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Author Summary

Cancer is now increasingly studied from the perspective of dysregulated pathways, rather
than as a disease resulting from mutations of individual genes. A pathway-centric view
acknowledges the heterogeneity between genomic profiles from different cancer patients
while assuming that the mutated genes are likely to belong to the same pathway and cause
similar disease phenotypes. Indeed, network-centric approaches have proven to be helpful
for finding genotypic causes of diseases, classifying disease subtypes, and identifying drug
targets. In this review, we discuss how networks can be used to help understand patient-
to-patient variations and how one can leverage this variability to elucidate interactions
between cancer drivers.

Teresa M. Przytycka is an Associate Editor of PLOS Computational Biology.

Introduction
Biological networks provide a natural representation of complex biological systems and thus
have been used in a variety of applications, from gene function prediction to identifying disease
genes. In particular, complex diseases such as cancer can be better understood from the per-
spective of dysregulated pathways, rather than as a disease resulting from alterations of individ-
ual genes. One of the most popular types of biological networks used in disease studies is a
gene interaction network. In a gene interaction network, genes are represented as nodes, and
edges connect pairs of genes that are physically interacting or functionally related. Physical
interaction networks can be constructed based on physical interactions, such as protein-protein
interactions, protein-DNA interactions, and phosphorylation [1–3]. Functional interaction
networks connect genes with similar or related functions and are typically inferred from multi-
ple sources, including physical interactions, co-expression, Gene Ontology (GO) terms, etc.
[4,5]. Other types of networks that are also considered in disease studies are patient similarity
networks [6–8], disease-phenotype networks [9–13], and drug target networks [14].

Interaction networks can be generic or condition-dependent. Generic networks, such as
protein-protein interaction networks, summarize existing knowledge of the system that is typi-
cally not state or tissue-specific. Such static interaction maps between genes provide a scaffold
for disease studies. Combined with additional disease related features, they can guide the
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identification of genes and pathways affected by a disease. For example, gene expression data
have been shown to be useful for identifying network markers of a disease in the form of con-
nected subnetworks that have significantly differential gene expression in two disease pheno-
types [15–20]. Importantly, it has been demonstrated that such network markers can lead to a
more robust disease classification relative to classification based on individual genes [15]. Sub-
sequently, many different algorithms have been developed to identify gene modules that are
either differentially expressed between different disease states or show similar expression pat-
terns. Network-based algorithms have also been used to explain expression Quantitative Trait
Loci (eQTL) relationships and infer causal pathways through which genetic alterations affect
gene expression changes [21,22].

One of the critical and challenging problems in disease studies is the identification and expla-
nation of genotype-phenotype relationships. In cancer datasets, the relationships between genetic
alterations and phenotypes are typically not one-to-one. Different genetic aberrations in different
cancer patients can lead to the same disease phenotype, which makes it difficult to uncover geno-
type-phenotype relationships. One explanation of the heterogeneity between cancer cases is that
different genetic alterations can dysregulate the same pathways, resulting in similar disease phe-
notypes. A network-centric view of diseases helps overcome the challenges posed by the complex
genotype-phenotype relationships and facilitates finding genotypic causes of diseases [15,20,21].
It is worth noting that in addition to intertumor heterogeneity, variability between cells within
individual tumors has been observed. Such intratumor heterogeneity has typically been studied
using different approaches such as phylogeny-based methods.

Another challenge in cancer studies relates to differentiating cancer-driving mutations from
passenger mutations. It is generally assumed that while somatic cancer cells typically contain
many genomic aberrations, only a few of them are driver mutations, i.e., mutations that pro-
vide a growth advantage for tumor cells and thus are causal with respect to cancer progression.
In contrast, the mutations that do not confer growth advantages are referred to as passenger
mutations. For example, linkage disequilibrium accompanying some types of genomic aberra-
tions, such as copy number variations, results in many passenger mutations. In addition, cancer
cell divisions accumulate random mutations—most of them passengers. A faulty gene in the
DNA repair mechanism or environmental factors such as UVC exposure can result in both
passenger and driver mutations. Identification of drivers among such mutations is fundamen-
tal to cancer studies. While a high mutation rate in cancer samples is an indicator of possible
driver activity, information on mutation rates alone does not suffice to correctly identify all
cancer drivers. It is believed that there are many cancer driving mutations that occur at rela-
tively low frequency, making it difficult to distinguish them from background noise. By placing
the mutated genes in the context of other genes and identifying closely connected clusters of
mutated genes in interaction networks, network approaches have been used to find defective
gene modules in complex diseases such as cancer, autism, and autoimmune diseases [23–27].

