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Rapid control and feedback rates
enhance neuroprosthetic control
Maryam M. Shanechi1,2,*, Amy L. Orsborn3,*, Helene G. Moorman4,*, Suraj Gowda2,*,

Siddharth Dangi2 & Jose M. Carmena2,3,4

Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the

sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may

also influence neuroprosthetic control. Here, we explore the influence of control and feedback

rates, where control rate indicates how often motor commands are sent from the brain to the

prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided

to the subject. We developed a new BMI that allows arbitrarily fast control and feedback

rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control

rate significantly improved control even when feedback rate was unchanged. Increasing the

feedback rate further facilitated control. We also show that our high-rate BMI significantly

outperformed state-of-the-art methods due to higher control and feedback rates, combined

with a different point process mathematical encoding model. Our BMI paradigm can dissect

the contribution of different elements in the sensorimotor pathway, providing a unique tool

for studying neuroprosthetic control mechanisms.
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B
rain-machine interfaces (BMIs) enable the brain to directly
control external devices by bypassing natural motor
pathways1–20. BMIs create a bidirectional pathway

between the brain and the prosthetic (Fig. 1a,b). In the forward
path, the brain sends motor commands to the prosthetic device;
and in the feedback path, the user receives visual feedback of the
prosthetic response to this motor command (for example, the
user watches the BMI output on a computer screen).

Significant work in BMI design in recent years yielded marked
improvements in performance. For the last few years, the field
converged towards a common approach based on processing
spike counts using a Kalman filter (KF) trained in closed-loop
operation13,15,16,19,21. Since the development of closed-loop KF-
BMIs, however, new approaches have not been able to signi-
ficantly improve BMI performance beyond that of KF-BMIs22.
This plateau calls for a design shift based on a more mechanistic
understanding of neuroprosthetic control. BMIs create a novel
sensorimotor pathway whose properties may influence control.
Investigating these influences can lead not only to a deeper
understanding of control strategies in BMIs, but also to new
designs that optimize the sensorimotor pathway for enhanced
neuroprosthetic control.

In natural motor control, the properties of the sensorimotor
apparatus strongly influence neural mechanisms23,24. Growing

research suggests that neuroprosthetic control is also shaped by
properties of the BMI system like the dynamics of the controlled
device3,25 and the mapping between neural activity and
movement9,19,26,27 (the ‘encoding model’). Characteristics of the
sensorimotor pathway such as temporal delays28 may also have a
significant role in neuroprosthetic performance. How the full
sensorimotor pathway properties affect neuroprosthetic control,
independent of other factors like the encoding model, has not
been fully explored. Two fundamental properties of a
sensorimotor pathway, distinct from delays, are the control and
feedback rates that it enables. One largely unexplored question in
BMI is whether these pathway rates influence performance and
control strategy.

Understanding how the sensorimotor pathway influences
control requires experimental manipulation. BMI paradigms
are ideally suited for perturbation experiments because they
provide a novel, experimenter-defined sensorimotor path-
way29,30. In contrast to the natural motor system, where control
rates may not be easy to manipulate, BMI can distinguish the
roles of control and feedback rates in the sensorimotor loop.
However, a carefully designed BMI that can disentangle and
investigate control and feedback rates has not yet been devised,
and experiments to tease apart the effects of each rate separate
from other factors have not yet been conducted. Moreover,
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Figure 1 | Task design and experimental setup. (a) Monkey J performing the self-paced delayed centre-out movement task in brain control. The BMI

paradigm introduces a novel bidirectional pathway between the brain and the prosthetic. (b) The BMI control and feedback loop, with all pathway

processes illustrated. As further illustrated in d, control rate was manipulated by modifying the decoded position to cursor movement portion of the loop,

while feedback rate was manipulated by adjusting the cursor movement to screen-update portion of the loop. (c) Each row corresponds to the spikes for a

different hypothetical neuron. Spikes are binned in small intervals such that each interval contains at most one spike. This creates a discrete-time point

process. PPF decodes the position with every 0 and 1. Example decoded positions in one dimension versus time are shown in dark blue and are updated

with every 0 and 1. Hence any control and feedback rate below this high bin rate can be obtained. (d) The process of generating the controlled and feedback

positions in PPF, FS-PPF and SS-PPF are shown for the same hypothetical spike train. Control rate is manipulated by adjusting how often the PPF’s decoded

position is sent to the prosthetic and used to control the task (controlled positions in light blue). Task success is assessed based on these controlled

positions. Feedback rate is adjusted by changing the rate at which feedback of the controlled positions is provided to the subject (displayed positions in

black). PPF consists of both a fast control and a fast feedback rate, FS-PPF consists of a fast control and a slow feedback rate, and SS-PPF consists of a slow

control and a slow feedback rate. For illustration purposes, the slow rate is selected as one-third of the maximal bin rate in this figure. Blue arrows show

which decoded positions are sent to the prosthetic over the forward path, and grey arrows show which controlled positions are displayed to the monkey

over the feedback path.
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control and feedback rates will likely influence strategies for
neuroprosthetic control and must be carefully considered during
BMI design. If increased feedback and control rates enhance
performance, this would warrant rate-independent BMIs that can
run at arbitrarily fast rates in contrast to the KF-BMIs, which are
rate-dependent (see Supplementary Notes 1 and 2). Finally,
designing such rate-independent BMIs combined with pathway
perturbations may in turn help elucidate the control mechanisms
exploited by the brain during neuroprosthetic control.

