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ABSTRACT
Animal models imply that the perinatal exposure to antibiotics has a substantial impact on 
microbiome establishment of the offspring. We aimed to evaluate the effect of timing of antimi-
crobial prophylaxis for cesarean section before versus after cord clamping on gut microbiome 
composition of term born infants. We performed an exploratory, single center randomized con-
trolled clinical trial. We included forty pregnant women with elective cesarean section at term. The 
intervention group received single dose intravenous cefuroxime after cord clamping (n = 19), the 
control group single dose intravenous cefuroxime 30 minutes before skin incision (n = 21). The 
primary endpoint was microbiome signature of infants and metabolic prediction in the first days of 
life as determined in meconium samples by 16S rRNA gene sequencing. Secondary endpoints were 
microbiome composition at one month and 1 year of life. In meconium samples of the intervention 
group, the genus Staphylococcus pre-dominated. In the control group, the placental cross-over of 
cefuroxime was confirmed in cord blood. A higher amino acid and nitrogen metabolism as well as 
increased abundance of the genera Cutibacterium, Corynebacterium and Streptophyta were noted 
(indicator families: Cytophagaceae, Lactobacilaceae, Oxalobacteraceae). Predictive models of meta-
bolic function revealed higher 2ʹfucosyllactose utilization in control group samples. In the follow-up 
visits, a higher abundance of the genus Clostridium was evident in the intervention group. Our 
exploratory randomized controlled trial suggests that timing of antimicrobial prophylaxis is critical 
for early microbiome engraftment but not antimicrobial resistance emergence in term born infants.
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Introduction

An increasing number of infants is born by cesarean 
section (CS) worldwide accounting for 21.1% of all 
births with large variations between countries and 
continents.1 In Germany, the CS rate was 31,66% in 
2019, corresponding to 242.414 births.2 As all surgical 
procedures, CS can be complicated by surgical site 
infections, e.g. wound complications affecting 2% to 
7% of women and endometritis in 2% to 16% under-
going CS.3 Therefore, a surgical antimicrobial pro-
phylaxis is standard for CS and reduces maternal 
infectious complications by 60–70%.4 Until 2013, pro-
phylactic antibiotics were administered to mothers 

after the umbilical cord was clamped to prevent anti-
biotic exposure of the newborn.5,6 As large rando-
mized controlled trials and meta-analyses showed 
a decreased risk for infections when antibiotics are 
given before the procedure starts,7–10 international 
guidelines changed and now recommend the admin-
istration of the antimicrobial prophylaxis 30 to 
120 minutes before skin incision.11,12 This, however, 
leads to an intrauterine exposure to antibiotics of all 
infants born by CS shortly before birth.13 Animal 
models imply that the perinatal exposure to antibio-
tics has substantial impact on early microbiome estab-
lishment of the offspring with potential long-term 
consequences.14,15 For example, prenatal exposure to 
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antibiotics has been associated with an increased risk 
for childhood asthma, allergies and obesity.16–18 

Furthermore, antibiotic treatment within the first 
months of life can influence childhood health includ-
ing higher incidences for overweight and atopic 
diseases.19,20 There is an urgent need to disentangle 
the impact of early (and sustained) gut dysbiosis as 
a potential underlying mechanism for these non- 
communicable diseases in order to investigate tar-
geted prevention.21 While evidence for the influence 
of perinatal antibiotics on neonatal gut microbiota 
exists for other settings like intrapartum group 
B streptococci prophylaxis or prevention of neonatal 
sepsis,22–27 no clear picture has yet been established 
on how a single dose of surgical antimicrobial pro-
phylaxis before CS affects the early microbiome 
engraftment.28 CS itself is associated with an altered 
early neonatal gut microbiome resembling maternal 
skin microbiota compared to vaginal birth, which 
introduces vaginal microbiota like lactobacilli to the 
initial gut microbiome.29 Differences in the micro-
biome between cesarean and vaginally born infants 
remained detectable for the first years of life in some 
studies.30,31 However, among the few studies which 
also included infants born by CS, conflicting results 
have been found.26–28 The only published trial analyz-
ing the neonatal gut microbiome stratified by the 
timing of the antibiotic during CS did not find 
a difference between the study groups.28 

Furthermore, antimicrobial resistance is an increasing 
problem in adult and neonatal medicine.32,33 

Antibiotic resistance genes have been detected in the 
infant gut as early as days after birth25,34,35 and are 
attributed to perinatal antibiotic exposure and vertical 
transmission.23,36

In our study, we evaluated the effect of timing of 
antibiotics before skin incision versus after cord 
clamping on gut microbiome composition and 
acquisition of antibiotic resistance genes of term 
born infants born by elective CS in a single center 
randomized controlled clinical trial.