Several large-scale, cancer-related datasets, such as the data generated by TCGA (The Can-
cer Genome Atlas, http://cancergenome.nih.gov) and ICGC (International Cancer Genome
Consortium, https://icgc.org), are currently available. These publicly available datasets offer
comprehensive genomic profiles, including gene expression, somatic mutations, copy number
variations, and DNA methylation, for an unprecedented number of patients. Integration of
such datasets together with interaction networks can offer great opportunities to advance our
understanding of the cause of diseases, classification of disease subtypes, and identifying drug
targets [15–22].

In this review, we outline the basic strategies of network-based approaches in the analysis of
cancer datasets, mostly focusing on methods that deal with intertumor heterogeneity. In the
first few sections, we discuss how gene interactions can be used to overcome difficulties due to
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cancer heterogeneity and find cancer driving genes (Network Propagation to Uncover Cancer
Driving Pathways and Heterogeneity of Cancer and Personalized Networks). The mutual
exclusivity relationships that emerge because of such heterogeneity and the methods utilizing
such relationships are reviewed in Taking Advantage of Cancer Heterogeneity: Utilizing
Mutual Exclusivity of Genomic Alterations. In the following sections, we discuss other types of
disease-related networks, such as patient similarity networks (Patient Similarity Networks) and
disease phenotype networks (Disease Similarity Networks).

Network Propagation to Uncover Cancer Driving Pathways
A single mutation in a gene is often enough to perturb an entire pathway. Furthermore, a rela-
tively small number of pathways are affected in cancers [23,28–30]. Driver genes (i.e., genes
harboring driver mutations) are therefore expected to be sparsely located in a gene network
when an individual patient is considered, but the driver genes influence genes in its neighbor-
hood. Methods utilizing information propagation are particularly well suited for such settings
since they facilitate detecting commonly influenced groups of genes. Variations of the informa-
tion propagation technique include heat diffusion, network smoothing, random walk, and cir-
cuit flow algorithms. These approaches have been used in many applications, such as disease
gene prioritization [31,32], gene function prediction [33–35], gene-disease association [36],
and finding network centrality [37,38].

Network propagation techniques have been used in several different applications. One
application is to uncover causal paths linking perturbed causal genes to other affected genes
[39–43]. In general, the approach tests whether a genetic perturbation in a particular locus (or
a drug effect on a particular protein) is likely to affect expression of a specific gene or genes of
interest. In addition, finding most probable causal paths allows for uncovering which other
genes are likely to participate in propagating this information.

Another application is to combine information on a large set of patients to identify fre-
quently (or differentially) mutated subnetworks that are likely to be driver pathways. One
approach to solve this problem is the propagation technique, in which the “influence” of each
mutation disseminates through an interaction network, leading to the identification of a con-
sistently perturbed group of genes (Fig 1A). HotNet, and its improved variant HotNet2, is a
popular method in this class. It has been applied in the analyses of various cancer datasets to
identify significantly mutated pathways in cancer [23,44]. HotNet accounts for local network
topology and computes an influence network using a diffusion process from the source of heat
(genetic alterations) within the network. Hofree et al. [45] adopted a network smoothing tech-
nique, which was previously used to infer disease association [32], for subtype stratification of
patients in TCGA datasets. In their approach, the information on mutated genes for each sam-
ple was first propagated in the network (the network smoothing step). Then, non-negative
matrix factorization, an unsupervised learning technique, was applied on the network with the
smoothed mutation profiles to cluster cancer patients.

One of the challenges in designing and interpreting information propagation algorithms is
related to the nonuniform distribution of node degrees in interaction networks. The existence
of hubs in the network reduces distances between genes, implying that simple distance-based
algorithms may not be sufficient to identify driver gene modules. Additional information, such
as gene expression or genetic alterations [21], can be used to overcome the effects of shortcuts
introduced by hubs and to limit the spreading of the influence signal into unrelated regions of
the network [22,39].