Towards this goal, in the first part of this work, we design a
closed-loop point process filter (PPF) BMI platform to investigate
the effects of feedback and control rates on the brain’s control of
continuous BMI movement. In the second part, we use this
platform to propose a BMI that markedly enhances control
beyond the current state-of-the-art closed-loop KF-BMIs. Our
platform enables neuroprosthetic control at arbitrarily fast rates
unlike spike count-based BMIs like the KF. Critically, it also
separates rate manipulations from the decoder’s mathematical
encoding model to dissect influences of each sensorimotor loop
element on control (see ‘Methods’ section and Supplementary
Note 1). The PPF can run at different rates while keeping the
encoding model parameters unchanged, allowing for investiga-
tion of rate effects without confounding the results with any
changes in the encoding model (Supplementary Note 1).

We use this platform to dissociate the effects of feedback and
control rates on neuroprosthetic control in two monkeys
performing a variety of BMI tasks using neural signals from
their motor cortices. We find that increasing the control rate,
even with a slower feedback rate, improves control. Increasing
the feedback rate also enhances control. On the basis of these
findings, we develop a high-rate closed-loop PPF BMI. We
demonstrate that this high-rate PPF BMI markedly improves
control over the state-of-the-art KF-BMI. We also identify the
elements within the BMI system—feedback rate, control rate and
point process encoding model—that contribute to these
improvements.

Results
Experimental manipulations and methodology. We trained
two adult male rhesus monkeys to perform a two-dimensional,
self-paced centre-out reaching task with centre and target hold
requirements under neural control (Fig. 1a, ‘Methods’ section).
The BMI was controlled by ensembles of multi-unit activity from
the primary- and pre-motor cortices (15–33 units). At the
beginning of each day, decoders were typically first trained using
neural activity recorded during passive observation of cursor
movements and were then adapted using closed-loop decoder
adaptation (CLDA) techniques to achieve proficient con-
trol16,31,32 (see the ‘Methods’ section and Supplementary Note 3).

To enable sensorimotor loop manipulations, we developed a
closed-loop PPF BMI that directly modelled neural spikes as a
series of random 0 and 1 events occurring in time. Point
processes have been used in computational neuroscience to model
the spikes in open-loop and offline studies, for example, to decode
the position of a rat from hippocampal place cell activity33 or to
decode hand movements from motor cortical activity offline34.
These models also hold promise for BMI decoders31,35,36. Here
we developed a PPF that was trained adaptively in closed loop
using an optimal feedback control model of BMI31,35,36. The
point process models a set of 1 and 0 events (that is, spikes or
lack thereof) that occur in continuous time. Although in general
these point process events are continuous time, they can be
approximated as a discrete time point process by using small time
bins containing at most one spike and generating a discrete time
series of 0’s and 1’s (refs 33,34,37). As long as this bin-width is

selected small enough to contain at most one spike, the discrete
time process directly models the 0 and 1 time series of the spikes
well33,34,37. Thus this point process modelling enabled the brain
to control the BMI and receive feedback at an arbitrarily fast rate
(that is, as fast as with every 0 and 1; Fig. 1c). To choose the bin
width that allows for a good discrete time approximation to the
continuous time 0 and 1 time series, we found that consecutive
spikes from any unit rarely (less than 0.6% of the time) occurred
within 5 ms of each other, and hence used a 5 ms bin width.
The PPF therefore decoded the position at 200 Hz (180 Hz for
monkey C). While the PPF updated the decoded cursor position
with every 0 or 1 (Fig. 1c), we adjusted the control rate by
changing how often this PPF output was sent to the prosthetic
(Fig. 1b,d). Similarly, we manipulated the feedback rate by
changing the rate at which the prosthetic’s (that is, cursor’s)
position was updated on the subject’s computer screen (Fig. 1b,d).
These new experiments enabled the dissociation of the control
and feedback rates (see Supplementary Note 1).

Since typical BMI systems run at around 10–20 Hz (refs 7,9,
11–15,19,38), we used 10 Hz as our baseline pathway rate. We call
a 10 Hz pathway (whether control or feedback) a slow pathway.
To see the full effect of increasing the pathway rate, we compared
with the maximal possible feedback rate enabled by the computer
monitor (that is, 60 Hz) in both monkeys. We also compared with
the maximal control rate, that is, equal to the PPF decoding rate
of 200 Hz, in monkey J and to a 60 Hz control rate in monkey C
(Supplementary Note 1). We refer to these as fast pathways in
monkeys J and C, respectively. We then manipulated each of the
control and feedback pathways to be either slow or fast. There
were a total of four possible combinations of the control-feedback
bidirectional pathways: slow–slow, slow–fast, fast–slow, fast–fast
(Fig. 1d). The slow–fast pathway is equivalent to the slow–slow
pathway since the cursor’s position display cannot update at a
rate faster than it is controlled. Thus we tested PPF decoders with
the slow–slow, fast–slow and fast–fast control-feedback bidirec-
tional pathway, referred to as SS-PPF, FS-PPF and PPF,
respectively.

Each experimental day consisted of alternating blocks of
decoder pairs to be compared, whose order was selected
randomly (see Supplementary Table 1 for the number of paired
blocks compared for each pair in each monkey). We use the rate
of successful trial completion (‘success rate’), which takes into
account both speed and task accuracy, as our main performance
measure to assess the effects of control and feedback rates. In
addition, we calculate percentage correct, reach time and
movement error (see the ‘Methods’ section). Performing direct
BMI performance comparisons in the same animals, during the
same task, and with the same recording quality ensures that
variability due to extraneous factors like subject motivation and
task proficiency, and differences in tasks and recording quality,
which unavoidably exist across different labs, do not confound
our results.

