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Purpose: A model-based reconstruction framework is proposed for motion- 
corrected and high-resolution anatomically assisted (MOCHA) reconstruction of arte-
rial spin labeling (ASL) data. In this framework, all low-resolution ASL control-label 
pairs are used to reconstruct a single high-resolution cerebral blood flow (CBF) map, 
corrected for rigid-motion, point-spread-function blurring and partial volume effect.
Methods: Six volunteers were recruited for CBF imaging using pseudo-continuous 
ASL labeling, two-shot 3D gradient and spin-echo sequences and high-resolution 
T1-weighted MRI. For 2 volunteers, high-resolution scans with double and triple 
resolution in the partition direction were additionally collected. Simulations were 
designed for evaluations against a high-resolution ground-truth CBF map, including 
a simulated hyperperfused lesion and hyperperfusion/hypoperfusion abnormalities. 
The MOCHA technique was compared with standard reconstruction and a 3D linear 
regression partial-volume effect correction method and was further evaluated for ac-
quisitions with reduced control-label pairs and k-space undersampling.
Results: The MOCHA reconstructions of low-resolution ASL data showed enhanced 
image quality, particularly in the partition direction. In simulations, both MOCHA 
and 3D linear regression provided more accurate CBF maps than the standard re-
construction; however, MOCHA resulted in the lowest errors and well delineated 
the abnormalities. The MOCHA reconstruction of standard-resolution in vivo data 
showed good agreement with higher-resolution scans requiring 4-times and 9-times 
longer acquisitions. The MOCHA reconstruction was found to be robust for 4-times-
accelerated ASL acquisitions, achieved by reduced control-label pairs or k-space 
undersampling.

www.wileyonlinelibrary.com/journal/mrm
https://orcid.org/0000-0003-4584-4453
mailto:
https://twitter.com/edvJump
https://twitter.com/edvJump
http://creativecommons.org/licenses/by/4.0/
mailto:Enrico.Devita@kcl.ac.uk


   | 1307MEHRANIAN Et Al.

1 |  INTRODUCTION

Arterial spin labeling (ASL) is a noninvasive perfu-
sion-weighted MRI technique for the quantification of ce-
rebral blood flow (CBF),1 using magnetically labeled blood 
water as an endogenous contrast agent. In this technique, 
blood spins are typically labeled by inversion before flow-
ing into the imaging volume, with pseudo-continuous ASL 
(pCASL) currently as the preferred method.1 The difference 
between label and control (ie, non-labeled) images pro-
duces a signal proportional to the local tissue blood flow.2 
Arterial spin labeling has an intrinsically low SNR, as the 
volume of labeled blood is only about 1%-2% of total cere-
bral blood volume (about 4%-5%), and the magnetic label 
decays by the T1 relaxation time of blood, while it flows 
from the labeling region to imaging volume. To allow the 
labeled blood to reach the imaging volume, the ASL signal 
is acquired following a post-label delay (PLD) time. Short 
PLDs are associated with less T1 decay and higher SNR; 
however, too short PLDs may be insufficient for full arrival 
of labeled blood into the tissues, leading to inaccurate CBF 
quantification.

To improve SNR, typically 10-50 control-label (C-L) 
pairs with low nominal spatial resolution (in-plane: 3-4 mm, 
through-plane: 4-8 mm) are acquired and averaged.1 In addi-
tion, background suppression,3 3D readout sequences,4 and 
parallel imaging5 are also used to respectively suppress static 
tissues, increase the SNR and brain coverage, and reduce ac-
quisition time. Although reducing spatial resolution improves 
SNR, it results in partial-volume averaging of gray-matter 
(GM) and white-matter (WM) CBF.6 Moreover, the widely 
used 3D readout sequences such as gradient and spin echo 
(GRASE)7 can introduce substantial through-plane blurring 
(due to the T2 decay of signal across echo trains) and hence 
contribute to partial-volume effects (PVE). For single-shot 
GRASE, the through-plane point spread function (PSF) 
has been reported to be from 1.5 to 1.9 voxels (FWHM).8 
Segmented acquisition schemes help minimize this effect; 
however, as the number of shots increases, the acquisition 
time and sensitivity to motion also increase.9