One of the key insights contributed by network-centric approaches has been the extension
of the concept of cancer drivers from individual genes to mutated pathways. Indeed, gene and
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gene products do not act in isolation, and the effect of a perturbation in a gene propagates
through the interaction network, affecting the functions of other genes in its vicinity. By simu-
lating the perturbation process in an interaction network, information propagation techniques
are powerful tools that can recover true signals coming from different sources and even correct
missing and uncertain information in incomplete interaction networks.

Heterogeneity of Cancer and Personalized Networks
In complex diseases such as cancer, different cancer types can have different genetic causes,
despite their phenotypic similarity in disease manifestation. This makes the development of
methods that move towards finding personalized disease subnetworks a necessity. Such meth-
ods can lead to novel drug targets by capturing similarities and differences between patient
subgroups.

Several approaches to capture the trade-off between individual differences and common
principles build on the “set cover” problem, an optimization approach also known as the “hit-
ting set” problem [46–50]. The basic formulation of the problem starts with assigning a normal

Fig 1. Illustrations of how gene networks can be used in cancer data analysis. A) Information
propagation approach: the information about mutated genes (in red) is propagated to their neighborhood
through interactions, helping to identify significantly affected subnetworks. The level of redness of a node
indicates how likely the gene is affected. B) Module Cover approach finds the minimum cost subnetworks so
that each patient is covered by at least k mutated genes. The edges in the gene interaction network (blue
edges) may be weighted based on interaction confidence or mutual exclusivity. For example, the patients
covered by gene C and D are mutually exclusive. There is an edge between a gene and a patient if the gene
is mutated in the patient (black edges). The figure shows an example where two modules are selected,
covering each patient at least three times (k = 3). The green nodes are selected genes, and the thick edges
indicate the selected interactions or gene-patient relationships.

doi:10.1371/journal.pcbi.1004747.g001
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or altered status to every gene for each patient. Such alterations might, depending on datasets,
reflect a mutation, differential expression, differential methylation, etc. In a set cover formula-
tion, a gene covers (or hits) the patients in which it has the altered status. Potential driver genes
are selected to cover all patients while minimizing the number of selected genes. This allows
different sets of altered genes to be chosen for different patients while preferentially choosing
genes with higher alteration rates, helping to balance similarities and differences between
patients. Note, however, that it is generally assumed that multiple mutated driver genes are
required for cancer progression. Also, in the case in which alteration refers to differential gene
expression, each cancer case will have many differentially expressed genes because of indirect
impact. This leads to the multi-set cover problem, in which each patient is required to be cov-
ered not just by one but by multiple altered genes.

The original set cover definition does not account for relationships between covering ele-
ments (altered genes). Genes are connected via an interaction network, with interactions possi-
bly weighted by their confidence or strength. Additional relationships between genes can also
be implied by mutual exclusivity of mutations (which will be discussed in Taking Advantage of
Cancer Heterogeneity: Utilizing Mutual Exclusivity of Genomic Alterations). To select gene
modules that are representative of dysregulated pathways, network variations of set cover algo-
rithms apply a set cover technique in the context of a gene interaction network so that the algo-
rithms preferentially select genes connected in the network and find one or more gene modules
covering patients. For example, DEGAS algorithm selects a connected subnetwork of genes
covering patients multiple times so that the size of the selected subnetwork is minimized, aim-
ing to identify a putative dysregulated pathway [51]. The algorithm finds one dysregulated
pathway covering all patients (allowing a few outliers). However, this approach may not be
optimal when there are different sets of pathways dysregulated in different patients. Acknowl-
edging the possibility of multiple dysregulated pathways, the Module Cover algorithm (Fig 1B)
finds multiple connected subnetworks (gene modules) that collectively cover all patients while
minimizing the total cost of selected gene modules. The application of Module Cover to glio-
blastoma and ovarian cancer datasets revealed that different patient groups might be character-
ized by different combinations of dysregulated modules, which suggested that the selected
modules could be used for subtype classification.