Rapid control rates enhance neuroprosthetic control. We first
explored the influence of control rate in the feedforward pathway
on neuroprosthetic control. To do so, we dissociated the effect of
control and feedback rates and investigated the effect of
increasing the control rate alone. We compared a slow-slow
bidirectional pathway with a fast-slow one by having the monkeys
control each of SS–PPF and FS–PPF decoders (Fig. 1d). This
isolates the effect of increasing the control rate alone. Note that in
FS–PPF, even though the cursor is controlled with every 0 and 1
event, feedback of its position is only provided to the subject
every 100 ms. We find, surprisingly, that despite the slow feed-
back rate, allowing for control at a fast rate improves BMI
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performance. Both monkeys achieved a significantly higher suc-
cess rate using FS–PPF (Po0.001, one-sided paired t-test, mon-
key C n¼ 14, monkey J n¼ 17; Fig. 2a, Supplementary Tables 1
and 2). The increased control rate also improved percentage
correct significantly for both monkeys (Po0.001, one-sided
paired t-test, monkey C n¼ 14, monkey J n¼ 17; Supplementary
Fig. 1) and reduced movement error significantly for monkey J
(Po0.03, one-sided paired t-test, n¼ 17; Supplementary Fig. 1).

This result raises an important question as to why the
increased control rate improves performance despite the fact
that the increased control rate may be imperceptible to the subject
when the feedback rate is the same. We found that the main
reason for SS–PPF’s degradation in success rate was a significant
decrease in the ability to hold the target for the required hold
period. In both monkeys, faster control rates did not impact reach
times (SS–PPF versus FS–PPF reach times; P40.23, two-sided
paired t-test, monkey C n¼ 14, monkey J n¼ 17). The reach time
similarity is also intuitively sound; just as a longer interval
between consecutive cursor positions in SS–PPF could result in
the cursor hitting the target later, it also could result in the cursor
exiting the centre later (which is when we start counting the reach
time). Hence the two effects cancel out. In contrast, in
both monkeys, percentage correct was significantly decreased
for SS–PPF (Po0.001, one-sided paired t-test, monkey C n¼ 14,
monkey J n¼ 17). Since this change occurs with a fixed feedback
rate, one hypothesis to explain this observation could be that
subjects use a feedforward control strategy, which is more
successful at higher control rates. Hence subjects’ control may not
be based purely on direct feedback of cursor positions.
We performed detailed analyses (Supplementary Note 4) to
examine the degradation in hold performance. These analyses
show results that are consistent with a feedforward control

hypothesis where a high-rate internal forward model is used to
predict the cursor’s time of entry in the target. Given the long
visual feedback delays, it may be that the deceleration needed to
satisfy the hold requirement is planned in a feedforward manner
using a high-rate internal model. In this case, using a low-rate
decoder (SS–PPF) the monkey will predict the time of entry
incorrectly, which will result in higher hold errors in SS–PPF as
observed in our data (see the ‘Discussions’ section and
Supplementary Note 4 for supporting analyses). The full
examination and proof of such hypotheses requires careful
perturbation experiments in future studies. The PPF BMI can
facilitate such perturbations because it allows for manipulation of
the sensorimotor pathway properties independent of the encod-
ing model.

Rapid feedback rates enhance neuroprosthetic control. We then
explored the effect of the feedback rates. We compared a fast–
slow pathway with a fast–fast one by having the monkeys control
each of the FS–PPF and PPF decoders (Fig. 1d). We find that
increasing the feedback rate improves BMI performance. Success
rate significantly improved for both monkeys when feedback rate
increased (Po0.005, one-sided paired t-test, monkey C n¼ 17,
monkey J n¼ 17; Fig. 2a, Supplementary Table 2). The increased
feedback rate also resulted in a significant reduction of reach time
and movement error for both monkeys (Po0.02, one-sided
paired t-test, monkey C n¼ 17, monkey J n¼ 17; Supplementary
Fig. 1) and in a significant increase of percentage correct for
monkey J (Po0.002, one-sided paired t-test, n¼ 17;
Supplementary Fig. 1). These results may suggest that the subjects
utilize feedback information in their control strategy (see the
‘Discussion’ section).

0

5

10

15

a

b

*** *** ***

S
uc

ce
ss

 r
at

e 
(t

ria
ls

 m
in

–1
)

0

5

10

*** ***

S
uc

ce
ss

 r
at

e 
(t

ria
ls

 m
in

–1
) **

Monkey J Monkey C

SS-PPF

PPF

Increase 
control rate 

FS-PPF

Increase 
feedback rate

0

10

20

0

10

20

Im
pr

ov
em

en
t i

n
su

cc
es

s 
ra

te
 (

%
)

Im
pr

ov
em

en
t i

n
su

cc
es

s 
ra

te
 (

%
)

SS-PPF FS-PPF PPF

Figure 2 | Rapid control and feedback rates enhance neuroprosthetic control. (a) Success rates for monkeys J and C using SS-PPF (white), FS-PPF (light

blue) and PPF (dark blue). Each pair of bars indicates a paired comparison between two of the decoders and is obtained by averaging the performance of

blocks that were run on the same days. Error bars indicate the s.e.m. Stars between the paired bars indicate a significant change, with one star indicating

