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ABSTRACT

Epigenome-wide association studies often detect
many differentially methylated sites, and many are
located in distal regulatory regions. To further pri-
oritize these significant sites, there is a critical
need to better understand the functional impact of
CpG methylation. Recent studies demonstrated that
CpG methylation-dependent transcriptional regula-
tion is a widespread phenomenon. Here, we present
MethReg, an R/Bioconductor package that analyzes
matched DNA methylation and gene expression data,
along with external transcription factor (TF) binding
information, to evaluate, prioritize and annotate CpG
sites with high regulatory potential. At these CpG
sites, TF–target gene associations are often only
present in a subset of samples with high (or low)
methylation levels, so they can be missed by analy-
ses that use all samples. Using colorectal cancer and
Alzheimer’s disease datasets, we show MethReg sig-
nificantly enhances our understanding of the regula-
tory roles of DNA methylation in complex diseases.

INTRODUCTION

Recent epigenome-wide association studies (EWAS) have
identified numerous alterations in DNA methylation
(DNAm) levels that are involved in many diseases such as
various cancers (1–5) and neurodegenerative diseases (6–
8). Compared to genome-wide association studies (GWAS)
of genetic variants, EWAS often detect a larger number
of significant differences, often thousands of differentially
methylated CpG sites (DMS), which are significantly asso-
ciated with a disease or phenotype. Many of these DMS are
located far from genes, complicating the interpretation of
their functionality (9,10). Therefore, there is a critical need
to better understand the functional impact of these CpG

methylations and to further prioritize the significant methy-
lation changes.

Transcription factors (TFs) are proteins that bind DNA
and facilitate the transcription of DNA into RNA. Several
recent studies have observed that the binding of TFs onto
DNA can be affected by DNA methylation. In turn, DNA
methylation can also be altered by proteins associated with
TFs (11–15). Using methylation-sensitive SELEX (system-
atic evolution of ligands by exponential enrichment), Yin et
al. (16) classified 519 TFs into several categories: TFs whose
binding strength increased, decreased or was not affected by
DNA methylation, as well as those not containing CpGs in
their binding motifs.

Although several integrative analysis strategies (17–23)
have been proposed to help assess the functional role of the
DNA methylation changes in gene regulation, these meth-
ods typically integrate DNA methylation data with either
gene expression (17–20) or TF binding data (21–23), but
rarely both. For example, MethylMix (17) identifies CpGs
predictive of transcription and then classifies the CpGs into
different methylation states. Similarly, COHCAP (18) iden-
tifies a subset of CpGs within CpG islands that are most
likely to regulate downstream gene expression. These meth-
ods, which test the association between DNA methylation
and target gene expression, can be further improved by ad-
ditionally incorporating information on TF activity.

To determine whether TF regulatory activity is enhanced
or reduced by significant CpGs in EWAS, the gold stan-
dard would be to perform ChIP-seq experiments for all can-
didate TFs with binding sites close to the CpGs in paral-
lel with bisulfite sequencing of DNA methylation changes
and transcriptome assessment. However, performing ChIP-
seq experiments on primary tissues is technically challeng-
ing because of the limited number of cells in some sam-
ples, the large number of TFs to be tested and the lack
of availability for specific antibodies. Therefore, in prac-
tice, computational approaches are often used to prioritize
disease-relevant TFs in DNA methylation studies. For ex-
ample, LOLA (21) (locus overlap analysis) performs en-

*To whom correspondence should be addressed. Tel: +1 305 243 2927; Fax: +1 305 243 5544; Email: lily.wangg@gmail.com

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-8311-4251


e51 Nucleic Acids Research, 2022, Vol. 50, No. 9 PAGE 2 OF 21

richment analysis to identify regulatory elements such as
TFs with binding sites enriched in candidate genomic re-
gions (e.g. DMRs). Alternatively, Goldmine (22) annotates
individual CpGs by TFs with binding sites overlapping the
CpGs. However, because the binding motifs for TFs are of-
ten nonspecific for different members of a TF family, there
are often many TFs with binding sites that overlap with a
given CpG. Moreover, TF binding can also occur without
affecting the transcription of any gene (24,25). Therefore,
methods that analyze DNA methylation and TF binding
site (TFBS) data would also be greatly enhanced by addi-
tionally modeling target gene expression.

Another well-known tool is the ELMER software
(26,27), which performs integrative analysis by associating
DNA methylation variations with the expression of the tar-
get genes and identifying TFs that might regulate those
DNA methylation loci. However, ELMER’s primary goal
is not to prioritize functional CpGs. In particular, ELMER
does not differentiate methylation–TF–target gene triplets
in which target gene expression is regulated mainly by the
TF versus those regulated by both DNA methylation and
TF (Figure 1), which is crucial for tools that prioritize
methylation CpGs. Supplementary Table S1 includes addi-
tional details on the key differences between ELMER and
our new software MethReg.

To fill this critical gap in analytical methods and soft-
ware for annotating and prioritizing DNA methylation
changes identified in EWAS, here we present MethReg, an
R/Bioconductor package that performs integrative model-
ing of three key components (DNA methylation, gene ex-
pression levels and TF), to provide a more comprehensive
functional assessment of CpG methylation in gene regu-
lation. In particular, MethReg leverages information from
external databases on TFBS, ChIP-seq experiments and
TF–target interactions, performs both promoter and dis-
tal (enhancer) analyses, implements rigorous robust regres-
sion models and can fully adjust for potential confounding
effects such as copy number, age and sex that are impor-
tant in DNA methylation analysis. MethReg can be used
either to evaluate the regulatory potential of candidate CpG
sites identified in EWAS (in supervised analysis mode) or to
search for methylation-dependent TF regulatory processes
in the entire genome (in unsupervised analysis mode).

Using simulated datasets, we showed that by simultane-
ous modeling of three key elements (DNA methylation, tar-
get gene and TF), MethReg significantly improves priori-
tization for true positive DNA methylation changes with
regulatory roles in gene transcription compared to mod-
els that include only two key elements. In addition, we also
analyzed the TCGA colorectal datasets and the ROSMAP
Alzheimer’s dataset to show that MethReg was able to
recover known biology and nominate novel biologically
meaningful DNA methylation–TF–target associations in
gene transcription.

MATERIALS AND METHODS

The MethReg analysis pipeline

To systematically search for CpG methylation with signif-
icant regulatory effects on gene expression by influencing
TF activity, we developed MethReg. Figure 2 illustrates

the workflow for MethReg. The input is matched DNA
methylation data (methylation arrays) and gene expression
data (RNA-seq); that is, the same samples in which DNA
methylation is profiled by arrays and gene expression are
quantified by RNA-seq. In addition, MethReg also incor-
porates TF binding information from the ReMap2020 (28)
or the JASPAR2020 database (29), and optionally addi-
tional TF–target gene interaction databases (Supplemen-
tary Table S2), to perform both promoter and distal (en-
hancer) analyses. In the unsupervised mode, MethReg an-
alyzes all CpGs on the Illumina arrays. In the supervised
mode, MethReg analyzes DMS identified in EWAS. There
are three main steps: (i) create a dataset with triplets of CpG,
TF that binds near the CpG and the putative target gene; (ii)
for each CpG–TF–target gene triplet, apply integrative sta-
tistical models to DNA methylation, target gene expression
and TF activity values; and (iii) visualize and interpret re-
sults from statistical models to estimate the impact of DNA
methylation on regulatory effect of TF (interaction effect of
CpG methylation and TF on target gene), as well as to an-
notate the roles of TF and CpG methylation in regulating
target gene expression. The results from the statistical mod-
els allow us to identify a list of CpGs that interact with TFs
to influence target gene expressions. Here, we describe the
analysis of TFs, but the method and software tool are, in
principle, also applicable to other types of chromatin pro-
teins that crosstalk with DNA methylation. MethReg is an
open-source R/Bioconductor package, available at https:
//bioconductor.org/packages/MethReg/. There are several
steps in the MethReg analysis pipeline, which we will de-
scribe next.

Step 1: Creating CpG–TF–target gene triplet dataset.
MethReg first links CpGs to TFs with binding sites within
a window of user-specified distance (e.g. ±250 bp) using in-
formation from the ReMap2020 (28) or the JASPAR2020
database (29). The JASPAR2020 database includes curated
TF binding models, among which 637 are associated with
human TFs with known DNA-binding profiles (30). Simi-
larly, the human atlas of the ReMap2020 database contains
regulatory regions for 1135 transcriptional regulators ob-
tained using genome-wide DNA-binding experiments such
as ChIP-seq. Next, in promoter analysis, CpGs located in
promoter regions, defined as ±2 kb regions around the tran-
scription start sites (TSS), are linked to target genes with
promoters that overlap with the CpG. On the other hand,
in distal analysis, CpGs in distal regions (i.e. >2 kb from
TSS) are linked to a specific number of genes (e.g. five genes)
upstream or downstream and within 1 million bp of the
CpG, or to all genes within a fixed window of distance
(e.g. 500 kb). The CpG–TF pairs are then combined with
CpG–target gene pairs to create triplets of CpG–TF–target
genes.