Results

Study population and clinical characteristics

Between January 2019 and June 2020, 145 pregnant 
women approaching elective CS were screened in the 
outpatient clinic. Sixty-two women were excluded 

for not meeting the inclusion criteria, 25 women 
declined to participate in the study. Fifty-eight 
women and their infants were enrolled in the trial 
(Figure 1). After enrollment, 18 patients had to be 
excluded because of unforeseen spontaneous labor 
or premature rupture of membranes (PROM) 
(n = 15), emergency CS (n = 2) and vaginal birth 
(n = 1). We included 40 mothers and their infants 
into the final cohort (n = 21 control group, n = 19 
intervention group). One patient from the control 
group was lost to follow-up 1 month postpartum, 
n = 39 were included in our data analysis at 1 month. 
After 1 year, we collected stool samples and clinical 
data from 37 infants (n = 19 control group, n = 18 
intervention group). Both study groups were similar 
concerning maternal and neonatal characteristics at 
baseline (Table 1). One month after birth, there was 
no statistically significant difference between the 
study groups concerning maternal and neonatal clin-
ical parameters. Two infants had been treated with iv 
antibiotics in the hospital for a urinary tract infection 
(ampicillin, cefotaxime, and gentamicin) or 
a suspected respiratory infection (ampicillin). 
Postpartum infections were noted in 9/39 mothers, 
i.e., 3/20 from the control group (1 bronchitis, 2 flu- 
like symptoms) vs. 6/19 from the intervention group 
[2 urinary tract infections, 1 tonsillitis, 1 flu-like 
symptoms and 2 surgical site infections (1 wound 
infection, 1 endometritis)]. Even though we did not 
include women into our trial who did not plan to 
breastfeed prenatally, 2 mothers from the control 
group and 5 mothers from the intervention group 
did not breastfeed their infants at month anymore. 
At 1 year, there were no significant differences of 
clinical characteristics between the study groups, 
especially concerning relevant pediatric outcomes 
like allergies, antibiotic use, and respiratory disease. 
The total completed months of breastfeeding during 
the first year were 5.2 and 5.3 months in the two 
groups (p = .39).

Timing of antimicrobial prophylaxis impacts the 
early neonatal gut microbiome and its function

To follow the development of the infants’ gut 
microbiome at different time points, 16S rRNA 
gene sequencing of the V3/V4 hypervariable region 
was performed. Samples from each time point had 
a distinct age-specific microbiota composition 
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(Suppl. Figure 1, temporal development). When 
comparing the relative abundance of taxa in meco-
nium samples, a clear dominance of genus 
Staphylococcus (p = .02) was observed for the inter-
vention group (Figure 2a). Control group infants 
had more diverse microbiota (p = .035) (Figure 2d) 
with higher abundance of the genera 
Cutibacterium, Corynebacterium and Streptophyta. 
Analysis of beta diversity indicated a high degree of 
dissimilarity between the study groups (p = .026) 
suggesting that timing of antibiotic prophylaxis is 
critical for the microbial community of infants 
during their first days of life (Figure 2c). 
Constrained correspondence analysis revealed that 
administration of antimicrobial prophylaxis before 
skin incision accounted for 9.5% of variation 
(Figure 3). The interdependence between the con-
centration of cefuroxime in cord blood and micro-
biota diversity in meconium samples was 
demonstrated via constrained correspondence ana-
lysis which explained 6.6% of the data variability 

(Figure 3). Furthermore, indicator species analysis 
revealed numerous species assigned as indicators 
for the control group: genera Corynebacterium, 
Cutibacterium, Chryseobacterium, Ruminococcus, 
Peptoniphilus, Methylobacterium and Petrobacter, 
as well as families Cytophagaceae, Lactobacilaceae, 
Oxalobacteraceae and order Streptophyta 
(Figure 2b). Family Lachnospiraceae and order 
Bacillales were assigned as indicators for the inter-
vention group.

Prediction of the metabolic pathway composi-
tion within the microbial communities revealed 
differential biochemical capacities of the micro-
biomes from meconium samples between the con-
trol and intervention groups (Figure 4). The 
analysis suggested that several pathways involved 
in amino acid and nitrogen metabolism are 
enriched in gut microbial communities from the 
control group. Those differences are attributed to 
a combination of diverse taxonomic groups with 
the largest contribution by members of the genera 