Module cover and heat diffusion-based algorithms share the common goal of finding dysre-
gulated subnetworks. While the subnetworks obtained by both algorithms included frequently
mutated driver genes, they differ in their treatment of rarely mutated putative drivers. Module
Cover attempts to ensure that the selected pathways cover all patients so that driver genes cov-
ering only a small subset of patients are still captured. On the other hand, utilizing information
flow can uncover some rarely mutated drivers, based on evidence that they might influence the
same dysregulated genes. The methods also differ in which type of network is most suitable to
use. Information propagation methods, when combined with physical interaction networks,
can predict genes that mediate the flow of information. On the other hand, densely connected
functional networks are natural in the context of Module Cover, which is designed to look for
dysregulated gene modules that are functionally related.

Steiner trees are another classical graph-theoretical concept that is often utilized to find rela-
tionships between mutated genes. As with the Set Cover problem, several variations of the
problem have been considered. The basic formulation of the Steiner tree problem is as follows:
given a set of altered genes, interconnect them by a tree with the minimum cost using network
edges and Steiner nodes (additional genes connecting the given altered genes). The prize-col-
lecting Steiner tree (PCST) algorithm has been previously applied to find response networks
[52–55], in which genes known to be associated with diseases are prizes and Steiner nodes are
selected to collect the prizes with a minimum cost. Gitter et al. extended the PCST algorithm to
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obtain personalized Steiner trees for patients [56]. In personalized PCSTs, each sample can
have a different PCST, but there is a penalty associated with differences between the personal-
ized trees to maintain their similarity. This allows for finding trees that are optimal for individ-
ual patients but similar to each other. Gitter et al. reported that in an application to the basal-
like TCGA breast cancer subtype, their method identified canonical pathways that significantly
overlap with those uncovered by HotNet but also produce patient-specific pathways for differ-
ent patients [56].

Both the Module Cover and personalized PCST algorithms find dysregulated subnetworks
while considering cancer heterogeneity by approaching the problem from different angles. The
former collects information from different patients simultaneously, aiming to discover gene
modules while allowing individual patients to be covered by different gene modules. The per-
sonalized PCST algorithm, on the other hand, looks for a personalized network for each patient
individually and uses information from other patients to bias the cost function and capture
similarity between patients.

Taking Advantage of Cancer Heterogeneity: Utilizing Mutual
Exclusivity of Genomic Alterations
While cancer heterogeneity among patients makes uncovering genetic causes challenging, the
principle that different genetic alterations lead to similar disease phenotypes might also be uti-
lized to find previously unknown interactions between genes. It was often observed that muta-
tions in cancer driver genes appear in mutually exclusive sets of cancer patients. One explanation
for mutual exclusivity is that only one such mutation in a pathway is sufficient for cancer pro-
gression. A proposed alternative explanation is that mutually exclusive pairs may have a relation-
ship of synthetic lethality or sickness, in which mutations in each gene separately promote cell
growth but simultaneous mutation in both genes is lethal or detrimental. Note, however, that a
synthetic lethal partner of a cancer driver does not necessarily have to be a cancer driver itself.
Algorithms that predict synthetic lethality or sickness frommutational data typically infer mutual
exclusivity patterns using additional information about gene expression patterns, effects on dis-
ease manifestation, and/or information from shRNA experiments in cancer cell lines [57,58].

Genes with mutually exclusive mutation patterns are often functionally related. This obser-
vation led the mutual exclusivity principle to be used as a tool to find cancer driver modules.
Several computational methods have been developed to detect mutually exclusive gene sets
[47,50,59–66]. For example, Ciriello et al. proposed MEMo (Mutual Exclusivity Modules), an
approach that uses a permutation test to estimate the significance of mutual exclusivity and
combines the results with known interactions, such as PPI, to find modules that are fully con-
nected and show mutually exclusive mutational patterns [59,60]. Later they extended this idea
by utilizing human signaling pathways to find groups of altered genes that are mutually exclu-
sive and have a common downstream event [61].