Po0.05, two stars indicating Po0.01 and three stars indicating Po0.001. The bottom panel shows the percentage improvement in the success rate for the

paired bar comparisons in the top panel. Each grey improvement bar is calculated from the paired bars above it (that is, improvement of the left bar

compared with the right bar in the paired bar above it). (b) SS-PPF has a slow control and a slow feedback rate, FS-PPF has a fast control rate but a slow

feedback rate, and PPF has both fast control and fast feedback rates.
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Control and feedback rate enhancements combine. Finally, we
explored the combination of fast feedback and fast control rates
(Fig. 2b). In both monkeys, all performance measures sig-
nificantly improved when increasing both control and feedback
rates by controlling PPF as opposed to SS–PPF (Po0.002, one-
sided paired t-test, monkey C n¼ 16, monkey J n¼ 22; Fig. 2a,
Supplementary Fig. 1, Supplementary Table 2; see Supplementary
Note 3 and Supplementary Fig. 1 for controls). Together, these
results indicate that the brain’s ability to control movement sig-
nificantly depends on the control and feedback rates of the sen-
sorimotor pathway. While a rate of around 10 Hz is common in
current BMIs9,11,14,15,19, the brain has the capability to exploit
both the faster rate of control and the faster rate of feedback for
more proficient neuroprosthetic control.

A new design direction for high-performance BMIs. The
marked performance improvements with enhanced sensorimotor
loop rates suggest a new direction for BMI design. The state-of-
the-art KF is a rate-dependent decoder. It fundamentally limits
the rate in the sensorimotor loop because of modelling assump-
tions. In particular, the KF is only optimal when the spike count
within a bin is approximately Gaussian distributed. Hence KF-
BMIs run at 10–20 Hz such that the bins are relatively large for
the count to satisfy this assumption according to the central limit
theorem39 (see Supplementary Notes 1 and 2). The performance
of closed-loop KF BMIs has plateaued recently and new
approaches based on the KF decoder have not been able to
enhance neuroprosthetic designs22. Our results on rate effects
suggest that the PPF, which provides a departure from KF-BMIs
by modelling the spike 0 and 1 time-series and by allowing for
arbitrary control and feedback rates, might significantly improve
neuroprosthetic control over existing approaches.

We tested this hypothesis by comparing BMI performance with
the PPF and a KF-based approach shown to provide current
state-of-the-art performance13. We trained the KF decoder using
SmoothBatch CLDA16 and an intention estimation technique13

that have been demonstrated to result in current state-of-the-art
BMIs13,16 (‘Methods’ section). We refer to this decoder as the
SmoothBatch KF (SB-KF). We found that PPF markedly
outperformed SB-KF in both monkeys (Fig. 3). Success rates
using PPF were 30±3% and 24±2% higher than SB-KF in
monkeys J and C, respectively (Fig. 3a, Supplementary Table 2;
mean±s.e.m.; Po0.0001, one-sided paired t-test, monkey C
n¼ 20, monkey J n¼ 7). Both movement error and reach time
were significantly reduced when using PPF compared to SB-KF in
both monkeys (Fig. 3b, Supplementary Fig. 2; Po0.002,
one-sided paired t-test, monkey C n¼ 20, monkey J n¼ 7), and
percentage correct was significantly increased in monkey J
(Supplementary Fig. 2; Po0.005, one-sided paired t-test, n¼ 7;
see also control in Supplementary Fig. 2).

These performance improvements were robust both across
time and assessment tasks. We performed 66 days of additional
BMI experiments (33,468 trials total) with monkey J in which
PPF and SB-KF were used on different days (Supplementary
Fig. 3, Supplementary Table 2). Consistently, PPF improved all
performance measures compared with SB-KF (Po10� 6,
one-sided t-test, 66 days), increasing success rate by 32±3%
(mean±s.e.m.; Po10� 15, one-sided t-test, 66 days). Thus PPF
performance improvements were stable over months of record-
ings and were not affected by long-term learning of the two
decoders. We also found that performance differences between
the PPF and KF generalized to tasks beyond those used for CLDA
training. We compared PPF with SB-KF in monkey J on a multi-
curvature obstacle-avoidance task consisting of point-to-point
reaches with an obstacle to be avoided during the movement

(Fig. 3c). Consistently, PPF outperformed SB-KF in the obstacle
task. The path lengths taken to avoid the obstacles were markedly
longer when the monkey used SB-KF instead of PPF on every
path type (Fig. 3d–h; Po10� 15, one-sided t-test; 2,562 trials). On
average, this difference was 30%. Moreover, percentage correct
using the PPF was significantly higher on all path types (Fig. 3d;
Po0.02, one-sided t-test; 2,562 trials) and success rate was on
average 17% higher.

Selecting the encoding model to enable high rates in BMIs.
Across these comparisons, we found a consistently larger
improvement between SB-KF and PPF than SS-PPF and PPF
(Supplementary Tables 1 and 2; one-sided t-test; Po0.002).
Beyond rate differences, the new PPF and KF also substantially
differ in their neural encoding model (that is, the mathematical
model that relates neural activity to intended velocity). While the
PPF paradigm models the 0 and 1 time series of the spikes, the KF
preprocesses the spikes first by turning them into counts and then
models the counts. We hypothesized that the encoding model
may also contribute to the observed performance improvements
by more accurately modelling the spiking activity. We then used
our PPF paradigm to isolate the effects of the encoding model on
BMI performance improvement. We compared a PPF and a KF
that were designed to have the same control and feedback rates.
We first used a rate of 10 Hz (a slow–slow pathway) to compare
the two models, that is, when KF has the benefit of larger bin-
widths (because the KF is optimal if the spike counts in a bin have
a Gaussian distribution, which is satisfied better at the larger
bin widths; see the ‘Methods’ section and Supplementary Notes 1
and 2). Even at this large bin-width, SS-PPF enabled higher
success rates compared with SB-KF in both monkeys
(Supplementary Fig. 4, Supplementary Table 2; Po0.006, one-
sided paired t-test, monkey C n¼ 11, monkey J n¼ 14) and
improved most other measures as well.