Figure 1. Flowchart of study inclusion.
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Escherichia, Cutibacterium (formerly part of the 
genus Propionibacterium), and Corynebacterium 
(Suppl. Figure 3). Interestingly, also genes involved 
in the pathway for 2’-fucosyllactose (short: 2-FL; 
a human milk oligosaccharide) uptake and utiliza-
tion were enriched in the control group, which is 
attributed to OTUs that were mapped to a genome 
from the species Cutibacterium acnes (Figure 4 and 
Suppl. Figure 2). The pathway consists of two steps: 
First, the uptake of 2-FL through an ATP-binding 
cassette (ABC) transporter, and second, the hydro-
lysis of 2-FL by a 1,2-alpha-L-fucosidase (EC: 
3.2.1.63). To our best knowledge, the ability to 
degrade 2-FL has not yet been associated with 
C. acnes. In order to scrutinize that the prediction 
of 2-FL uptake and hydrolysis is not a false-positive 

prediction due to a potential contamination in the 
specific genome sequence of the representative spe-
cies-level genome bin for C. acnes, we re-analyzed 
all 22 C. acnes genomes from the UHGG collection 
using gapseq to predict the presence/absence of this 
pathway. For 20 of those genomes, gapseq found 
genes that are similar (bitscore > 137, E-value < 
10−37) to reference sequences for 1,2-alpha- 
L-fucosidase (EC: 3.2.1.63) from the Uniprot data-
base. Putative genes for the ABC-transporter for 
2-FL were found in 21 out of the 22 C. acnes gen-
omes. Taken together, these results suggest that 
putative genes for the utilization of 2-FL are con-
served across strains of C. acnes. At the age of 1 
month, fewer significant differences in metabolic 
pathway composition were observed between the 
study groups (Figure 4 and Suppl. Figure 3).

Timing of antimicrobial prophylaxis for cesarean 
section and effects on microbiome establishment 
during infancy

Comparison of microbiome diversity and composi-
tion at the age of 1 month and 1 year revealed that 
the strong effect of timing of antimicrobial prophy-
laxis on the gut microbiota diminished over time. 
Global differences in alpha and beta diversity at these 
time points were not significant (Suppl. Figure 4). 
However, indicator species analysis disclosed that 
some changes remained detectable after 1 month. 
Of note, some Clostridium species belonging to the 
Peptostreptococcaceae family (associated to interven-
tion group at on month) tended to be still more 
abundant in the intervention group throughout the 
first year of life, which was not significant (Wilcoxon 
rank-sum test, p > .05 for all taxa) (Figure 5a, b).

Acquisition of antibiotic resistance genes starts in 
the first days of life

To evaluate the abundance of selected antibiotic resis-
tance genes in the gut microbiome of infants, a subset 
of 10 samples from each time point was analyzed via 
PCR with specific primers. While in meconium sam-
ples detection of selected resistance genes was sparse 
(with one exception), 10 and 11 of 15 tested resistance 
genes were identified at the age of 1 month and 
1 year, respectively (Figure 6). Six of the analyzed 

Table 1. Clinical characteristics at birth, 1 month and 1 year.
Control 
group

Intervention 
group p-value

AT BIRTH

Maternal age at birth 32.1 (4.5) 33.1 (5.9) 0.41
Gravidity 2.9 (1.7) 2.7 (1.3) 0.87
Parity 1+, n (%) 17 (81.0) 15 (78.9) 1.00#
Maternal BMI before pregnancy 24.8 (5.1) 28.7 (9.0) 0.20
Maternal BMI at birth 30.6 (5.0) 33.1 (9.0) 0.70
Gestational age at birth, weeks 38.7 (0.6) 38.7 (0.6) 0.94
Birth weight, grams 3411.2 

(354.1)
3463.7 (621.8) 0.66

length at birth, cm 51.2 (2.0) 51.9 (2.0) 0.39
head circumference, cm 35.1 (1.3) 35.4 (1.4) 0.40
Female gender child, n (%) 12 (57.1) 14 (73.7) 0.27*
Umbilical artery pH 7.28 (0.08) 7.30 (0.10) 0.14
Umbilical artery base excess −3.2 (3.2) −3.3 (3.2) 0.89
APGAR 1 8.8 (0.8) 8.9 (0.3) 1.00
APGAR 5 9.7 (0.8) 9.7 (0.5) 0.46
APGAR 10 9.8 (0.9) 10.0 (0.2) 0.59

AT 1 MONTH

Breastfeeding only 14 (70.0) 11 (57.9) 0.43*
Bottle only 2 (10.0) 5 (26.3) 0.23#
Breastfeeding + bottle 4 (20.0) 3 (15.8) 1.00#
Antibiotics child since birth 1 (5.0) 1 (5.3) 1.00#
Infection mother 3 (15.0) 6 (31.6) 0.27#
Antibiotics mother 2 (10.0) 5 (26.3) 0.24#
Healing problems scar 1 (5.0) 2 (10.5) 0.61#
Healing problems scar, other than 

infection
1 (5.0) 1 (5.3) 1.00#

SSI 0 (0.0) 2 (10.5) 0.23#

AT 1 YEAR

Breastfeeding at 1 year, n (%) 5 (26.3) 5 (29.4) 1.00#
breastfeeding, completed months 5.2 (2.9) 5.3 (4.9) 0.39
antibiotic treatment since birth, 

n (%)
2 (10.5) 3 (17.6) 0.65#

bronchitis since birth, n (%) 2 (10.5) 1 (5.9) 1.00#
allergy, n (%) 0 (0) 3 (17.6) 0.10#
atopic dermatitis, n (%) 2 (10.5) 3 (17.6) 0.65#