Alternatively, CpGs can also be linked to genes within 1
million bp in regulon-based analysis. A TF regulon consists
of all the transcriptional targets of the TF. MethReg obtains
TF–target pairs from curated external regulon databases
(31,32) (Supplementary Table S2). Combining the CpG–
TF pairs with TF–target gene pairs, we then obtain a triplet
dataset where each row contains identifiers for a CpG, a TF
and the target gene. Additional discussions on the parame-
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Figure 1. Three different scenarios in gene regulation. In (A), target gene is mainly regulated by DNA methylation (DNAm). In (B), target gene is regulated
jointly by both DNA methylation and TF. Specifically, DNA methylation modulates TF activities on the target gene, so that TF–target gene association
is only observed in samples with low (or high) DNA methylation, but not in all samples. In (C), target gene is regulated mainly by TF. Specifically, TF
activities are associated with DNA methylation levels, and TF also regulates gene expression independently of DNA methylation. Therefore, target gene
expression is mainly regulated by TF, but not DNA methylation.

A CB

Figure 2. Workflow of MethReg. Data: MethReg input datasets are (1) DNA methylation array data (HM450/EPIC) with beta values, (2) RNA-seq data
with normalized counts and (3) estimated TF activities from the RNA-seq data using GSVA (gene set variation analysis) or VIPER (virtual inference by
enriched regulon analysis) software. Creating triplets: There are multiple ways to create CpG–TF–target gene triplets. (A) A CpG can be mapped to TFs
using TF motifs in databases such as JASPAR2020 or ReMap2020, by scanning the CpG location to identify whether it is close to a TFBS. (B) CpGs can
be mapped to target genes using a distance-based approach. A CpG is linked to a gene if it is in the promoter region (< ±2 kb from the TSS). A distal CpG
can be linked to either all genes within a fixed width (i.e., 500 kb) or a fixed number of genes upstream and downstream of the CpG location. (C) TF-target
gene pairs can be retrieved from external databases (e.g., Cistrome Cancer and Dorothea). Using two different pairs (i.e., CpG–TF and TF–target gene),
triplets can then be created. Analysis: Each triplet will be evaluated using a robust linear model, in which DNAm.group is a binary variable indicating
whether a sample has high (fourth quartile) or low (first quartile) DNA methylation levels at the CpG. Results: MethReg outputs the prioritized triplets
and classifies both the role of TF in the target gene expression (repressor or activator) and the role of DNA methylation on TF (enhancing or attenuating).
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ter settings of CpG, TF and target gene linking are included
in the Supplementary Text.

Step 2: Estimating regulatory effects of CpG methylation and
TFs on target gene expression. Given a CpG–TF–target
gene triplet, we then query the matched DNA methylation
and gene expression datasets to obtain DNA methylation,
target gene and TF gene expression (or activity) values and
fit the following statistical model to data:

target gene expression ∼ TF + DNAm + DNAm × TF,

(Model 1)

where the target represents log2 transformed target gene ex-
pression values, TF represents log2 transformed TF gene ex-
pression values or estimated TF activity scores (see details
in the ‘Modeling TF protein activity’ section) and DNAm
represents DNA methylation beta-values.

Note that Model 1 partitions the effects of DNA methyla-
tion and TF on target gene expression into three categories:
the direct effect of TF (modeled by term TF), the direct ef-
fect of DNA methylation (modeled by term DNAm) and
the interaction effects of TF and DNA methylation (i.e. how
the effect of TF on target gene expression is modified by
DNA methylation, modeled by the DNAm × TF interac-
tion term).

For accurate statistical modeling, MethReg implements
Model 1 by fitting a robust linear model. In contrast to lin-
ear regression models, which consider each sample equally,
robust linear models give reduced weight to outlier gene ex-
pression values (33) to dampen their influences on the over-
all model fit. Note that a key feature of Model 1 is that
it provides more comprehensive modeling of gene regula-
tion by incorporating the three components (TF activity,
DNA methylation and target gene expression) simultane-
ously. In addition to Model 1 described earlier, which in-
cluded DNAm as a continuous variable, we also considered
another model that modeled methylation values as a binary
variable. We also propose

target gene expression ∼ TF + DNAm.group

+ DNAm.group × TF,

(Model 2)

where DNAm.group is high or low. That is, for a given
CpG, the samples with the highest DNA methylation levels
(top 25%) have DNAm.group = ‘high’ and samples with
lowest DNAm levels (bottom 25%) have DNAm.group =
‘low’. In this model, only samples with DNA methylation
values in the first and last quartiles are considered. Note
also that statistically the DNAm.group × TF effect is esti-
mated by comparing the magnitude of TF–target gene asso-
ciation in the high methylation group versus the magnitude
of the TF–target gene association in the low methylation
group.

Step 3: Visualizing and annotating roles of CpG and TF in
gene transcription. To visualize how DNA methylation in-
teracts with TFs to influence gene expression, MethReg
generates a suite of figures. Figure 3 shows an example out-

put figure of Model 2 applied to the TCGA colorectal can-
cer (CRC) dataset. The first row shows figures for assess-
ing direct pairwise TF–target and DNA methylation–target
associations. In the second row are figures for assessing
TF–target gene expression, stratified by high or low DNA
methylation levels.

Note in Figure 3, without stratifying by DNA methyla-
tion, the overall TF–target association is not significant (ro-
bust linear model P-value = 0.590). In contrast, TF–target
association is highly significant in samples with high methy-
lation levels (robust linear model P-value = 0.001). There-
fore, methylation at cg00328227 might interact with TF to
influence gene expression in this case. This example also
demonstrates that by additionally modeling DNA methy-
lation, we can nominate TF–target associations that might
have been missed otherwise.

Figure 4 shows the different biological scenarios in which
methylation and TF interact to influence target gene ex-
pression. A TF repressor decreases transcription while a
TF activator increases it, and the presence of methylation
can either enhance or attenuate the TF activity on the tar-
get gene. For each triplet, MethReg annotates the role of
TF in the target gene (repressor, activator or dual) and how
DNA methylation influences the TF (enhancing, attenuat-
ing or invert).

Modeling TF protein activity. Given that TF gene ex-
pression might not accurately reflect TF protein activity,
which involves additional complex processes (e.g. post-
translational modifications, protein–protein/ligand interac-
tions and localization changes), MethReg implements an
additional option to model TF activity via the VIPER (34)
or GSVA (35) methods, so that the TF effects in Models
1 and 2 described earlier can also be computed by replac-
ing TF gene expression levels with estimated TF activity.
Briefly, given RNA-seq data, these methods estimate the ac-
tivity of a TF by performing a rank-based gene set enrich-
ment analysis of its target genes (i.e. its regulon). MethReg
can work with different regulon databases (Supplementary
Table S2), such as those described by Garcia-Alonso et al.
(31), which were collected from four resources: manually cu-
rated databases, ChIP-seq binding experimental data, pre-
diction of TF binding motifs based on gene promoter se-
quences or computational regulatory network analysis. The
Genotype-Tissue Expression (GTEx) tissue-consensus reg-
ulons included 1 077 121 TF–target gene regulatory inter-
actions between 1402 TFs and 26 984 target genes, and the
pan-cancer regulons included 636 753 TF–target gene reg-
ulatory interactions between 1412 TFs and 26 939 target
genes. Garcia-Alonso et al. (31) annotated each TF–target
gene interaction with a five-level confidence score, with ‘A’
indicating most reliable, supported by multiple lines of ev-
idence, and ‘E’ indicating least confidence, supported only
by computational predictions. Benchmark experiments us-
ing three separate datasets showed that the GTEx tissue-
consensus regulons performed similarly to tissue-specific
regulons computed from GTEx data of specific tissue type.
Notably, MethReg also provides options for users to input
alternative TF regulon databases (Supplementary Table S2)
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Figure 3. Example output from MethReg analysis of the TCGA COADREAD dataset. (A) The first table shows the triplet (CpG, TF, target gene) metadata,
TF role (repressor or activator) and DNA methylation effect on the TF (enhancing or attenuating). The second table shows the results from fitting robust
linear model target gene expression residual ∼ DNAm group + TF + TF × DNAm group, where DNAm group is 0 if the sample has low DNA methylation
levels (in the lowest quartile) at the given CpG or 1 if the sample has high methylation levels (in the highest quartile), indicating significant DNAm × TF
interaction effect (P < 2 × 10–16). (B) When all samples are considered, there is no association between target gene expression and TF activity (each dot
represents a sample). (C) Comparison of target gene expressions between the DNAm groups shows samples with lower DNA methylation have higher
target gene expression. (D) Scatter plot of target gene expression residuals versus TF activity stratified by DNAm group (only samples in DNAm high or
low groups are shown). In samples with high DNA methylation, TF represses target gene expression. In samples with low DNA methylation, target gene
expression is relatively independent of the TF. Therefore, TF is predicted to be a repressor and DNAm is predicted to enhance the effect of TF on the target
gene. Abbreviations: DNAm, DNA methylation; target gene expression residual, linear model residuals obtained after removing effects of copy number
alteration (CNA) and tumor purity estimate from gene expression data.

and TF activity computed using alternative software such
as Lisa (36).