Based on the assumption that mutual exclusivity can predict novel functional relationships,
several approaches do not restrict the search space to gene pairs with known interactions but
instead look for gene modules using only mutual exclusivity information of genomic aberra-
tions [50,62–66]. Some methods were extended to detect multiple mutually exclusive groups of
genes [67,68] or to refine mutual exclusivity models to account for temporal dynamics [69].
The algorithms in these types of approaches need to consider exponentially many combina-
tions of genes, and rapidly increasing computation time is often a concern. Therefore, they typ-
ically focus on a limited number of candidate genes and modules of small sizes.

Given the utility of mutual exclusivity principle for uncovering important relationships
between cancer drivers, one can also leverage datasets from multiple cancer types for integrated
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analysis. The TCGA Pan-Cancer initiative compiled datasets from multiple tumor types, aim-
ing to identify the similarities and differences among them and to uncover cancer driving
genes that are rarely mutated and may not be recognized in the small number of samples of
individual cancer types [70]. For mutual exclusivity analysis in multiple cancer types, Kim et al.
utilized TCGA Pan-Cancer datasets and introduced permutation test methods to differentiate
mutual exclusivity within, across, and between cancer types [47]. They defined the “within”
cancer type mutual exclusivity to occur when mutual exclusivity is observed for a given cancer
type. Two genes are mutually exclusive “across”multiple types if combined signal is more sig-
nificant than within type exclusivity in individual cancer types. Finally, the “between” type
mutual exclusivity occurs when two genes are mutated in two disjoint sets of tissue types exclu-
sively. Such scenario can occur when we deal with tissue type-specific drivers. Kim et al. found
that while not all mutually exclusive gene pairs are functionally related, functionally interacting
pairs are enriched with the across type mutual exclusivity relative to the between types mutu-
ally exclusivity [47]. These findings suggest that mutual exclusivity across multiple cancer
types might facilitate the identification of cancer driver pathways dysregulated in multiple can-
cer types. Kim et al. incorporated the across type mutual exclusivity scores into the Module
Cover algorithm (Fig 1B) and used the algorithm to identify common driver modules in Pan-
Cancer datasets.

In another approach to analyze mutual exclusivity in the context of Pan-cancer data, Park
et al. asked if some gene pairs are mutually exclusive in a specific cancer type more often. They
found that some highly mutated gene pairs may have tissue type bias in mutual exclusivity pat-
terns, which can be attributed to type specific interactions for the tissue type [71].

Patient Similarity Networks
Modeling disease heterogeneity can also naturally start from the perspective of phenotypic sim-
ilarity of individuals. Organisms or individuals whose phenotypes are determined by genomic
elements can be represented as nodes and connected by edges if they have similar phenotypes.
For example, Roque et al. [6] constructed a patient network based on the similarity of patients’
disease ontology, which was automatically extracted from their electronic records by using text
mining approaches. Extracted phenotype information from psychiatric patient medical records
was mapped to disease codes in the International Classification of Diseases ontology (ICD10),
which contains codes for diseases, signs and symptoms, complaints, social circumstances, etc.
Thus, each patient was represented as a vector using weighted significance of ICD10 occur-
rences. Afterwards, patient-patient similarity was defined by the cosine of the angle between
every pair of patient vectors. Using a threshold of similarity scores, they obtained a network of
approximately 1,500 patients that could be naturally clustered into subnetworks. They exam-
ined the features of these subnetworks and found that Schizophrenia and alcohol/drug usage
were important features of several subnetworks.

Such a simple phenotype-based clustering approach provides valuable information but still
has some shortcomings. For example, while the above-mentioned study found that several sub-
networks have schizophrenia as one of their underlying features, it is not clear if the different
subnetworks correspond to subtypes of schizophrenia or if phenotypic features unrelated to
the disease define the subnetworks. In modeling heterogeneity of complex diseases, it is critical
to find the causal relationships of disease phenotypes rather than simply clustering the pheno-
types of patients. In the context of cancer, the cause is typically a tumor genotype, but other fac-
tors such as epigenetics, age, environment, etc., should also be considered when data permits.