Data are given as mean (SD) or n (%). Percentages are given as column 
percentages. For categorical variables Pearson’s-Chi-square test (*) or 
Fisher’s exact test (#) and for continuous variables Mann-Whitney-U test 
were used for calculating statistical significance.
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antibiotic resistance genes were found in more than 
35% of the samples, among them three genes encod-
ing resistance against tetracyclines (tet(W), tet(M), 
tet(O)), two beta lactamase genes (blaSHV, bla tem) 
and mecA encoding transpeptidase facilitating resis-
tance against penicillin-like antibiotics. Of note, the 
microbiome of one child treated with ampicillin, 
cefotaxim und gentamicin within its first month of 
life had developed resistance genes for penicillins and 
aminoglycoside antibiotics. While we observed varia-
tion of resistance gene prevalence within and between 
the groups, we were not able to demonstrate a link to 
the timing of antimicrobial prophylaxis.

Discussion

We performed a randomized controlled trial on the 
timing of antimicrobial prophylaxis in 40 women 
undergoing elective primary CS and its effects on 
the neonatal microbiome development. Control 
infants were exposed to a single dose of cefuroxime, 
as confirmed by relevant cord blood concentrations, 
while in the intervention group cefuroxime was 

administered after cord clamping. Timing of antimi-
crobial prophylaxis significantly influenced the early 
microbiome, specifically we observed: (i) predomi-
nance of Staphylococcus (indicator family 
Lachnospiraceae) in meconium samples of the inter-
vention group, (ii) predominance of the genera 
Cutibacterium, Corynebacterium and Streptophyta, 
higher diversity and increased 2’-fucosyllactose meta-
bolism in meconium samples of the control group, 
(iii) shifts in diversity related to cefuroxime concen-
trations and (iv) acquisition of antibiotic resistance 
genes starting in the first days of life regardless of 
antibiotic exposure.

Recent data suggest that both, mode of delivery 
and perinatal antibiotic exposure, have an impact 
on infants’ gut microbiome establishment and 
long-term health, e.g. risk for asthma, inflamma-
tory diseases and obesity.38 Microbiota develop-
ment patterns throughout infancy in our study 
resembled the results from others39 and are typical 
for infants born via CS.29,40 In comparison to sam-
ples collected in the first days of life, 1 month 
samples exhibited increased abundance of 

Figure 2. Microbiome differences in meconium samples stratified to timing of antibiotic prophylaxis. Relative abundance of the most abundant 
genera (a) as well as detected indicator species via linear discriminant analysis effect size (P< .05) (b), principal coordinates analysis of 
beta diversity (permutational multivariate analysis of variance using distance matrices P = .026) (c) and Shannon’s diversity index 
(pairwise Wilcoxon rank sum test * P = .035) (d) indicated significant impact of intrapartum antibiotic prophylaxis on neonatal 
microbiome.
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Bifidobacteria known to be associated with human 
milk microbiota.41,42 Elevated abundance of genus 
Bacteroides observed at the age of 1 year goes in 
line with studies indicating that upon the introduc-
tion of solid food the composition of the infants’ 
microbiome becomes more similar with the adult 
one.43

In our cohort, the greatest differences in 
microbial composition and significant changes 
in diversity between the study groups were pre-
sent during the first days of life. Here, the 
impact on beta-diversity was correlated with 
the cefuroxime levels which are more slowly 
eliminated in neonates than in adults.13 

Numerous indicator species, e.g., 
Cytophagaceae, Lactobacilaceae, 
Oxalobacteraceae, were assigned to the control 
group. These skin microbiome-related 
species29,44 and taxa have been previously linked 
to infectious and inflammatory diseases45 which 
may translate into an early acquisition of 
a microbial risk signature. On the contrary, the 

indicator family Lachnospiraceae in the interven-
tion group is associated with protection against 
Clostridium difficile infection46 and decreased 
risk of asthma and intestinal permeability in 
neonates.43,47 Furthermore, the functional poten-
tial of the microbiome may be critically influ-
enced by timing antimicrobial prophylaxis. Of 
special interest appears the putative presence of 
genes in C. acnes encoding for the utilization of 
2-fucosyllactose, a major human milk oligosac-
charide (HMO) in combination with the obser-
vation that the abundance of C. acnes is higher 
in meconium samples from the control group 
compared to the intervention group. The pre-
sence of HMOs in human milk has important 
anti-infective properties and stimulates the 
immune system. HMOs are the main energy 
source of early infant gut colonizing 
Bifidobacteria (e.g., Bifidobacterium longum 
subsp. infantis), which helps to outcompete 
pathogenic bacteria. Bifidobacteria produce 
immune-stabilizing short chain fatty acids from 