Stage-wise method for controlling false discovery rate.
MethReg implements two alternative methods for control-
ling false discovery rates (FDRs), using the conventional
approach by the method of Benjamini and Hochberg (37)
or a stage-wise approach (38). To help improve power in
high-throughput experiments where multiple hypotheses
are tested for each gene, Van den Berge et al. (38) proposed a
stage-wise approach in the context of gene splicing analysis.
First, in the screening step, a global test is applied to each
gene to test the null hypothesis that there is a differential
change in any of the transcripts within the gene. Second, in
the confirmation step, for the genes selected in the screening
step, individual transcripts are then tested while controlling
the family-wise error rate (FWER). By aggregating effects
from individual transcripts within a gene in the screening

step, the stage-wise procedure was shown to have superior
power compared with the conventional approach that tests
all individual transcripts in one step.

In Models 1 and 2 described earlier, the interaction of
DNA methylation and TF is estimated by the term DNAm
× TF. Because the standard error of interaction effects is
typically much larger than those for main effects, the con-
ventional approach for controlling FDR often results in
low power for discovering interaction effects (38). To this
end, MethReg additionally implements the stage-wise pro-
cedure for testing interactions by first aggregating all CpG–
TF–target gene triplets associated with the same CpG as a
group. In the screening step, MethReg tests the null hypoth-
esis that any of the individual triplets mapped to a CpG has
a significant DNAm × TF effect. In the confirmation step,
MethReg tests each triplet associated with the CpG selected
in the screening step while controlling FWER as described
in (38).
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Figure 4. Scenarios modeled by MethReg. (A, B) DNA methylation decreases TF activity. In (A), TF is a repressor of the target gene, while in (B) TF
is an activator. (C, D) DNA methylation increases TF activity. In (C), TF is a repressor of the target gene, while in (D) TF is an activator. (E, F) DNA
methylation inverts the TF role. In (E), when the DNA methylation levels are low the TF works as a repressor, while when methylation levels are high the
TF acts as an activator. In (F), when the DNA methylation levels are low the TF works as an activator, while when methylation levels are high it acts as a
repressor.

RESULTS

Figure 1 illustrates several different scenarios in which tar-
get gene expression levels are influenced by DNA methyla-
tion, TF or both. In (A), gene expression is mainly regulated
by DNA methylation. In (B), target gene expression is regu-
lated jointly by both DNA methylation and TF. Specifically,
DNA methylation influences the target gene by modulating
TF activity. In this case, the TF–target gene associations are
only observed in samples with low (or high) DNA methyla-
tion but not in all samples. In (C), target gene expression is
regulated mainly by TF activity but not DNA methylation.
Specifically, TF activity is associated with DNA methy-
lation levels, and TF also regulates gene expression inde-
pendently of DNA methylation. Therefore, target gene ex-
pression is regulated by the TF and not by DNA methyla-
tion. We next discuss simulation studies comparing different
methods to identify biological events described in scenarios
(B) and (C).

Comparison of different models when the target gene is regu-
lated jointly by both DNA methylation and TF

We first conducted a simulation study to compare the per-
formance of five different approaches, including Models
1 and 2, to identify TF–target associations where TF ac-
tivity is modulated by CpG methylation (Figure 1B). We
considered the scenario where CpG methylation affects TF
binding affinity so that TF only affects target gene expres-
sion when the methylation level is low. To assess the sta-

tistical properties of these different methods, we estimated
and compared type I error rate, power and area under
receiver operating characteristic (ROC) curves (AUC) for
each method.

More specifically, we simulated datasets for which tar-
get gene expression levels were dependent on TF expression
only in samples with low DNA methylation levels (Supple-
mentary Figure S1). We used 38 samples of TCGA COAD
matched RNA-seq and DNA methylation data on chromo-
some 21 included in the MethReg R package as our in-
put dataset, from which we randomly sampled TF gene ex-
pression and methylation levels. For each simulated triplet
dataset, we randomly sampled one gene from the RNA-
seq dataset and one CpG site from the DNA methyla-
tion dataset to be our TF expression and DNA methyla-
tion levels. Next, target gene expression levels were simu-
lated from negative binomial distributions as follows: the
estimated medians of means and variances over all genes
in our input dataset were μ0 = 10.59 and σ 2 = 16.90, re-
spectively. Therefore, for target gene expression, we as-
sumed a negative binomial distribution with parameters
μ0 = 10.59 and k0 = μ0

2/(σ 2 − μ0) = 17.78 for all samples
except those with the lowest DNA methylation levels in the
first quartile. For the samples with low methylation levels
in the first quartile, we generated target gene expression
levels from negative binomial distribution (μ = μ0 + β ×
TF gene expression, k = k0), where β = (0, 1, 2, . . . , 9) in-
dicates different strengths of associations between TF and
target gene expression, corresponding to 10 different sim-
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ulation scenarios. Therefore, by the design of this simula-
tion experiment, target gene expression was associated with
TF only when methylation levels were low. For each value
of β, we repeated this process 1000 times to generate 1000
triplets of TF, DNA methylation and target gene expression
levels.

Note that when β = 0, target gene expressions were gen-
erated randomly from negative binomial distribution and
did not depend on TF gene expression in the samples, so
the 1000 triplet datasets simulated under this simulation sce-
nario (null triplets) allowed us to estimate type I error rates
of different models. We compared sensitivity and specifici-
ties for identifying TF–target gene associations based on P-
values from five different approaches (Supplementary Fig-
ure S1):

lm.cont: P-value for DNAm × TF term in linear model im-
plementation of Model 1.

lm.binary: P-value for DNAm.group × TF term in linear
model implementation of Model 2.

rlm.cont: P-value for DNAm × TF term in robust linear
model implementation of Model 1.

rlm.binary: P-value for DNAm.group × TF term in robust
linear model implementation of Model 2.

rlm.binary.en: P-value for DNAm.group × TF term in
robust linear model implementation of Model 2, esti-
mated from empirical null distribution (39) (Supplemen-
tary Text).

In the method rlm.binary.en, instead of the conven-
tional approach, which computes P-values by comparing
test statistics for DNAm.group × TF to t-distribution, this
method estimates P-values for DNAm.group × TF effect
using empirical null distribution (39), which is a normal dis-
tribution with empirically estimated mean δ̂ and standard
deviation σ̂ . Efron (39) showed that in large-scale simulta-
neous testing situations (e.g. when many triplets are tested
in an analysis), serious defects in the theoretical null distri-
bution may become obvious, while empirical Bayes meth-
ods can provide much more realistic null distributions.

The results showed that all methods had type I er-
ror rates close to 5% (Supplementary Figure S2). Among
them, robust linear models with binary methylation group
(rlm.binary, rlm.binary.en) had the highest power (Supple-
mentary Figure S3). In a simulation study, we designed the
study so that some CpGs are truly associated with the tar-
get gene, while other CpGs are not associated with the tar-
get gene. Given the known status of CpG methylation’s
role in association with target gene expression (i.e. true
negative when β = 0 and true positive when β > 0 for the
triplet), we next computed the AUC for each method. The
ROC curves show a trade-off between sensitivity and speci-
ficity as the significance cutoff is varied. AUC assesses the
overall discriminative ability of the methods to determine
whether a given methylation CpG is driving target gene
expression over all possible cutoffs. The best-performing
models with the highest AUCs are rlm.binary.en (0.883),
rlm.binary (0.874) and lm.binary (0.812), followed by mod-
els with continuous methylation levels, rlm.cont (0.755) and
lm.cont (0.699) (Figure 5).

Among the methods that implemented Models 1 and 2,
the models that use a binary variable (low, high) to model
methylation levels (rlm.binary, rlm.binary.en and lm.binary
methods) performed best, probably because these mod-
els can reduce noise in data and thus can improve power.
Among binary models, the robust linear models rlm.binary
and rlm.binary.en performed similarly and better than regu-
lar linear model lm.binary. We also performed several addi-
tional simulation studies that evaluated the impact of differ-
ent sample sizes of the simulation datasets, when methyla-
tion data were generated from beta distributions, and when
the effect of TF on target gene expression (parameter β de-
scribed earlier) varied in a continuum as an exponential de-
cay function of methylation levels (Supplementary Text).
In all these additional simulation scenarios, the rlm.binary
model also performed best among all models (Supplemen-
tary Figures S4–S8). Thus, we selected the rlm.binary model
for our subsequent analyses of real multi-omics datasets.