While the above comparison indicates the benefit of the point
process modelling of spikes even at slow rates, a fundamental
property of the point process model is that it allows the BMI to
incorporate the higher control and feedback rates to enhance
neuroprosthetic control. To allow for the higher control and
feedback rates, the KF would also need to run at these high rates.
We investigated whether the KF could enable high-rate control.
We found that a high-rate KF resulted in a significant degradation
of performance even compared with a low-rate version of itself
(Supplementary Table 2; Po0.03, one-sided paired t-test, n¼ 6;
see also Supplementary Note 2 and control in Supplementary
Fig. 4). These results indicate that the rate-independent PPF is
better able to incorporate the high rate of control and feedback
compared with rate-dependent decoders like the KF. Importantly,
the PPF model facilitates high rate control. Taken together, by
dissociating the effects of the increased control rate, increased
feedback rate and the point process encoding model, our
experiments indicate that each of these three factors contribute
to more proficient neuroprosthetic control.

Discussion
We developed a novel closed-loop PPF BMI and combined it with
experiments in two macaque monkeys to dissociate the effects of
two fundamental characteristics of the bidirectional sensorimotor
pathway during neuroprosthetic control. We found that increas-
ing the control rate, even when feedback rate was slower,
improved control. Moreover, increasing the feedback rate further
facilitated control. These results suggested the importance of
high-rate sensorimotor pathways for BMI control. We proposed
the PPF BMI, which enables these fast rates by modelling the 0
and 1 time series of the spikes using a point process.
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(b) Random PPF and SB-KF centre-out trajectories. (c) Multi-curvature obstacle avoidance task. Each trial type consisted of a start target, an end target and

an obstacle (red). The trials were constructed to include no obstruction, partial obstruction, full obstruction with a long distance between targets and full

obstruction with a short distance between targets. Thus the obstacle avoidance task requires the monkey to perform movements of different lengths,

locations and curvatures. (d) Comparison of path length and percentage correct (% correct) when monkey J used SB-KF or PPF for each of the four trial

types in the obstacle avoidance task. Unobstr., unobstructed. (e–h) Sample trajectories (10 randomly selected per figure) using PPF (top) and SB-KF

(bottom) for each of the four trial types.
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We compared the PPF with a state-of-the-art KF. PPF markedly
outperformed the KF in both monkeys across various tasks,
increasing success rate by 32% and 24% in monkeys J and C,
respectively. Critically, our experiments demonstrate the key
mechanisms facilitating these improvements—increased control
rate, increased feedback rate and point process encoding models.
Together, these findings highlight the importance of the
sensorimotor pathway properties and the encoding model for
neuroprosthetic design and control. By identifying factors that
underlie performance improvements, our work provides insights
for future developments in neuroprosthetic design.

Our work represents one of the first efforts to explore the
effects of both sensorimotor control and feedback rates on
neuroprosthetic control. Prior BMI studies40 have suggested that
small bin-widths of 25–50 ms for the KF decoder may be
beneficial for closed-loop control. However, changing the KF bin-
width involves simultaneously changing all three factors explored
in this study, that is, control rate, feedback rate and mathematical
encoding model (Supplementary Note 1). Combined with our
new perturbation experiments, the PPF allowed us to dissociate
and examine the effect of each of these three factors because it is
independent of rate and can run at any rate. Note that in
principle, our perturbation experiments can be combined with
any decoder that can run well at arbitrarily fast rates to
manipulate the rate effects. However, the majority of BMI
decoders used to date, like the KF, the population vector or the
Wiener filter rely on a Gaussian assumption of the neural
observations, which breaks downs at high rates (using small bins
to count the spikes). This was confirmed here experimentally by
the performance degradation of the KF at high rates (Results and
Supplementary Fig. 4, Supplementary Table 2, see also the
theoretical reason in Supplementary Note 2). Although it may
also be possible to use a large sliding window in count-based
decoders to compute the number of spikes and achieve a high
rate, such a sliding window results in highly correlated
observations because the spike counts are found using largely
overlapping windows with the same spikes. Hence a sliding
window approach does not adhere to the conditional
independence assumption of observations in these decoders.
Moreover, the amount of correlation introduced between the
observations will be rate dependent (the higher the rate, the more
the overlap and conditional dependence). Such a rate-dependent
correlation could confound rate manipulation results. Finally, our
results show that, regardless of the rate, a point process encoding
model resulted in enhanced performance over the Gaussian
encoding model used in previous decoders. Taken together, these
commonly used BMI decoders are less useful for rate
manipulations. Importantly, regardless of the choice of the
decoder, this is the first study to dissociate and examine control
and feedback rate effects in BMI.