Figure 3. Interdependence of concentration of antibiotics in cord blood with diversity of infant’s gut microbiome in meconium samples. Constrained 
correspondence analysis with administration of intrapartum antimicrobial prophylaxis set as constrain 1 and concentration of antibiotic 
in blood as constrain 2 revealed that 6.6% of variation was explained by the concentration of antibiotic in the cord blood suggesting 
the dependence of changes in microbiome of meconium on the identified concentration of antibiotic.
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HMOs and are therefore a candidate for probio-
tic supplementation.48 Hence, increased early 
degradation of such HMOs in the control 
group by bacteria other than from the genus 
Bifidobacterium may decrease the functional 
capacity of the microbiome and hamper the 
engraftment of beneficial Bifidobacteria. In addi-
tion, the differential pathway abundance analysis 
also showed a higher frequency of pathways 
involved in amino acid metabolism in the con-
trol group. This observation further suggests that 
the timing of antimicrobial prophylaxis has 
a strong impact on the capacity of the gut 
microbiome to utilize nutrients from the milk 
diet.

In the intervention group, we noted a sustained 
abundance of the genus Clostridium during infancy 
which is associated with immune-protective and 

anti-inflammatory effects, e.g. allergy and sepsis 
protection.49,50 The absence of Clostridium in the 
control infants’ microbiome of our population may 
indicate an additional hallmark of the microbial 
risk signature.51,52

There is evidence of a long-lasting impact of 
intrapartum exposure to antibiotics on the diversity 
and composition of the gut microbiome from stu-
dies on vaginally born infants with group 
B Streptococci positive mothers.22–24 However, 
among the few studies on infants born by CS, con-
flicting results have been published, including lack 
of identified microbiota changes,28 results contrary 
to ours,26 and results partially in line with ours.27 In 
our study, strict selection criteria were applied for 
women undergoing CS (e.g., no labor, no preexist-
ing disease or antibiotic treatment, planned breast-
feeding). In addition, differences to previous 

Figure 4. Differential pathway abundance analyses between control- and intervention group stool samples. Heatmap of FDR-adjusted P-values refer to 
the significance levels obtained by comparing the sum of OTU-counts between samples from the control- and intervention group for 
OTUs that were predicted to harbor the focal metabolic pathway. Only pathways with an FDR-adjusted P-value < 0.005 in at least one 
of the age groups are displayed. Dots indicate pathways with P-values below 0.005 (filled circle) and 0.05 (open circles), respectively. 
Statistical comparison of pathway abundance is based on a zero-inflated beta-binomial (ZIBB) model to account for excessive zeroes 
and over-dispersion in the sequence count data.37
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Figure 5. Impact of intrapartum antimicrobial prophylaxis on the gut microbiome at later stages of microbiome development. (a) Indicator species 
identified via linear discriminant analysis effect size (P < .05) for intervention and control group infants at the age of 1 month. (b) 
Relative abundance of the genus Clostridium from the family Peptostreptococcaceae (found to be associated with the intervention 
group at 1 month) is still increased at the time point of 1 year without reaching statistical significance (Wilcoxon rank-sum test).

Figure 6. Heatmap and hierarchical clustering according to the abundance of antibiotic resistance genes on the first days of life, at one month and at one year 
after birth. Timing of antibiotic prophylaxis was selected as covariate for the analysis. Clustering was performed based on the Euclidean 
distance; dark green represents abundance of the resistance genes and aquamarine the absence.

e2038855-8 V. BOSSUNG ET AL.



studies may be related to sampling strategy, meth-
odological adjustments including metabolic predic-
tion models and consideration of the antibiotic 
used during CS.53 Taking all this into account, our 
study supports the hypothesis that the current stan-
dard of timing antimicrobial prophylaxis before 
skin incision leads to significant effects on the 
early developing microbiome with a yet undefined 
impact on long-term outcome.