Comparison of the linear models that analyze CpG–
TF–target gene triplet with methods that directly test
methylation–target associations

Conventionally, DNA methylation levels are often corre-
lated with target gene expression directly to identify those
CpGs with functional effects on nearby genes, using a cor-
relation statistic (method corr.met) or a Wilcoxon test that
compares target gene expression in high versus low methy-
lation samples (method wilcox.main.met). However, as we
demonstrate below, a challenge with these simpler methods
is that they cannot distinguish between the biological events
in which target gene expression is regulated by both methy-
lation and TF (Figure 1B) or only by TF (Figure 1C).

To illustrate, we next performed a simulation study to
compare different methods for identifying the biological
events in scenario (C), where target gene expression is
mainly regulated by variations in TF but not DNA methy-
lation. To this end, we simulated datasets in which target
gene expression levels were dependent on TF expression,
and DNA methylation levels were also correlated with TF
expression. We used the same 38 samples of TCGA COAD
matched RNA-seq and DNA methylation data described
earlier as our input dataset, from which we randomly sam-
pled TF gene expression and methylation levels.

For each simulated triplet dataset, we first randomly sam-
pled data for one gene from the RNA-seq dataset to be
our TF expression and one CpG site from the methyla-
tion dataset to be our DNA methylation levels. To obtain a
dataset in which methylation levels are negatively correlated
with TF expression, we ordered methylation values from
largest to smallest and TF values from smallest to largest
and then put the two columns of data next to each other.
Therefore, by the design of the experiment, methylation val-
ues are negatively correlated with TF values.

Next, we simulated target gene expression levels in all
samples from a negative binomial distribution with location
parameter μ = μ0 + β × TF gene expression and scale pa-
rameter k = k0, with β = (3, 6, 9). Here, we set μ0 = 10.59
and k0 = 17.78 as described in the earlier section. Note that
here target gene expression is dependent only on TF gene
expression and not on DNA methylation levels. For each
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Figure 5. ROC curves for different methods compared in the simulation study. Here, Model 1 is gene expression ∼ TF + DNAm.value + TF × DNAm.value
and Model 2 is gene expression ∼ TF + DNAm.group + TF × DNAm.group. Among methods that implement Models 1 and 2, robust linear models
with methylation binary group (rlm.binary, rlm.binary.en) performed best. The best performing models with the highest AUCs are rlm.binary.en (0.883),
rlm.binary (0.874), and lm.binary (0.812), followed by models with continuous methylation levels, rlm.cont (0.755) and lm.cont (0.699).

value of β, we then repeated this process 1000 times to gen-
erate 1000 triplets of TF, DNA methylation and target gene
expression levels.

Figure 6 shows that methods that test methylation–target
gene associations directly (corr.met, wilcox.main.met)
would also identify these DNA methylation–TF–target
gene triplets as significant, with the proportion of signifi-
cant P-values for these methods ranging from 45% to 75%.
On the other hand, methods that consider methylation,
TF and target gene simultaneously (lm.binary, lm.cont,
rlm.binary, rlm.cont) would not identify these triplets as sig-
nificant. The proportions of significant P-values for these
methods ranged from 4.3% to 8.4%. Therefore, a challenge
for methods that directly test methylation–target gene asso-
ciation is that these methods cannot distinguish target gene
expression driven mainly by the TF (Figure 1C) versus those
driven by both DNA methylation and TF (Figure 1B).

Supplementary Figure S9 shows an example from the
analysis of triplets in the analysis of TCGA COAD dataset,
where the observed correlation between promoter DNA
methylation and target gene expression is highly signifi-
cant (Spearman correlation = 0.231, P-value = 4.99 ×
10–5, FDR = 2.81 × 10–4). However, the result of fitting
the MethReg model indicated that for this triplet, neither
DNAm nor DNAm × TF terms were significant (P-values
= 0.395 and 0.477, respectively), but TF was highly signifi-
cant (P-value = 5.75 × 10–5). Therefore, the target gene ex-
pression is likely driven mainly by the TF EBF1, a tumor
suppressor with prognostic value for CRC (40), and not by
DNA methylation, even though we observed a highly sig-
nificant methylation–target gene expression association.

Case study: analyses of TCGA COADREAD dataset - an
unsupervised MethReg analysis

CRC is the third most commonly diagnosed cancer and
the second leading cause of cancer death in the United
States (41). Like many other cancers, CRC is character-
ized by global hypomethylation leading to oncogene activa-
tion, chromosomal instability and locus-specific hyperme-

thylation, which leads to the silencing of tumor suppressor
genes (42,43). In parallel, TFs also play instrumental roles
in tumor development and metastasis (44–46). Given the
strong epigenetic basis of CRC, we next applied MethReg
to the TCGA COADREAD dataset, including 367 samples
with matched DNA methylation, gene expression and copy
number alterations (CNAs). To account for potential con-
founding effects, we adjusted target gene expression values
by CNA and tumor purity estimates (47) first, extracted the
residuals and then fitted the rlm.binary model to the resid-
uals (Supplementary Text).

We performed an unsupervised MethReg analysis with-
out selecting any CpG a priori. First, we divided the CpGs
into those in the promoter regions (within ±2 kb regions
around the TSS) or the distal regions (>2 kb from TSS).
Next, we linked CpG sites in the promoter regions to genes
that had promoters overlapping with the CpGs. On the
other hand, CpG sites in the distal regions were linked to
five genes upstream and five genes downstream within 1
million bp. Alternatively, in the regulon-based approach,
we also linked CpGs in either promoter or distal regions
to genes regulated by TFs with binding sites close to the
CpG (Figure 2). To more accurately model TF effect, we
computed TF activity scores using the VIPER algorithm
(34). Stage-wise analysis using the rlm.binary model resid-
ual target gene expression ∼TF.activity + DNAm.group +
DNAm.group × TF.activity was then applied to the triplet
datasets to identify triplets with significant DNAm.group
× TF.activity effect, in which the CpG had a significant as-
sociation with the target gene expression by interacting with
TF.

After multiple comparison corrections using the stage-
wise approach (at a 5% FDR), the numbers of triplets with
significant DNAm × TF.activity terms in the promoter, dis-
tal and regulon-based analyses were 31, 52 and 47, respec-
tively (Table 1 and Supplementary Tables S3–S5). There
was no overlap between the significant triplets obtained
in these three analyses. Our results agreed well with the
previous study by Wang et al., which also observed only
a small number of transcriptional regulations were medi-
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Figure 6. Performance of different models when target gene expressions are regulated only by TF expressions, and not by DNA methylation levels. Methods
that test pairwise methylation–target associations (corr.met, wilcox.main.met) will identify these DNA methylation–TF–target gene triplets as significant,
while methods that consider methylation, TF and target gene simultaneously (lm.binary, lm.cont, rlm.binary, rlm.cont) do not identify these triplets as
significant.

ated by DNA methylation. Moreover, the TFs and target
genes in the significant triplets identified by MethReg have
also been previously associated with CRC. Figure 3 shows
the most significant triplet among all the triplets consid-
ered in promoter and distal analyses. In this example, the
TF NFATC2 represses the target gene HENMT1 in sam-
ples with high DNA methylation at cg00328227 but is rela-
tively independent of the target gene HENMT1 expression
in samples with low DNA methylation. Therefore, DNA
methylation is predicted to enhance TF activity in this case.
NFATC2 belongs to the NFAT family of TFs, which regu-
late T-cell activation and differentiation as immune cells in-
vade the malignant tissues (48,49). In particular, NFATC2
is a critical regulator in intestinal inflammation that pro-
motes the development of CRC, and expression levels of
NFATC2 were found to be elevated in CRC patients (50,51).
The MethReg prediction that NFATC2 represses HENMT1
is consistent with the recent study that demonstrated higher
expression of HENMT1 is a favorable prognostic biomarker
for CRC (52) and that NFATC2 is associated with tumor
initiation and progression. The HENMT1 gene encodes a
methyltransferase that adds a 2′-O-methyl group at the 3′-
end of piRNAs and is previously shown to be dysregulated
in many cancers (53). Our literature review showed the role
of HENMT1 is not well understood in CRC. Therefore, this
example also shows MethReg can nominate plausible TF
functions and target genes that can be further studied exper-
imentally. In contrast, without stratifying on DNA methy-
lation levels, the direct TF–target gene association was only
modest (Spearman correlation = −0.033, P-value = 0.527).