We dissociated the effect of control and feedback rates for
neuroprosthetic control. For natural motor control, psychophy-
sics studies manipulating feedback intermittency41–43 and
temporal delays44–46 have helped elucidate how visual feedback
information is incorporated to guide motor control. However, in
the natural motor system, control rates—dictated by the
biophysical properties of muscle activation—are not readily
amenable to manipulation making such exploration difficult.
Also, dissociating the contribution of forward versus feedback
processes to control output is believed to be difficult within
psychophysics experiments43. The PPF BMI provides the
opportunity to define the sensorimotor pathway properties and
perform the perturbations required to examine their effects.

Our results demonstrate the brain’s ability to incorporate
feedback information and to control continuous movement of a
prosthetic at rates higher than 10 Hz. Future studies testing a

variety of feedback and control frequencies will be critical for fully
characterizing the processing within the sensorimotor loop.
Similar manipulations in electromyographic47,48 and kinematic
interfaces49,50 could also be used to explore the influence of
control rates across different levels within the motor system.

Our results may also shed light on the control strategies used
by the primate brain in BMI. In natural motor control, many
studies explored whether the brain uses feedforward or feedback
control strategies51–55. It is unknown whether neuroprosthetic
control uses similar mechanisms. Strikingly, we find that
increasing the control rate, in the absence of an increased
feedback rate, improves neuroprosthetic control. In this
condition, the feedback pathway remains unchanged. Hence it
is surprising that neuroprosthetic control is enhanced. One
possible hypothesis could be that the brain uses a feedforward
control strategy in performing the task (see Supplementary
Note 4). Previous studies also suggest that the primate brain uses
internal models during neuroprosthetic control9,56, which would
have a critical role in feedforward and feedback control. Our
results are consistent with a hypothesis that a high-rate internal
forward model is involved in neuroprosthetic control. Specifically,
we find that hold errors are significantly higher in slow control
rate conditions compared with high control rate, suggesting the
subjects cannot properly predict the cursor’s time of entry into
the target to successfully hold in the former case (see results and
analyses in Supplementary Note 4). Given the long visual
feedback delays and lack of proprioceptive information in
BMIs, performing such feedforward prediction may be nece-
ssary for satisfying the hold condition at the target. Finally,
neuroprosthetic control improved when the feedback rate was
increased. This may imply the brain partially relies on feedback
correction. Together, these results could suggest the hypothesis
that the brain exploits a hybrid of feedforward and feedback
strategies for neuroprosthetic control, consistent with current
evidence from natural motor control51.

Although our data suggest possible control strategies, we
emphasize that other alternative mechanisms may also explain
our results, and more studies are needed. Since feedforward and
feedback control strategies are closely tied to the properties of the
sensorimotor loop, the PPF BMI provides a new tool by which to
perform perturbation experiments and manipulate the pathway
properties independent of other factors (such as the encoding
model). This should allow the hypotheses about control strategies
to be fully tested in future studies. This work can also be extended
to analyse changes in neural activation patterns with sensor-
imotor loop manipulations. This may be a new, complementary
avenue of investigation for understanding the relationships
between neural network properties and the sensorimotor
system57.

Our results have significant implications for neuroprosthetic
technologies. The performance of KF-BMIs has remained
unbeaten for several years. The PPF BMI markedly enhanced
BMI performance over the current state-of-the-art KF-based
approach. It also enabled a better understanding of the control
processes underlying this improvement when combined with
novel experiments. Identifying mechanisms underlying perfor-
mance improvement provides principled design guidelines for
future neuroprosthetic systems. These guidelines could be
particularly useful for designing decoders for high-dimensional
control tasks (for example, reach and grasp neuroprostheses) in
future studies. The paradigm developed here will also allow for
similar mechanistic study of pathway rates and encoding model
effects in high-dimensional control, all of which may be
particularly important as control and task complexities increase.
Although two-dimensional control is itself a very active area
within the BMI field that is essential for communication
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prostheses, exploring the performance of various BMI designs on
higher dimensional tasks is an important future area of inquiry.
In addition to setting the new state-of-the-art BMI performance,
the PPF BMI may serve as a new scientific tool to understand
fundamental mechanisms underlying neuroprosthetic control by
providing a novel sensorimotor pathway whose rate character-
istics can be readily manipulated.

Methods
Subjects and surgical procedures. Data were collected from two adult male
rhesus macaques (Macaca mulatta) J and C. Subjects were chronically implanted
with microwire electrode arrays (Teflon-coated tungsten electrodes, 35 mm dia-
meter, 500mm spacing; Innovative Neurophysiology, Durham, NC, USA) for
neural recording. The arrays (128 electrodes; 8� 16 configuration) were implanted
bilaterally in the hand and arm representation areas of primary motor cortex (M1)
and dorsal premotor cortex (PMd; Monkey J) and the primary sensory cortex (S1)
and M1 (Monkey C), using stereotactic coordinates. All the procedures were
conducted in compliance with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals and were approved by the University of California,
Berkeley Institutional Animal Care and Use Committee.

Electrophysiology. Neural activity was recorded from monkey J (C) using a 128-
(256-) channel MAP (Omniplex) system (Plexon, Inc.). Multi-unit (monkey C) and
channel-level activity (monkey J) was used for real-time BMI control. Multi-unit
activity was sorted manually using online spike sorting software (Plexon, Inc.).
Channel-level activity was defined by setting thresholds for each channel (5.5 s.d.
from the mean signal amplitude) and using online sorting software to define unit
templates that captured all incoming neural activity on the channel. Full details on
channel-thresholding procedures are described elsewhere19. Over the course of
experiments, BMI was controlled by 15–20 units in monkey J and by 33 units in
monkey C.