There are several study limitations. We con-
ducted a small-scale pilot study with follow-up of 
1 year after CS. Despite the effort to enroll a rather 
homogenous population, we might have missed 
potential confounding variables. The differences 
we found in the neonatal gut microbiome were 
predominantly present in meconium samples 
which are lower in microbial content than fecal 
samples beyond the first days of life. Furthermore, 
it is possible that modest differences seen in meco-
nium samples are subsequently resolved and poten-
tially inconsequential with respect to clinical 
outcomes, such as allergies, asthma, or obesity. To 
adjust for additional genetic or environmental risk 
factors, a larger trial with a longer follow-up would 
be necessary. Moreover, we did not focus on the 
impact of breast feeding versus formula feeding on 
the infant microbiome. In our study design, we 
excluded pregnant women who did not plan to 
breastfeed. By enrollment we achieved an accepta-
ble homogeneity with regard to breastfeeding, as 
only seven mothers did not breastfeed anymore at 1 
month and seven mothers partially used formula. 
The total completed months of breastfeeding dur-
ing the first year were 5.2 and 5.3 months in the two 
groups (p = .39, see Table 1). Furthermore, the 
impact of breastfeeding on gut microbiomes was 
not significant in constrained correspondence ana-
lysis (explained proportion: 0.0205, p-value: 0.77).

On the maternal side, there were 2 SSIs in the 
intervention group versus none in the control 
group, which did not reach statistical signifi-
cance. Although the SSIs were not critical and 
could be treated with antibiotics, they might 
have been prevented by a surgical antimicrobial 
prophylaxis before skin incision. This would be 
in line with previous studies showing a higher 
risk for endometritis and wound infections when 

antibiotics are administered after cord 
clamping,7–10 which lead to the current interna-
tional recommendations to apply perioperative 
antibiotics 30 to 120 minutes before skin 
incision.11,12 However, a recently published 
large prospective multicenter analytic study 
from Switzerland including 55.901 women did 
not find an increased risk for SSI in mothers 
who received the surgical antimicrobial prophy-
laxis after cord clamping. It was the largest clin-
ical study on the topic so far.54 The prevention 
of maternal infectious complications is highly 
important. SSIs after birth pose a health risk to 
mothers, interfere with maternal care for the 
newborn and often make post-partum antibiotics 
necessary which can transfer to the infant via 
breast milk. Based on the conflicting results of 
trials on the impact of timing of the surgical 
antimicrobial prophylaxis on maternal SSIs, 
more data is needed with respect to specific 
obstetric settings (elective versus emergency CS, 
facility hygiene standards, postpartum standard 
care).

Our data also support the need for antibiotic 
stewardship programs in perinatal medicine, as 
variable antibiotic resistance genes are acquired 
already in the first days of life.34 We confirmed 
the presence of tetracycline, beta lactam and ami-
noglycoside resistance genes in the infant gut 
microbiome.25,55 Given the exploratory design of 
our study, we did not detect differences in the 
antibiotic resistance patterns based on exposure to 
antimicrobial prophylaxis, as it has been previously 
described.25 Considering that the gut microbiome 
serves as a reservoir of antibiotic resistance genes, 
any reduction of early antibiotic exposure is likely 
to improve the susceptibility to antimicrobial 
therapy.

In conclusion, we performed small-scale 
a randomized controlled trial with well-defined 
selection criteria of women undergoing elective 
CS, follow-up of infants during infancy and the 
use of metabolic prediction models from 16S 
sequencing data of microbiome samples. Our 
study is exploratory due to limited size and single- 
center design. We propose that timing of antimi-
crobial prophylaxis is critical for early microbiome 
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engraftment in term born infants. We propose that 
cutting-edge multi-omics techniques and systems 
biology approaches can help to revisit previous 
risk-benefit analyses of timing antimicrobial pro-
phylaxis. The design of future large clinical trials 
with adequate consideration of infant outcomes 
suggests potential targets of microbiome modifica-
tion to the benefit of the host, e.g., next-generation 
pro- and synbiotics.

Methods

Study population and ethics

This exploratory randomized controlled trial was 
performed at the University Hospital of Lübeck, 
Germany, from 1/2019 to 6/2020. Approval by the 
local ethics committee for research in human sub-
jects of the University of Lübeck has been granted on 
October 9th, 2018 (Reference number 18–264). All 
parents provided written informed consent prior to 
CS. The study was registered at the German Registry 
for clinical studies (DRKS), no. DRKS00025305.

Population:
We included 40 pregnant women undergoing elec-
tive CS after 37 completed weeks of gestation. 
Inclusion criteria were age ≥ 18 years, planned 
breastfeeding and written informed consent by 
both pregnant woman and partner. Exclusion cri-
teria were signs of spontaneous labor or rupture of 
membranes at the time of CS, emergency CS, multi-
ple pregnancy, allergy against cephalosporines, 
smoking, gestational diabetes and preexisting dia-
betes, and the use of systemic antibiotics within 8 
weeks prior CS.