Supplementary Figure S10 shows an example in which
DNA methylation is predicted to attenuate TF activity.
In samples with low methylation levels at cg02816729, the
TF TEAD3 downregulates target gene SMOC2. On the
other hand, in samples with high methylation levels at CpG
cg02816729, the expression of the target gene SMOC2 is rel-
atively independent of TEAD3 activity (and its gene expres-

Table 1. Results of MethReg stage-wise analysis of TCGA COADREAD
dataset

Analysis
Unique
triplets

Unique
CpGs

Unique
TFs

Unique
targets

Promoter analysis
Screening 165 49 56 42
Confirmation 31 29 18 25
Distal analysis
Screening 2358 315 155 570
Confirmation 52 43 44 44
Regulon-based analysis
Screening 78 23 19 19
Confirmation 47 18 11 6

After removing effects of copy number alteration and tumor purity esti-
mate in gene expression data, the robust linear model target gene expres-
sion residual ∼ TF activity +DNAm.group +DNAm.group× TF activity was
used to analyze CpG–TF–target gene triplets. In each analysis, TFs with
binding sites within 250 bp of the CpGs were analyzed, and TF activity
scores were estimated using the VIPER algorithm. Shown are significant
triplets at 5% overall FDR level and the unique CpGs, TFs and targets in
these triplets. The CpGs in the promoter regions (±2 kb around the TSS)
were linked to genes that had promoters overlapping with them (promoter
analysis), while CpGs in the distal regions (>2 kb from TSS) were linked to
five genes upstream and five genes downstream within 1 million bp (distal
analysis). In regulon-based analysis, CpGs were linked to TF–target gene
pairs in the pan-cancer regulons described in (31). Abbreviations: DNAm,
DNA methylation; TSS, transcriptional start site; TF, transcription factor

sion). TEAD3 belongs to the family of TEAD TFs, which
also play critical roles in tumor initiation and progression in
multiple types of malignancies, including gastric, colorec-
tal, breast and prostate cancers (54). Higher expression of
TEADs, as well as association with poor patient survival,
has been observed in many cancers, including CRC (54,55).
On the other hand, the target gene SMOC2 was recently
shown to be a favorable prognostic biomarker for better
clinical outcomes in a large cohort of CRC patients (56).
Therefore, the MethReg prediction that TF TEAD3 sup-
presses target gene SMOC2 is consistent with the oncogenic
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role of TEAD3 and the favorable prognostic potential of
SMOC2. Again, without stratifying on methylation levels,
the TF–target gene association in all samples is only modest
(Spearman correlation = 0.07, P-value = 0.183).

Interestingly, some of the TFs also exhibited different
modes of regulation depending on DNA methylation levels.
In Supplementary Figure S11, the expression levels of target
gene BAHCC1 are increased by TF POU3F4 in low methy-
lation samples (P-value = 6.42 × 10–4) but are decreased
by POU3F4 in high methylation samples (P-value = 1.31
× 10–4). Therefore, DNA methylation may have increased
the diversity of TF functions in this case. Without stratify-
ing on DNA methylation, the TF–target gene association is
not significant (Spearman correlation = 0.083, P-value =
0.112). Alternatively, the significant DNAm × TF.activity
term can also be interpreted as significant DNAm–target
gene association affected by the TF. Indeed, when we strat-
ified samples by low versus high TF activity, DNAm–target
gene association in samples with low TF activity (estimate
= 3.06, P-value = 8.46 × 10–8) was stronger than their as-
sociation in samples with high TF activity (estimate = 1.55,
P-value = 7.31 × 10–5). Therefore, in these triplets where
DNAm and TF interact to influence target gene expression,
TF binding might also be affecting DNAm–target gene as-
sociation. POU3F4 belongs to the family of POU domain
TFs, which are involved in different developmental pro-
cesses and were also recently found to be associated with the
malignancy processes in different human tissues (57–61). In
addition, expression levels of the target gene BAHCC1 were
shown to be associated with survival times in different types
of cancers such as melanoma (62), liver cancer (63) and pan-
creatic cancer (52).

Among other TFs in the top 10 triplets (Table 2), SNAI1
is a zinc finger protein involved in inducing the epithelial–
mesenchymal transition process during which tumor cells
become invasive with increased apoptotic resistance (64–
67). The MEIS1 homeodomain protein is a tumor suppres-
sor and was observed to be downregulated in colorectal
adenomas (68). Similarly, ISL2 is also a tumor suppres-
sor, and ISL2 loss increased cell proliferation and enhanced
tumor growth in pancreatic ductal adenocarcinoma cells
(69). ETV4 belongs to a subfamily of the ETS family with
well-known oncogenic properties (70). In particular, ETV4
is overexpressed in colorectal tumor samples, and higher
ETV4 expression is associated with a shorter patient sur-
vival time (71–77). ZNF384 is a zinc finger protein that
is found to be overexpressed in several cancers, including
leukemia (78,79), liver cancer (80) and CRC (81). Finally,
FOXL1 is an important regulator of the Wnt/APC/�-
catenin pathway, which frequently activates events in gas-
trointestinal carcinogenesis (82–84). Similarly, the target
genes in the top 10 triplets have also been implicated previ-
ously in CRC and other cancers (Table 2). Moreover, among
the significant triplets identified by MethReg, the majority
of the CpGs, TFs and target genes (78%, 79% and 75%, re-
spectively) were also differentially methylated or differen-
tially expressed between tumor and normal samples (Sup-
plementary Tables S3–S5). Gene ontology analysis showed
many developmental biological processes (e.g. embryonic
organ development and cell fate commitment) are signif-
icantly enriched with the methylation-sensitive TFs (Sup-

plementary Table S6). Naxerova et al. showed that CRC
belonged to the group of cancers exhibiting early develop-
mental features and was undifferentiated in general com-
pared to other types of tumors (85). Similarly, Table 2 shows
the target genes in these top triplets are also highly relevant
to CRC (86–93). Taken together, these results demonstrated
that MethReg is able to identify biologically meaningful sig-
nals from real multi-omics datasets.

Comparative analysis of MethReg (in unsupervised mode)
with alternative approaches

Encouraged by the consistency of MethReg results with
the recent CRC literature, we next performed a comparative
analysis of MethReg with several alternative approaches. As
evidence from large-scale analyses that a substantial num-
ber of TFs can interact with methylated DNA has only be-
come available in recent years, few studies have analyzed
DNA methylation, TFBS and gene expression data simul-
taneously using large multi-omics datasets until recently.

We considered a total of three alternative approaches: the
recent studies by Wang et al. (94) and Liu et al. (95), as well
as the conventional approach of directly correlating DNA
methylation with gene expression. In Wang et al. (94), a
rewiring score constructed based on TF–target gene corre-
lations in high and low methylation samples was proposed
to identify methylation-sensitive TFs in different cancers us-
ing TCGA data. Similarly, using a conditional mutual in-
formation (CMI)-based approach, Liu et al. (95) identified
CpG–TF–target gene triplets in which the TF–target gene
regulation circuit is dependent on CpG methylation levels in
different cancers using TCGA data. In both of these stud-
ies, sample permutations were used to estimate P-values for
test statistics based on rewiring scores or CMI.

Conceptually, compared to these previous studies,
MethReg makes several distinct contributions: (i) MethReg
analysis is comprehensive. While both previous works ana-
lyzed only promoter CpG methylation, MethReg analyzes
methylation CpGs at both promoter and distal (enhancer)
regions. The identification of distal regulatory elements is
crucial as they are often not well defined. (ii) MethReg anal-
ysis is flexible. In addition to the example databases we
have described here, MethReg is capable of incorporating
any user-specified ChIP-seq or regulon database (Supple-
mentary Table S2), including those that are tissue or dis-
ease specific. The power and potential of MethReg grow as
more knowledge on TF regulation becomes available. (iii)
MethReg analysis is rigorous. Robust linear models have
been implemented to carefully model outlier samples in
RNA-seq data. Further, with the permutation approaches
used in the previous studies, it can be challenging to adjust
for covariate information that is important for analyzing
human datasets, for which confounding variables such as tu-
mor purity are often significant contributors to both DNA
methylation and gene expression. In contrast, MethReg’s
regression-based approach makes it easy to adjust for po-
tential confounding variables. (iv) Most importantly, while
previous studies provided analysis results for TCGA can-
cer datasets, no software has been made available to the re-
search community until now. This study provides an open-
source software, MethReg, which implements comprehen-
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sive bioinformatics and statistical analysis, making it pos-
sible for researchers to analyze datasets beyond TCGA. In
addition to providing estimated individual and joint regu-
latory effects of CpG methylation and TFs, MethReg also
annotates the potential regulatory roles of TFs and CpG
methylation, as well as providing a rich suite of figures for
visualizing analytical results.