Behavioural task setup. Subjects were trained to perform behavioural tasks using
arm movements. Following this training, they then transitioned to BMI control.
Monkey J performed arm movement tasks in a two-dimensional environment with
his right arm held within a KINARM exoskeleton (BKIN Technologies). The
exoskeleton confined movements within the horizontal plane. Target information
was projected onto a semi-silvered mirror parallel to the subject’s arm movements
(Fig. 1a); the end-point position of the subject’s arm was presented as a dot on the
screen co-localized with his hand. In BMI, monkey J’s arm was removed from the
exoskeleton, and placed within a primate chair. Changes in the colour of the cursor
were also used to distinguish between BMI and arm control.

Monkey C performed a two-dimensional arm movement task by moving his
right hand within a vertical plane in front of him. The hand position was tracked
by a Phasespace Improv motion capture system (PhaseSpace Inc., San Leandro,
CA, USA) and mapped to the position of a cursor displayed on a screen in front of
the subject. Monkey C’s arm was not restrained during BMI but was typically
resting stationary by his side. Changes in the colour of the cursor and background
were used to distinguish between BMI and arm control.

Centre-out task. Subjects performed a self-paced delayed centre-out movement
task with their arms (manual control) and under BMI-control. This task requires
the animal to hold at the centre target for a specified period of time (the ‘delay’),
before the go signal cues the animal to initiate the reach. Self-paced movements
may be more representative of normal performance with a BMI and hence they
were exploited in this study. Movements were made between a central target and
eight peripheral targets uniformly spaced around a circle (Fig. 1a). Successful trials
required a movement to and brief hold at the central target to initialize a trial,
followed by a movement to and brief hold at the peripheral target. Failure to
acquire the target within a specified window or to hold the cursor within the target
for the duration of the hold period resulted in an error. To meet the hold
requirement, subjects had to maintain the cursor within the target for the full hold-
time duration upon entering it (that is, subjects had no opportunity to correct for
exiting the target before the completion of the hold period, in contrast to some
prior tasks).

Target directions were presented in pseudo-randomized blocks of eight targets.
Monkey J (C) performed the task with circular targets of 1.2 (1.25) cm radii
distributed about a circle of 13 (20) cm diameter. In BMI, hold times were 250
(216) ms and subjects had 3–10 s to complete the movement from central to
peripheral target. Note that given the self-paced nature of movements, short
reaction times were not reinforced. Despite this and even though the monkeys had
3–10 s to complete the task, they rarely took more than 2 s to complete the task in
any condition (the mean reach time was approximately 1.4±0.3 s (mean±s.d.)
across days and conditions).

Obstacle-avoidance task. Monkey J also performed an obstacle-avoidance task
under BMI control. This task required a point-to-point movement similar to the
centre-out task (that is, movement to and brief hold at an initial target, followed by
movement to and brief hold at a terminal target). In addition, on arrival at the
initial target, an ‘obstacle’ appeared on the screen. If the cursor entered the obstacle
at any time during the movement to the terminal target, an error resulted and the
trial was repeated.

Target positions and obstacle sizes and positions were selected to vary the
amount of obstruction (from a straight-line path between targets), radius of
curvature around the obstacles (via size of the obstacle or distance between the
targets) and spatial locations of targets. Trials were constructed to include no
obstruction, partial obstruction with low-curvature, full obstruction with a long
distance between targets and full obstruction with a short distance between targets
thus requiring a high curvature (Fig. 3c).

Pair-wise decoder comparisons. Alternating blocks with random order were
used on each day to compare a pair of decoders. The blocks were chosen either to
be of equal time duration (typically 15 min, monkey J) or to consist of the same
number of trials performed (typically 160 trials; monkey C). Since pair-wise
comparisons between a given decoder (for example, PPF) with each of the other
decoders (for example, SS-PPF and FS-PPF) could happen on different days, the
performance bars corresponding to the same decoder could be slightly different
among the different pair-wise comparisons. For example, the dark blue bars in
Fig. 2a are not exactly the same. This is due to the behavioural and recording
variability across days. This variability is the reason for us to do the decoder
comparisons based on randomized blocks that were run on the same days (see
Supplementary Table 1 for the number of paired-blocks compared).

Behavioural metrics. BMI performance was quantified using both task-level and
kinematic metrics. The main task metric used was success rate in each of the
alternating blocks (number of successful trials completed per minute). We also
calculated the trial percentage correct, also referred to as % correct (percentage of
initiated trials resulting in success). In paired decoder comparisons using the
alternating block structure, percentage correct was quantified by averaging over an
equal number of trials in each of the alternating blocks, which was set to the
number of trials in the block with the smaller number of trials (note that in
monkey C paired blocks typically had the same number of trials and in monkey J
blocks were of the same time duration). In monkey J and for the additional 66
experiments in which the decoders were run on separate days, success rate was
calculated over the best 10 min and percentage correct was calculated over the best
100 consecutive trials per day for all decoders to minimize the effect of motivation
variation. Movement kinematics were quantified using movement error and reach
time metrics. Movement error for a given trial was defined as the average per-
pendicular deviation from a straight-line reach between the central and peripheral
targets. Reach time was calculated as the time from leaving the central target to
arriving at the peripheral target. Average reach time and movement error metrics
for a session were calculated in the same manner as the percentage correct metric
both for the alternating block experiments and for monkey J’s experiments with
decoders run on separate days. In the obstacle avoidance task, we use the total path
length taken to avoid the obstacles as our measure of trajectory since movement
error from the straight line path is no longer relevant.