Control/Intervention:
Study participants were randomly assigned to 
receive cefuroxime 1500 mg intravenously 30 min-
utes before skin incision (control group, n = 21) or 
immediately after cord clamping (intervention 
group, n = 19). To assign the mother-infant pairs 
to a study arm, a randomization sequence was cre-
ated before the inclusion of the first patient. On 
the day of the CS, the mother was treated as with 
the antibiotic before skin incision or after cord- 
clamping, based on the randomization sequence.

Outcomes:
The primary endpoint was microbiome composi-
tion and prediction of corresponding metabolic 
function in meconium samples of infants as deter-
mined by 16S rRNA gene sequencing. Secondary 
endpoints were microbiome composition at 1 
month and 1 year of life, antibiotic resistome pat-
terns, risk for surgical site infection of the mother 
(e.g., endometritis and wound infection) and infec-
tions of the infant.

Sample collection

Prior to skin disinfection, a rectal swab was taken 
from the pregnant woman in the operation theater. 
Cord blood was collected during CS after cord 
clamping from infants who received the antibiotic 
before skin incision to measure the antibiotic con-
centration by high-performance liquid chromato-
graphy. A meconium sample was collected from all 
infants during the first days of life as soon as meco-
nium was passed. A fecal sample was collected from 
all infants at the age of 1 month (sampling 28–31 
postnatal days) and 1 year (sampling 10–12 months). 
The samples were stored in the refrigerator at −20°C 
immediately after collection and transported in cool 
boxes to −80°C within 72 hours. To assure quality of 
sample preservation, the follow-up fecal samples at 1 
month and 1 year of age were picked up from home 
environment by study personnel. A standardized 
questionnaire about diet, wound healing, surgical 
site infections and daily habits at both timepoints 
as well as infants’ outcomes, in particular infections 
(local or systemic, need for antibiotic treatments) 
was provided by the families at 1 month and 1 year.

Microbial DNA isolation

Fecal samples were thawed and approximately 
100 mg of stool samples or 200 mg of meconium 
samples were processed using DNeasy® PowerSoil® 
DNA Isolation Kit (Qiagen GmbH, Hilden, 
Germany). 500 µl of phosphate buffered saline 
were added to rectal swabs and vortexed for 5 min-
utes prior to processing. A negative extraction 
control was carried out with each round of isola-
tion. Thereafter, DNA was stored at −20°C until 
further usage.
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Polymerase chain reaction amplification and 16S 
rRNA gene sequencing

Partial sequences of the 16S rRNA gene of isolated 
DNA samples were amplified using linker and 
indices-containing primers targeting V3/V4 hyper-
variable regions of the 16S rRNA gene which we 
have optimized56 based on Fadrosh et al.57 Primer 
sequences are given with the supplement 
(Supplementary table 1). Polymerase chain reaction 
(PCR) was carried out in accordance with the fol-
lowing parameters: 98°C for 30 seconds, 30 cycles 
with 98°C for 9 seconds, 55°C for 60 seconds and 
72°C for 90 seconds, final step was set to 72°C for 
10 minutes. Amplicons were stored at −20°C until 
further usage. Concentration of the amplicons was 
estimated via agarose gel electrophoresis using 
GeneRuler 100 bp DNA Ladder (Thermo Fischer 
Scientific, Waltham, USA) as a reference. 
Equimolar amounts of each amplicon were pooled, 
ran on an agarose gel, and purified using MinElute® 
Gel Extraction Kit (Qiagen GmbH, Hilden, 
Germany). Sequencing was performed using 
MiSeq® platform (Illumina®, San Diego, California, 
USA) and MiSeq® reagent Kit V3 for 600 cycles 
using PhiX library as a positive control. Negative 
extraction controls were incorporated to ensure 
lack of reagents contamination. Only samples giv-
ing a clearly definable amplicon after PCR were 
subjected to data processing and statistical analysis 
while isolation controls remained negative.

Bioinformatics and statistical analysis

Fastq files were processed using mothur version 
1.44.1.58,59 Sequences with homopolymers of more 
than 12 bases or sizes longer than 500 bp were 
removed. Remaining sequences were aligned 
against mothur’s SILVA reference data base,60 not 
aligned sequences were excluded from further ana-
lysis. Chimeric sequences were identified and 
removed using VSEARCH algorithm.61 

Taxonomic assignment was conducted using 
Greengenes Data Base,62 mitochondrial, archaeal 
and eukaryotic sequences were removed. 
Operational taxonomic units-based analysis was 
performed on a random subset of 1800 reads/sam-
ple with cutoff level of 0.03 or based on taxonomic 
assignment. Statistical analysis and graphical 

visualization were obtained using R (version 
4.0.1). Alpha diversity of the microbiome was ana-
lyzed via Shannon’s diversity and Shannon’s even-
ness indexes, as well as by calculating the number of 
species and Chao 1 index by vegan package in R.63 