Next, we systematically compared MethReg analysis
and other approaches empirically using the TCGA COAD
dataset. Because both previous studies analyzed TF gene
expression, we performed additional MethReg promoter
analysis that models the TF effect based on TF gene expres-
sion instead of TF activity. More specifically, to compare
with results from Wang et al. (94), which identified 3244
TF–target gene pairs, we applied the robust linear model
described earlier to the corresponding triplets (average pro-
moter DNA methylation, TF gene expression and target
gene expression). Our results showed that for a majority
(81.23%, n = 2613) of the significant TF–target gene pairs
from (94), the corresponding triplets also had a significant
DNAm × TF effect in the rlm.binary model from MethReg.
Moreover, classification for promoter methylation effects
on TFs in (94) and MethReg agreed very well (kappa statis-
tic = 0.975, P-value = 0) (Supplementary Table S7).

Similarly, we also fitted our rlm.binary model described
earlier to the 47 029 triplets identified in (95) for the TCGA
COAD dataset. However, we observed less agreement be-
tween our significant results and those from (95), as only
5321 (11.3%) of the 47 029 triplets had significant DNAm
× TF P-values by MethReg. The overlap between stud-
ies by Liu et al. (95) and Wang et al. was also very low,
with only eight TF–target gene associations identified by
both studies. This discrepancy might be due to the differ-
ences in methodologies. The CMI approach used by Liu et
al. (95) detects any general associations that can be non-
monotonic, while the robust linear model MethReg used
and the rewiring score in (94) mainly detect monotonic
TF–target gene associations that are dependent on CpG
methylation. Biologically, for TF–target gene pairs with
nonmonotonic associations, target gene expression is higher
when TF activity is either high or low than when TF ac-
tivity is intermediate. Mutual information for TF and tar-
get gene expression can still be high for these TF–target
gene pairs, but there would not be any monotonic TF–target
association.

Finally, we compared the MethReg promoter analy-
sis results with the conventional approach of correlating
methylation–target gene directly. More specifically, Spear-
man correlations were computed for each promoter CpG
and target gene in the COADREAD dataset. The correla-
tion between rankings of P-values based on methylation–
target gene correlation and DNAm × TF interaction ef-
fects in the MethReg model is a significant but modest as-
sociation (Spearman correlation = 0.0533, P-value = 2.2
× 10–16), indicating these two approaches are identifying
many different CpGs. This is not surprising, however, be-
cause the MethReg model identifies CpG methylation that
can potentially influence the target gene by regulating TF
activity (Figure 1B) instead of influencing the target gene
directly (Figure 1A).

Comparative analysis of different approaches using
methylation-sensitive TFs in MeDReaders database as
the gold standard

Compared to alternative methods [e.g., the CMI approach
in (95) identified 47 029 triplets in the TCGA COADREAD
dataset], MethReg selected fewer significant triplets at de-
fault settings. There are several possible reasons: (i) We hy-
pothesized that a contributing factor might be that other
studies analyzed TF gene expression, while MethReg an-
alyzed TF activity. To test this hypothesis, we re-analyzed
the TCGA COADREAD dataset using the same analy-
sis pipeline except replacing estimated TF activity with TF
gene expression. Our results showed by analyzing TF gene
expression, we would obtain 172 and 693 significant triplets
in MethReg promoter and distal analyses (Supplementary
Tables S8 and S9), compared to 31 and 52 significant triplets
obtained previously by analyzing TF activity (Supplemen-
tary Tables S3 and S4). One possible reason for the reduced
power in the latter approach could be the increased vari-
ance in estimated TF activity compared to the variance
of TF gene expression (Supplementary Figure S12). While
MethReg analyzes TF activity at default, to help users in-
terested in analyzing TF gene expression and comparing the
results obtained with the two approaches, we also imple-
mented an additional option in MethReg for analysis us-
ing TF gene expression. (ii) MethReg’s regression-based ap-
proach allowed us to adjust for potential confounding vari-
ables, which may have also reduced the number of signifi-
cant results. In contrast, adjusting for covariate variables is
challenging for alternative methods that use permutation-
based approaches. More specifically, in the analysis of the
TCGA COADREAD dataset, we adjusted for effects from
CNAs and tumor purity scores. Without adjusting for these
covariate variables, MethReg promoter and distal analyses
using TF gene expression would result in 354 and 810 signif-
icant triplets, compared to the 172 and 693 triplets obtained
earlier after correcting for covariate variables.

To systematically compare these different MethReg
approaches, we next evaluated the TFs in significant
triplets identified by each approach using the MeDReaders
database (96), which contains manually curated informa-
tion for 731 TFs with binding activity predicted to be influ-
enced by DNA methylation based on human or mouse stud-
ies, as the gold standard. These TFs were shown to exhibit
CpG methylation-dependent DNA-binding activity using
functional protein arrays (14) or SELEX (16). Because
MethReg analyzed only TFs in the JASPAR database (29),
we considered only TFs included in the JASPAR database
in the following analysis. Specifically, for each method, we
computed precision, which is the proportion of TFs identi-
fied by a method that is also in the MeDReaders database,
among all TFs identified by a method, and recall, which is
the proportion of TFs in the MeDReaders database identi-
fied by a method. Our results showed MethReg analysis that
analyzes TF activity and adjusts for covariates (i.e. CNAs
and tumor purity scores) (method A) had the highest preci-
sion (72.2%), and MethReg analysis that analyzes TF gene
expression and adjusts for covariates (method B) is a close
second (with a 71.2% precision). In comparison, MethReg
analysis that analyzes TF gene expression without adjusting
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covariates (method C) performed worst with a precision of
65.9% (Supplementary Table S10). On the other hand, re-
call is lower, at 9.5%, 20.4% and 23.6% for methods A, B,
and C, respectively. One contributing factor for these low
recall rates might be the discrepancy between the cell lines
used to develop the MeDReaders database and the primary
tumor tissues in the TCGA dataset used for MethReg anal-
ysis. Also, the lower recall (9.5%) for method A compared
to the other two methods might be due to the fewer triplets
identified by MethReg analysis that analyzes TF activity
and adjusts for covariates.

In addition, we also performed the analysis for the TCGA
COADREAD dataset using the CMI approach as imple-
mented in the JAMI software (97). Our results showed
the CMI approach achieved a precision of 10.3% and a
recall of 4.6%, significantly lower than the MethReg ap-
proaches. These results provided additional evidence for us-
ing MethReg regression models for real datasets.

Case study: analysis of ROSMAP Alzheimer’s disease
dataset - a supervised MethReg analysis

In this section, we demonstrate supervised MethReg anal-
ysis using an Alzheimer’s disease (AD) dataset collected by
the ROSMAP study (98). In contrast to unsupervised anal-
ysis, which tests triplets involving all CpGs, in a supervised
analysis, we only test triplets involving DMS, typically ob-
tained from EWAS. To study AD-associated DNA methy-
lation changes in the brain, we recently performed a meta-
analysis of over 1000 prefrontal cortex brain samples from
four large brain studies (6,99–101) and identified 3751 sig-
nificant CpGs at 5% FDR (102). To help understand the
regulatory roles of these DMS, we applied MethReg to an-
alyze matched DNA methylation and gene expression pro-
files measured on prefrontal cortex brain samples from 529
independent subjects in the ROSMAP dataset.

To illustrate the versatility of the MethReg analysis
pipeline, we used alternative databases to analyze the
ROSMAP dataset compared to the analysis pipeline for the
TCGA COADREAD samples. More specifically, to map
TFBS, instead of the JASPAR2020 database (29) here, we
used the ReMap database (28), which contains a large col-
lection of regulatory regions obtained using genome-wide
DNA-binding experiments such as ChIP-seq. In particular,
the ReMap human atlas included binding regions for 1135
transcriptional regulators. Also, to analyze these brain sam-
ples, instead of the pan-cancer regulons, we used the brain-
specific TF regulons included in the ChEA3 (103) software
website, along with TF activity scores estimated by GSVA
(35).

More specifically, we first adjusted methylation and gene
expression values separately by potential confounding ef-
fects, including age at death, sex, batch effects and markers
of different cell types. Next, we computed TF activity us-
ing the GSVA method (35), which is an alternative method
to VIPER (34) for computing enrichment scores of each TF
by comparing enrichment in target gene expression for a TF
(its regulons) with expression levels of background genes.