Closed-loop PPF BMI. We developed the PPF decoder, which controls the BMI
continuously with every 0 and 1 spike event. The PPF thus allows us to keep the
decoding model unchanged while changing the control and feedback rates inde-
pendently to any value below the rate at which the spikes are binned to generate a 0
and 1 time series (200 Hz here; Fig. 1). To accomplish this, PPF models the spiking
activity directly as a series of random 0 and 1 events occurring in continuous time
using a point process. This continuous time point process can be approximated by
a discrete time point process as long as the spikes are binned in small enough bins
such that there is at most one spike per bin. Selecting the bin-width based on this
criterion, the resulting discrete time point process can directly model the 0 and 1
time series of the spikes well33,34. Since consecutive spikes from any unit rarely
occurred within 5 ms of each other (less than 0.6% of the time), we approximated
this continuous time point process with a discrete time one by binning the spikes in
D¼ 5 ms intervals and creating a discrete time-series of 0’s and 1’s (refs 33,34). We
denote the binary spike event of the c-th neuron in the time interval [(t� 1)D,tD],
by Nc

t . Assuming conditional independence between neurons, the point process
observation model is given by

p N1:C
t jvt

� �
¼
YC

c¼1

lc t j vt ;/
cð ÞDð ÞN

c
t expð� lc tjvt ;/

cð ÞDÞ ð1Þ

where lc tjvt ;/
cð Þ is the neuron’s instantaneous firing rate, vt is the velocity in the

two dimensions and /c are the parameters of the model to be estimated. We use a
modified cosine tuning model of the motor cortex to write lc t j vt ;/

cð Þ for each
neuron as a log-linear function of velocity

lc tjvt ;/
cð Þ ¼ exp bcþ aT

c vt
� �

ð2Þ

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13825

8 NATURE COMMUNICATIONS | 8:13825 | DOI: 10.1038/ncomms13825 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


where /c ¼ ½bc; ac� are the decoder parameters for neuron c that were estimated
using closed-loop adaptation as described below.

Given the observation model in equation (1), we build a point process decoder
for the kinematics32,35,37. The decoder consists of a prior model on the kinematic
states and the point process observation model in equation (1). We define the state
as xt ¼ ½dt ; vt � where the components represent position and velocity in the two
dimensions. We build the prior on the kinematics as a general random-walk model
that only enforces kinematic continuity

xt ¼ Axt� 1 þwt ð3Þ

where A is the dynamic matrix and wt is a zero-mean white Gaussian state noise
with covariance matrix W. We take A to be of the form

A ¼
1 0
0 1

D 0
0 D

0 0
0 0

a 0
0 a

2
64

3
75 ð4Þ

and W to be diagonal with non-zero diagonal entries for the velocity in the two
dimensions, that is, W3,3¼W4,4¼w. We fit w and a to the monkey’s manual
cursor trajectory using maximum-likelihood methods16. For the log-linear
instantaneous rate function in equation (2), the recursions of the PPF become36

xt j t� 1 ¼ Axt� 1 j t� 1

Wt j t� 1 ¼ AWt� 1 j t� 1AT þW

W � 1
t j t ¼ W � 1

t j t� 1 þ
XC

c¼1

~ac~a
T
c lc t j vt j t� 1;/

c
� �

D

xt j t ¼ xt j t� 1 þWt j t
XC

c¼1

~acðNc
t � lc t j vt j t� 1;/

c
� �

DÞ

ð5Þ

where ~ac ¼ 0; ac½ �T since we assume neurons are only tuned to velocity.
To perform our study, we first need to train the PPF decoder, find its

parameters and then fix them to compare with a trained fixed KF. We train the
decoder parameters /c ¼ ½bc; ac� using closed-loop adaptation. As we described
elsewhere31,32, to adapt these parameters, we first need to infer the intended
velocity intention. Since the decoder parameters are far from optimal initially, the
decoder output is a poor estimate of this intention. Hence we build an optimal
feedback-control model of the brain31,35,36 to infer its velocity intention during
adaptation. We then develop a second PPF that estimates the parameters in closed
loop with every spike event and using the inferred intentions (see Supplementary
Note 3 for details).

SmoothBatch-KF BMI. We compare PPF to SB-KF. SB-KF has been described in
detail previously16,25 (Supplementary Note 5). It is very similar to the ReFIT-KF13.
However, instead of using a single long batch to refit the parameters, it uses
consecutive batches of 60–90 s to refit the parameters, and smoothly averages these
refitted parameters over time to obtain the updated decoder. SB-KF performs
intention estimation by rotating the decoded velocity vector towards the target
while keeping its magnitude unchanged, and by setting the velocity to zero while at
the target13. Once KF was trained this way at the beginning of each day, it was fixed
and used to conduct the present study. The prior model of SB-KF was related to
that of the PPF in equation (3) using a simple calculation by observing that the
state evolution in the PPF prior model after 20 time steps should be equivalent to
the state evolution in the SB-KF prior model after a single time step (since the
former’s time step is 1/20 of the latter’s). Hence parameters a and w of the prior
model in equation (3) for KF and PPF are related as

aPPF ¼ a1=20
KF

wPPF ¼ wKF=ð1þ a2
KF þ a4

KF þ . . . þ a40
KFÞ

ð6Þ

Data availability. The data that support the findings of this study may be available
on request from the corresponding author (J.M.C.).
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