Differences between groups were calculated using 
non-parametric pairwise Wilcoxon rank-sum test. 
Beta diversity analysis was performed using princi-
pal coordinates analysis based on Bray-Curtis dis-
similarity metric (vegan63 and labdsv package in 
R64). To assess the contribution of specific para-
meters (e.g. antibiotic concentration) a constrained 
correspondence analysis (vegan package in R63) 
was performed, which specifically addresses the 
variances of the data set explained by the respective 
variables. Analysis of variance like permutation test 
and permutational multivariate analysis of variance 
using distance matrices were used to estimate the 
difference between groups. Identification of indica-
tor species was performed by multi-level pattern 
analysis via the indicspecies package in R65 and 
Linear Discriminant Analysis Effect Size provided 
by Galaxy Project Platform.66,67 We customized 
analysis input by adapting the correct genus assign-
ment for Cutibacterium acnes.

For the clinical parameters, descriptive statistics 
using percentages for peri- and postnatal parameters 
were carried out. For categorical variables Pearson’s 
Chi-square test or Fisher’s exact test were used while 
and for continuous variables Mann-Whitney-U test 
was applied to calculate statistical significance. The 
type I error level was set to 0.05. All statistical ana-
lyses on clinical parameters were performed with 
SPSS 26.0 software (IBM SPSS Statistics for 
Windows, Version 26.0. Munich, Germany).

Prediction of metabolic pathway composition

Representative 16S sequences of the calculated 
OTUs from this study were mapped to the 16S 
rRNA gene sequences included in the 4,644 species- 
level prokaryotic genome bins from the Unified 
Human Gastrointestinal Genome (UHGG) 
collection.68 The mapping was based on pairwise 
alignments using USEARCH69 and the highest 
sequence identity score with a minimum identity of 
97% and a minimum query sequence coverage of 
95%. The presence of metabolic pathways in organ-
isms from the UHGG collection that were part of the 
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mapping was predicted using gapseq v1.1.70 In detail, 
the pathway prediction was facilitated by the ‘gapseq 
find’ module using the options ‘-p all’ and ‘-m 
Bacteria’ to search for all pathways from the 
MetaCyc database71 and gapseq’s additional path-
ways that were described for bacteria. Based on the 
mapping of OTUs to UHGG and the pathway pre-
dictions, the OTU-count table was translated into 
a Pathway count table by summing up the count of 
OTUs that were mapped to UHGG Species, which 
were predicted to have the focal individual pathways.

Analysis of differential pathway abundance

Like the OTU count table, the pathway count table 
also represents sparse discrete data. To identify differ-
ences in the pathway count distribution between sam-
ple groups (control- and intervention group), a zero- 
inflated beta-binomial (ZIBB) model was employed 
by using the R-package ‘ZIBBSeqDiscovery’.37 We 
tested differential pathway abundance between the 
control- and intervention groups while correcting 
for the potential effect of differences in the total path-
way count per sample.

Detection of antibiotic resistance genes in fecal 
samples

A randomly selected subset of matching 20 meco-
nium samples, 20 stool samples collected from 
infants at 1 month and 20 stool samples collected 
from infants at 1 year of age was screened for the 
presence of 15 selected antibiotic resistance genes. 
Detection of antibiotic resistance genes was per-
formed using PCR with specific primers 
(Supplementary table 2).25,72–74 The following para-
meters were applied: 94°C for 5 minutes, 35 cycles of 
94°C for 30 seconds, 30 seconds set to primer-specific 
annealing temperature, 60 seconds at 72°C, end cycle 
for 7 minutes at 72°C. Agarose gel electrophoresis 
using GeneRuler 100 bp Plus DNA Ladder as 
a marker was performed to identify the presence of 
resistance genes in the samples. Pearson’s Chi-square 
test incorporated in stats package in R75 was used to 
analyze inter-group differences. Heatmap was cre-
ated using BoutrosLab.plotting.general package in 
R.76 Clustering was performed based on the 
Euclidean distance estimation.

List of Abbreviations

ABC ATP-binding cassette
CS cesarean section
DNA desoxyribonucleic acid
DRKS German Registry for clinical studies
2-FL 2’-Fucosyllactose
HMO human milk oligosaccharide
OR odds ratio
Otu operational taxonomic unit
PCR polymerase chain reaction
PROM premature rupture of membranes
rRNA ribosomal ribonucleic acid
SSI surgical site infection
UHGG Unified Human Gastrointestinal Genomes
ZIBB zero-inflated beta-binomial
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