At a 5% FDR, MethReg identified 1, 20 and 103 triplets
that included 1, 16 and 53 unique TFs that interact with
DMS to influence target gene expression in the promoter,

distal and regulon-based analyses, respectively. A compar-
ison with the MeDReaders database (96) shows more than
half (58.6%, 41 out of 70) of these TFs were previously
shown to interact with methylated DNA sequences (Sup-
plementary Tables S11 and S12). In Table 3, many of the
TFs and target genes in the top 10 triplets were previously
implicated in AD pathology. For example, in the most sig-
nificant triplet (Table 3 and Supplementary Figure S13),
the TF SPI1 (PU.1) is a master regulator in the AD gene
network (104,105). SPI1 is critical for regulating the via-
bility and function of microglia (106), which are resident
immune cells of the brain. Microglia function as primary
mediators of neuroinflammation and phagocytose amyloid-
beta peptides accumulated in AD brains (107). Using trans-
genic mouse models for AD and comparing with gene-level
variations in recent human AD GWAS meta-analysis (108),
Salih et al. (109) recently showed the target gene LAPTM5
(lysosome-associated protein, transmembrane 5) belongs to
an amyloid-responsive microglial gene network and pre-
dicted LAPTM5 to be one of four new risk genes for AD.
Moreover, LAPTM5 was also shown to be a member of
the human microglia network in AD in multiple gene ex-
pression studies (110,111). Intriguingly, SPI1 and LAPTM5
belonged to the same transcription co-expression network
(109), and in mouse microglial-like BV-2 cells, results from
the ChIP-seq experiment showed SPI1 binds to the regula-
tory region of LAPTM5 (112), consistent with the MethReg
prediction that LAPTM5 is regulated by SPI1. While pre-
vious studies have implicated both SPI1 and LAPTM5 in
AD pathology, how SPI1 influences LAPTM5 gene expres-
sion is less clear in the AD literature. Without stratifying on
DNA methylation levels, the direct SPI1–LAPTM5 associ-
ation is very low (Spearman correlation = −0.010, P-value
= 0.805) (Supplementary Figure S13). To help connect
the dots, MethReg analysis provided evidence that DNA
methylation interacts with TF SPI1 to influence LAPTM5
gene expression jointly, which is crucial for functionally in-
terpreting the epigenomic maps. Interestingly, SPI1 appears
to have dual roles in this case, depending on DNA methy-
lation levels at cg17418085, which is located in the gene
body of LAPTM5. More specifically, SPI1 upregulates the
target gene LAPTM5 in samples with low methylation at
cg17418085 but downregulates the target gene when DNA
methylation is high, suggesting DNA methylation and the
TF might have compensatory mechanisms that control gene
expression at this locus. Additional biological experiments
are needed to confirm these observed cooperative interac-
tions between DNAm and SPI1 that influence LAPTM5
gene expression.

The triplet cg08824847−NR3C1−PDHX is an example
in which methylation at cg08824847 is predicted to enhance
activation of the target gene PDHX by NR3C1 (Table 3
and Supplementary Figure S14). NR3C1 is the glucocorti-
coid receptor that can act as a TF that binds glucocorticoid-
responsive genes to activate their transcriptions or as a reg-
ulator for other TFs. NR3C1 regulated downstream pro-
cesses such as glycolysis (113) and was observed to be dys-
regulated in AD (114–116). The target gene PDHX encodes
the component X of the pyruvate dehydrogenase (PDH)
complex, which is involved in regulating mitochondrial ac-
tivity and glucose metabolism in the brain that is critical for
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neuron survival (117,118). Low levels of cerebral glucose
metabolism often proceed with the onset of AD and have
been proposed as a biomarker of AD risk (119–122). Pre-
viously, it was also shown that along with other regulators,
glucocorticoids can regulate the efficacy of PDH (113,123).
The MethReg prediction that methylation at cg08824847
enhances activation of PDHX by NR3C1 is consistent with
these previous findings that demonstrated lower levels of
PDHX in AD samples, and with results from our previous
large meta-analysis of DNA methylation changes in AD,
which discovered cg08824847 to be hypomethylated in AD
samples across all four analyzed brain sample cohorts and
has a significant negative association with AD Braak stage
even after multiple comparison correction (102).

Among the other TFs in the top 10 triplets (Table 3),
ESR1 is estrogen receptor alpha, one of two subtypes of the
estrogen receptor. Genetic polymorphisms of ESR1 have
been associated with the risk of developing cognitive im-
pairment in older women (124–128), as well as faster cog-
nitive decline in women AD patients (129). Induced by
chronic inflammation in AD, CEBPD is associated with
microglial activation and migration (130,131). TCF12 is a
member of the basic helix–loop–helix E-protein family and
plays important roles in developmental processes such as
neurogenesis, mesoderm formation and cranial vault devel-
opment. Recently, TCF12 was predicted to be affected by
SNP rs10498633 (132), a top AD-associated SNP identi-
fied in the IGAP AD meta-analysis study (133). Moreover,
TCF12 also belongs to a herpesvirus perturbed TF regula-
tory network that is implicated in AD (134). SRF is a serum
response factor responsible for regulating the smooth mus-
cle cells and blood flows in the brain, which is important for
a blood vessel’s ability to remove amyloid-beta peptides ac-
cumulated in AD. Compared with healthy individuals, SRF
was found to be four times higher in AD patients (135,136).
GABPA belongs to the ETS family of DNA-binding fac-
tors and is a master regulator of multiple important pro-
cesses, including cell cycle control, apoptosis and differen-
tiation. Using evolutionary analysis and ChIP-seq experi-
ments, Perdomo-Sabogal et al. (137) linked GABPA to sev-
eral brain disorders, including AD, autism and Parkinson’s
disease. Finally, NFE2L2/NRF2 is another master regu-
lator and regulates genes involved in response to oxida-
tive stress and inflammation. Motivated by the encourag-
ing therapeutic effect of NRF2 on AD pathology in ani-
mal models and cultured human cells (138–140), modula-
tion of the NRF2 pathway has recently been proposed as a
strategy for AD drug development (138). Similarly, Table 3
shows the target genes in these top 10 triplets identified by
MethReg are also highly relevant to AD. Taken together,
these results demonstrated MethReg is capable of identi-
fying biologically meaningful regulatory effects of DNA
methylation in other complex diseases, such as AD, for
which association signals are expected to be much weaker
than those observed in cancers.

Comparative analysis of MethReg (in supervised mode) with
alternative approaches

To compare the performance of MethReg in supervised
mode with currently available alternative tools, we next
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analyzed the ROSMAP dataset using the ReMapEnrich
R package (28), which identifies regulators with bind-
ing sites enriched in user-supplied regions. Several other
tools, such as LOLA (21) and ChIP-Enrich (141), per-
form similar analyses as ReMapEnrich, but here we chose
ReMapEnrich because it uses the same ReMap database as
MethReg for the ROSMAP dataset analysis. More specif-
ically, for the ReMapEnrich analysis, we also used the lo-
cations of the 3751 AD-associated CpGs (these are the
DMS) from our previous AD meta-analysis (102) as the in-
put. The results showed that ReMapEnrich identified 143
TFs with binding sites enriched with the DMS, among
which a substantial number (n = 28, 20%) were also iden-
tified by MethReg (Supplementary Table S13). These 28
TFs included many well-known regulators for AD such as
TCF12, SPI1, NR3C1, CEBPB, GABPA and others. On
the other hand, 115 and 32 TFs were uniquely identified by
ReMapEnrich or MethReg, respectively.

Although many of these significant TFs have been pre-
viously implicated in AD pathology, their specific roles in
transcription regulation and the identification of their tar-
get genes in AD remain to be investigated. Notably, cur-
rently available tools such as ReMapEnrich only identify
the TFs but do not consider CpGs or provide detailed infor-
mation on the relevant target genes. In contrast, MethReg
fills this critical gap by nominating plausible TF–target
gene associations that are modulated by DNA methyla-
tion. Therefore, MethReg analysis, which leverages addi-
tional gene expression data to provide more comprehensive
information on transcription regulation for the TFs, com-
plements existing approaches.

DISCUSSION

To evaluate the role of DNA methylation in gene regu-
lation, we developed the MethReg R package. MethReg
provides a systematic approach to dissect the variations
in gene transcription into three different modes of regu-
lation: direct effects by methylation and TF individually,
and the interaction effect from both DNA methylation and
TF. By additionally modeling DNA methylation variations,
MethReg complements existing approaches that analyze
TF and target gene expression alone. In doing so, MethReg
uncovers TF–target gene relations that are present only in
samples with high (or low) methylation levels at the CpG
that modulates TF activity. On the other hand, compared
to approaches that analyze DNA methylation and TFBS
data alone, MethReg analysis also reduces the noisiness in
TFBS predictions by additionally modeling target gene ex-
pression data. Compared to the conventional approach of
directly correlating DNA methylation with gene expression,
MethReg can be useful for prioritizing DNA methylation–
target gene associations driven by both DNA methylation
and TFs, or mainly by DNA methylation, from those driven
primarily by TFs. Computationally, MethReg is efficient.
The unsupervised analysis of the TCGA COADREAD
dataset, which considered all CpGs on the Illumina array,
took 5, 37 and 14 min for the promoter, distal and regulon-
based analyses, respectively, using a single Linux machine
with 64 GB of RAM memory and Intel Xeon W-2175 (2.50

GHz) CPUs with four cores for parallel computing (Sup-
plementary Table S14).