The first approach to use a patient network to infer genotype–phenotype relationships was
proposed by Cho and Przytycka [7]. By combining a patient similarity network and a topic
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modeling approach, originally designed to discover hidden semantic structures in large docu-
ment collections (see [72] for a general introduction and [73–77] for biological applications),
they developed and applied a probabilistic algorithm to analyze TCGA glioblastoma multi-
forme (GBM) data [78,79]. Specifically, the basic idea of a topic model is to identify topics so
that each document is represented as a mixture of these topics. In a topic model for disease
studies, patients are considered as documents, while putative causal features (mutations, copy
number variations, etc.) of the patients represent the words describing the documents. In addi-
tion, gene expression was used to define phenotypic similarity between patients in the patient
network. A topic model algorithm can then be applied to identify disease subtypes (corre-
sponding to topics), and individual patients are modeled as a mixture of subtypes that best
explain the patient similarity network. A patient similarity network is used to guide model con-
struction so that phenotypically similar patients are assigned similar subtype mixtures (Fig
2A). In their analysis, the model inferred from the TCGA GBM data suggested that the previ-
ously proposed classification of GBM into four distinct subtypes [78] may be better explained
with the classification into three basic subtypes (Proneural, Mesenchymal, and Classical) by
representing the Neural subtype as a mixture of the Proneural and Mesenchymal subtypes [7].

Fig 2. Other types of biological networks. A) Topic model utilizing a patient similarity network. The network guides to find disease subtypes and their
features (in the figure, the mutations in genes g1 and g2 are selected features for Subtype 1, while Subtype 2 has mutations in g4 and g5). Patients can be
represented as mixtures of multiple subtypes. B) Disease network. A disease network can be constructed based on shared disease genes or the similarity of
disease phenotypes. For example, the disease network on the right has an edge between two diseases if they share the same disease genes or phenotype
features.

doi:10.1371/journal.pcbi.1004747.g002
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The model also succeeded in identifying the underlying features that explain the subtypes. In
summary, this approach makes it possible to uncover genomic aberrations that explain similar-
ities and differences in patients’ phenotypes, identifying subtypes as well as dependencies
between aberrations. Interestingly, the classification into three subtypes was also confirmed by
applying iCLuster (an integrative clustering method based on a Gaussian latent variable
model) [80]. It is worth noting that the technique used in this study is general and can be used
to connect differently defined phenotype similarities, such as cancer stages or survival time,
with a different set of putative causes, including changes in transcription factor binding site,
methylation, DNA topology, and environmental factors. As opposed to two-step approaches
that cluster patients and then find the underlying features, the topic model method constructs
the subtypes models simultaneously with the subtype assignment and has the advantage of
allowing each patient to be assigned a mixture of subtypes.

So far we have discussed using patient networks in which patient similarity scores are com-
puted based on the combination of their phenotypic similarity features. An alternative
approach was recently proposed by Wang et al., in which they constructed patient similarity
networks independently for three different data types (mRNA expression, DNAmethylation,
and microRNA expression), then fused them into one similarity network [8]. More specifically,
the Euclidean distances between every pair of patients were first calculated, and a scaled expo-
nential similarity kernel was used to define patient–patient similarity matrices for each data
type. In the network-fusion step, a nonlinear method based on message-passing theory that
iteratively updated each network was used. Through this process, edges whose similarities are
high in one or more networks are added to others, but edges whose similarities are low disap-
pear. After some iterations, the process converged to a single similarity network. For five differ-
ent cancers from TCGA, this similarity network fusion (SNF) method outperformed single
data type analysis in identifying cancer subtypes and predicting survival time.

The two methods of utilizing patient similarity described above have their unique advan-
tages. The topic model-based method can be thought of as a subtype-centric approach, as it
allows probabilistic disease subtypes to be defined based on the frequencies of putative causal
features while representing each patient as a mixture of these subtypes. On the other hand, the
network fusion algorithm is a more patient-centric approach, which allows, for each patient,
other individuals that are most similar to the patient in question to be identified and therefore
enabling the information from neighboring patients to be transferred.

Disease Similarity Networks
Disease similarity networks are a natural extension of patient similarity networks. Rather than
considering individual patients, diseases are considered as nodes and edges are created based
on similarities between the diseases. Considering diseases in the context of other related dis-
eases can offer insights for better understanding their genotypic causes and further provide a
way for repurposing existing drugs in similar diseases.

