boxypeptidases) and endopeptidases. Endocytosed pro-
teins are fragmented by endoproteases and then
repeatedly ‘trimmed’ by the exopeptidases to yield an anti-
genic epitope (see Fig. 2).

That specific cleavages in antigens are crucial to antigen
presentation was recently confirmed by Watts, who
reported that the mutation of a single asparagine residue
in tetanus toxin blocked cleavage by the asparagine-spe-
cific endosomal enzyme legumain and abrogated further
processing to antigenic peptides [54]. Thus, the manner
in which endocytosed proteins are initially fragmented,



whether by legumain or other endoproteases, is poten-
tially an important determinant of the display of MHC
class Il peptides.

One function of antibodies in this process is in directing
the trafficking and degradative process leading to antigen
presentation [55]. Both the efficiency of antigen capture
and the process of antigen degradation are modified by
the presence of specific antibodies. As alluded to above,
antigen presentation is also intimately linked to the timing
of MHC class Il maturation, which is itself linked to li prote-
olysis, because the peptide groove functions to protect
potential epitopes from terminal degradation [49]. Given
time, most if not all epitopes free in solution will be
destroyed. Thus, efficient antigen presentation requires
mature MHC class Il molecules to be in the right place at
the right time. The limited time during which free peptides
can encounter mature class Il peptides before degradation
might contribute to the capacity of proteins that can
persist in the lysosomal compartment, such as the mite
cysteine protease Derp1, to be particularly immunogenic.
As both antigen processing and MHC class Il maturation
are crucially dependent on specific proteases, perturba-
tion of the activity of specific proteases within the antigen-
presenting  compartment could modify  antigen
presentation. Conceivably, this could be exploited to
control MHC class lI-driven disease processes in the lung,
such as sarcoidosis and asthma.

Recent studies support this notion. In previous work the
availability of a relatively specific inhibitor of cathepsin S,
leucyl-homophenylalanine-vinylsulfone (LHVS), was used
to establish that cathepsin S has an essential role in CLIP
formation by B cells [51]. This was subsequently verified
by targeting the gene encoding cathepsin S [56]. Spleno-
cytes from ‘knockouts’ of cathepsin S fail to process li
beyond lip10 (Fig. 1) and have defective TH-1-dependent
immune responses. However, further analysis of these
mice revealed a surprise. Cathepsin S ‘knockouts’ immu-
nized with ovalbumin developed normal IgE responses
and exhibited the same or greater pulmonary eosinophilia
in response to inhalation of ovalbumin as did wild-type
mice. This result was completely different from that
observed when normal mice were administered relatively
high doses of LHVS. Mice given LHVS during immuniza-
tion with ovalbumin had virtually completely suppressed
IgE responses and pulmonary eosinophilia [57]. LHVS
also abrogated IgE and lung eosinophilia when given to
cathepsin S-deficient mice.

To explore this discrepancy, cathepsin S and L double
‘knockouts’ were generated and MHC class Il maturation
was studied in these mice. Surprisingly, lung macrophages
(but not splenocytes) from cathepsin S/L knockouts
hydrolyzed lip10 and loaded peptide normally. However,
macrophages exposed to relatively high doses of LHVS
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Figure 2

MHC class II/peptide
complexes

(b) Aminopeptidases
cathepsins C, H
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Schematic summary of the role of endosomal proteases in antigen
presentation. Both endoproteases (a) and exopeptidases (b, c)
contribute to terminal degradation of internalized protein. The figure
emphasizes that the progressive fragmentation of an internalized
antigen (depicted in gray) is regulated by two separate processes: the
presence of antibody and the ability of mature MHC class Il to complex
with free peptides. Antibodies greatly enhance the efficiency of antigen
uptake and alter antigen processing [55]. Mature MHC class |l
molecules bind peptides and direct these complexes to the cell
surface [59].

(1 uM) accumulated lip10 and failed to load peptides effi-
ciently. This implied that an LHVS-inhibitable cysteine pro-
tease(s) does in fact mediate lip10 processing
independently of cathepsin S/L and does so preferentially
in macrophages (and potentially myeloid-like dendritic
cells). This finding led to the discovery that another
member of the cathepsin L-like subfamily of endoprote-
olytic cysteine proteases, cathepsin F, is expressed prefer-
entially in macrophages and efficiently mediates the
degradation of lip10 to CLIP [58]. Thus, different APCs
have distinct pathways of antigen processing and MHC
class Il maturation. These observations also suggest that
macrophages could have a larger role in antigen presenta-
tion pertinent to asthma than is currently believed. An
important area for further research will be to determine
whether the selective inhibition of cathepsins S, L, and F or,
alternatively, the exopeptidase group of cathepsins B, H,
and X favorably influence the immune response in the lung.

Conclusion

With the use of specific inhibitors and genetically modified
mice, our understanding of the importance of lysosomal
cysteine proteases has advanced considerably in recent
years. It is now evident that they regulate biologic
processes such as matrix remodeling and the immune
response. Although their exact roles in the pathobiology of
lung diseases are uncertain, continued research in vivo
with animal models and samples from patients with lung
disease should clarify their roles in this area.
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