In addition to the conventional approach for control-
ling FDRs, MethReg also implements an alternative ap-
proach using the stage-wise method (38), which might help
with improving power. For comparison, we re-analyzed the
ROSMAP dataset using the same analysis pipeline except
replacing the conventional approach for estimating FDR
with the stage-wise method, and our results showed that
we would get 19 and 69 significant triplets in MethReg pro-
moter and distal analyses (Supplementary Tables S15 and
S16), compared to 1 and 20 significant triplets using the
conventional FDR approach (Supplementary Table S11).
These results are consistent with those described in (38),
which showed stage-wise method improves power over one-
stage analysis in high-throughput experiments where multi-
ple hypotheses are tested for each gene (or CpG here). Note
also that because only AD-associated CpGs were consid-
ered in this supervised analysis of the ROSMAP dataset, the
number of significant triplets is expected to be lower than
those from unsupervised analysis, which considers all CpGs
on the methylation array.

At default, after fitting statistical models, MethReg im-
plements two additional filters to select triplets. First, to
avoid triplets described in Figure 1C (target gene is mainly
regulated by TF), MethReg removes a triplet if the TF is
significantly associated with DNA methylation. However,
this filtering step might be overly stringent since results
from our simulation study (Figure 6) showed the MethReg
model has very low power for identifying triplets of the
scenario in Figure 1C. Next, MethReg selects only triplets
in which target gene expression is significantly associated
with DNA methylation, which might also be too restric-
tive. Note that when the direct effect of DNA methylation
on the target gene and the DNAm × TF interaction ef-
fect on the target gene are in opposite directions, the overall
association between DNA methylation and target gene ex-
pression might be reduced (Supplementary Figure S15). If
we remove these two filters on the triplets in the analysis
of the TCGA COADREAD dataset using TF gene expres-
sion, the number of significant triplets in promoter and dis-
tal analyses would be 723 and 2657, respectively. Similarly,
in the stage-wise analysis of the ROSMAP dataset, with-
out the filters, the number of significant triplets in promoter
and distal analyses would increase to 70 and 401, respec-
tively. These filters were used to prioritize the most signifi-
cant results, but arguments filter.correlated.tf.exp.dnam and
filter.correlated.target.exp.dnam in MethReg function inter-
action model can also be used to turn these optional filters
off when needed.

Because of current limitations in technology, directly
measuring DNA methylation, TF binding and target gene
expression in high throughput is still a difficult task, espe-
cially for a large cohort of primary tissue samples. There-
fore, computational approaches are needed to prioritize reg-
ulatory elements in gene transcription. To this end, a main
computational challenge is the accurate assessment of TF
activity. Many integrative studies have used TF gene ex-
pression data, which are often widely available, as surro-
gate measurements for TF activity. However, the abundance
of TF expression does not necessarily correspond to more
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TF binding events, which needs to be confirmed by cell
type-specific ChIP-seq experiments. On the other hand, TF
binding events are sometimes nonfunctional and might not
lead to changes in gene expression (24,25). To this end,
we implemented the option to model TF effects based on
VIPER (34) or GSVA (35) estimated TF protein activity in
MethReg. Both VIPER and GSVA approaches have been
widely used for modeling protein activity using gene expres-
sion datasets, and these methods assume that collectively
the target genes of a TF represent an optimal reporter of
its activity, and they estimate TF activity based on enrich-
ment of its target gene expression compared to background
genes.

While the motivation of MethReg is to rank signifi-
cant and functional DNA methylation changes identified
in EWAS, a useful by-product of this analysis is the iden-
tification of enhancers, which are often located several hun-
dreds of kb away from the target gene, where TFs bind
and interact with DNA methylation to activate gene expres-
sion by looping DNA segments (142). Growing evidence
indicates that in addition to promoter methylation, DNA
methylation at enhancers also plays an equally or more
important role in activating gene expression (143). Active
cancer-specific enhancers are typically hypomethylated at
CpG sites (10,144,145) in open chromatin regions free of
nucleosomes (146,147). In many cases, hypermethylation of
CpG sites can interfere with TF binding and lead to de-
creased enhancer activity in various cancers (9,148). It has
been observed that TF activity often correlates with levels
of demethylation at enhancer regions and subsequent target
gene expression (27,148,149).

Although recently many cis-regulatory regions have been
identified using genomic and epigenomic data (27,150), as-
signing these candidate enhancers to target genes on a
genome-wide scale remains challenging and is currently
an active area of research. A recent study (151) compared
several published computational approaches for enhancer–
gene linking using a collection of experimentally derived ge-
nomic interactions. It was shown that the best-performing
method, TargetFinder (152), is only modestly better than
the baseline distance-based approach, and the authors sug-
gested further improvement in current computational meth-
ods in this area is needed. Although many of these compu-
tational methods leverage information from histone marks,
chromatin accessibility and interaction, TF binding mod-
els and gene expression levels, few if any also model DNA
methylation at candidate enhancer regions. As many re-
cent studies suggested substantial crosstalk between DNA
methylation and other regulatory elements such as TFs
(14,16), we developed MethReg to specifically estimate and
evaluate the regulatory potential of DNA methylation for
interacting with candidate TFs at both promoter and dis-
tal regions. In particular, MethReg links target genes with
CpGs in distal regions using two alternative approaches:
linking to a fixed number of nearby genes or by using anno-
tations in regulon databases (Figure 2). Indeed, among sig-
nificant triplets identified in MethReg analysis of ROSMAP
dataset, a substantial number of CpGs (6 and 22 in dis-
tal and regulon-based analyses, respectively) were located in
brain-specific enhancer regions annotated in the Enhancer-
Atlas 2.0 database (153) (Supplementary Tables S11 and

S12). Notably, the power and potential of MethReg will also
grow as more knowledge on TF regulatory activity is accu-
mulated and new ChIP-seq and TF regulon databases be-
come available.

The aim of MethReg is to prioritize functional elements
and to generate useful testable hypotheses for subsequent
mechanistic studies. The significant associations identified
by MethReg do not necessarily reflect causal relationships.
For these DNA methylation changes that couple with TF
activity, additional experimental studies are needed to de-
termine whether the changes in methylation are causing or
are caused by TF activity. Nevertheless, even if the DNA
methylation changes are passive markers that accumulated
as a result of TF binding (or lack of binding), they can
still be useful as biomarkers. Currently, many of the large
DNA methylation datasets are measured using methyla-
tion arrays because of their lower cost and the simplicity
in benchwork and analysis. MethReg has been tested suc-
cessfully on microarrays and can also be trivially extended
to analyze large cohorts of samples measured using high-
throughput sequencings such as WGBS or RRBS. In ad-
dition to CpGs identified in EWAS, MethReg can be sim-
ilarly applied to evaluate the regulatory potential of can-
didate regions identified by other assays, including those
targeting selected genomic regions. Beyond TFs, MethReg
can also be applied to analyze other types of chromatin
proteins, including histones that are known to crosstalk
with DNA methylation (154–156). Finally, MethReg can
be further extended to incorporate TF–target gene associa-
tions based on spatial enhancer–gene linking when 3D chro-
matin and genetic interaction data on primary cells become
available.

We have presented an integrative analysis and annotation
software, MethReg, which has several critical roles. First,
given the large number of DMS identified from EWAS, su-
pervised MethReg analysis can be used to analyze CpG–
TF–target gene triplets involving the DMS, to identify and
prioritize important CpG methylation that influences target
gene expression by interacting with TFs that bind in prox-
imity. Second, MethReg annotates CpG methylation and
the TFs that bind in close proximity with their regulatory
roles (i.e. activator or repressor TFs, and DNA methyla-
tion that attenuates or enhances TF effects). Third, because
some TFs affect target gene expression only in samples with
high methylation levels (or only in samples with low methy-
lation levels), MethReg can help uncover TF–target gene
associations that are not obvious in an analysis that uses
all samples. Finally, for a particular target gene, MethReg
partitions the variances in gene regulation into direct im-
pact by methylation, direct impact by TF or joint impact
of both methylation and TF, which allows MethReg to pri-
oritize methylation–target gene associations that are likely
driven by both DNA methylation and TFs, or DNA methy-
lation alone, over those driven primarily by TFs. Using two
case studies in CRC and AD, we have shown the power of
MethReg to uncover biologically relevant transcriptional
regulation in both diseases, which have vastly different biol-
ogy. Open-source software scripts, along with extensive doc-
umentation and example data for MethReg, are freely avail-
able from the Bioconductor repository. We hope MethReg
will empower researchers to gain a better understanding of
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the important regulatory roles of CpG methylation in many
complex diseases.
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The MethReg R package is available from the Bioconductor
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cancer datasets, including genomic profiles in CNAs (gene-
level copy number scores), gene expressions (HTSeq-
FPKM-UQ values from RNA-seq) and DNA methyla-
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were downloaded from the NCI’s Genomic Data Commons
using TCGAbiolinks R package (version 2.17.4). DNA
methylation and gene expression data for the ROSMAP
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