Similarity in disease networks may be measured based on various factors, such as shared
disease genes [11,36,81], disease symptoms [82], and/or mRNA expression [9]. For example,
Goh et al. [81] constructed a human disease network by first creating a bipartite graph based
on disease–gene associations and then connecting diseases if they share the same disease genes
(Fig 2B). Alternatively, disease phenotype similarity networks may be constructed based on
phenotype similarities obtained from text mining [82].

Disease networks are often used in conjunction with a gene interaction network to improve
the quality of disease-gene associations or to better predict disease similarities [12,13]. Menche
et al. devised a metric to predict the similarity between diseases based on the degree of
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separation of disease gene modules in a gene interaction network [11]. They found that, in
comparison to well-separated diseases, diseases with overlapping gene modules are signifi-
cantly more similar in their expression patterns, symptoms, and have significant comorbidity.
Suthram et al. obtained functional gene modules for diseases and used mRNA expression data
to determine the status of the gene modules, creating a disease similarity map [9].

Overall, disease similarity networks are helpful for uncovering relationships between dis-
eases, which in turn can shed light on finding common genetic causes among similar diseases.
Another benefit of considering similarities and differences of diseases is that a large-scale dis-
ease interaction map can provide valuable guide for drug repositioning and help predict their
side effects.

Conclusions and a Look Ahead
Cancer heterogeneity poses a significant challenge for analyzing and interpreting cancer
patient data. Cancer is now commonly understood as a disease of pathways rather than a result
of defects in individual genes. Therefore, network-based approaches can be employed to find
explanations for how different mutations result in similar disease phenotypes. Gene interaction
networks have been used to identify defective pathways, classify subtypes based on subnet-
works, and predict treatment and survival outcomes. In addition to gene networks, patient sim-
ilarity networks are gaining importance and can offer different perspectives for understanding
cancer.

Currently, networks used in cancer studies are typically static, and network topology
remains fixed during the analysis while changes associated with diseases may be mapped as
changes in properties of the nodes or edges of such network. However, interactions between
biological entities may differ at multiple levels, depending on spatial and/or temporal condi-
tions [83]. Recently, there have been some efforts towards modeling and analyzing dynamic
interactions in the context of multiple time points [84,85] or tissue types [86].

Dynamic network analysis can help in deciphering fundamental mechanisms of diseases,
such as increasing disease susceptibility with age. As a step in this direction, Faisal and Mile-
nkovic exploited network dynamics to study age progression [85]. By combining a protein-pro-
tein interaction network with aging-related gene expression data, they obtained age-specific
networks and analyzed global and local changes in network topology at different ages. They
observed a number of proteins with changes in local network structures that are predictive of
genes related to aging.

In cancer data analysis, utilization of network dynamics is still limited. Obtaining interac-
tions in different tissue types and putting them together can advance therapeutics by predicting
the effects of chemotherapy in specific tissues. For example, Greene et al. [86] used a support
vector machine classifier, trained with tissue-specific networks, to re-evaluate significant genes
from a genome-wide association study (GWAS). They showed that modeling complex diseases
in humans using tissue-specific networks provided several insights into disease genetics and
crosstalk, opening avenues for the discovery of molecular disease associations.

One of the most widely acknowledged problems with currently available gene networks is
their noisiness. Physical interaction networks obtained from large-scale experiments are not
only noisy but also incomplete. Relative to physical interaction networks, functional interaction
networks are more complete but may lose specific information about directly interacting pairs
because these networks integrate many different functional relationships together. Studies that
focus more on mechanistic aspects of signal propagation may benefit from leveraging physical
interaction networks, but they need to be aware of the limitations that these networks currently
have. In contrast, analyses that focus on identification of broadly related groups of genes
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typically utilize functional networks, which cover a wide spectrum of interactions between
molecules.

One of the main advantages of network-based approaches is their capability to uncover can-
cer-related associations, including genotype-phenotype relationships, despite the heterogeneity
of the disease. Such large-scale associations can suggest potential treatment options and can
generate testable hypothesizes, but at present, they can rarely provide full explanations of
observed relationships. Indeed, current interaction networks not only lack context dependency
but also cannot usually provide accurate mechanistic interpretations. It is anticipated, however,
that as the coverage and information encoded in these networks improves, the predictive and
explanatory power of network-based cancer analysis will increase accordingly.
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