For partial-volume correction (PVC), existing methods 
aim to unmix GM and WM signals (overlapping in low- 
resolution acquisitions) using partial-volume (PV) estimates 
obtained from anatomical MR images. They are linear regres-
sion (LR),10 modified least trimmed squares,11 or Bayesian 
inference for ASL.6 Partial-volume estimation requires ac-
curate registration, segmentation, and downsampling of the 
anatomical MR images into the ASL image resolution, which 
are prone to errors.12 These PVC methods can be preceded by 
a deconvolution preprocessing step to reduce the PSF blur-
ring9; however, deconvolution is known to amplify noise and 
can result in Gibbs ringing artifacts. Partial-volume effects 
can be reduced by increasing the acquisition’s spatial reso-
lution; however, the reduced SNR requires more averaging 
(ie, longer acquisition time), which increases motion sensitiv-
ity. Hence, a number of denoising13 and undersampled MRI 
techniques14 have been proposed to reduce noise while using 
as few averages as possible. Currently, PVC involves several 
preprocessing steps of ASL images (deconvolution, denois-
ing, and motion correction) and of structural MR image (reg-
istration, segmentation, and downsampling).15 The actual 
PVC step is then typically carried out in the image space of 
the low-resolution C-L pairs, whereas operating at a higher 
resolution might improve their performance.16

In this study, we propose a framework for reconstruction 
of low-resolution ASL data into the high-resolution space of 
the anatomical images, corrected for motion, PSF blurring, 
and undersampling artifacts, with additional noise reduction. 
To effectively reduce noise and PVE, first, all C-L pairs are si-
multaneously used to reconstruct a single perfusion-weighted 
ASL image compared with the standard methods in which 
the C-L data are separately reconstructed, motion-corrected, 
subtracted, and then averaged. Second, a smoothness prior, 
weighted by the anatomical image, is used to assist the re-
construction of the target high-resolution perfusion image. In 
this work, the proposed motion-corrected and high-resolution 
anatomically assisted (MOCHA) ASL image reconstruction 
method was evaluated using simulations and in vivo data sets 
and compared with the standard reconstruction methods and 
a 3D LR (3DLR) method.17

Conclusion: The MOCHA reconstruction reduces partial-volume effect by direct 
reconstruction of CBF maps in the high-resolution space of the corresponding ana-
tomical image, incorporating motion correction and point spread function modeling. 
Following further evaluation, MOCHA should promote the clinical application of 
ASL.
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2 |  METHODS

2.1 | MOCHA reconstruction

Reconstruction of a high-resolution perfusion-weighted 
image, x∈ℂ

Nh, from Np pairs of low-resolution C-L ASL 
data was formulated as the following model-based minimiza-
tion problem18:

where di ∈ℂ
NmL is the element-wise subtraction of the 

ith control and the labeled multichannel k-space data  
(ie, perfusion-weighted data), Nm and L are the number of 
k-space samples and the number of coils. B∈ℝ

Nh×Nh is a 
convolution operator used to model PSF blurring of the MR 
sequence in image space, where Nh is the number of vox-
els in the high-resolution MR image. Ti =�DMi ∈ℝ

Nl×Nh 
consists of the rigid transformation of x to the ith motion 
state (Mi) (see Section 2.3.1), downsampling (D) to ASL 
low-resolution space and non-rigid geometric distortion (�) 
induced by B0 field inhomogeneity, which was set to identity 
in this work. Nl is the number of voxels in the ASL space. 
E= (IL⊗�F)C∈ℂ

NmL×Nl consists of a coil sensitivity ma-
trix of L coils (C∈ℂ

NlL×Nl), Fourier transform (F∈ℂ
Nl×Nl) 

and k-space undersampling matrix (�∈ℝ
Nm×Nl) with Nm ≤Nl 

samples and ⊗ representing the Kronecker product and  

IL representing the identity matrix of size L. W ∈ℝ
NmL×NmL is 

the weighting matrix obtained from the inversion of the noise 
covariance matrix,19 which was set to identity in this work. 
Figure 1 provides a flowchart describing the forward model 
used in Equation 1. R(x) is a penalty function defined as a 
weighted quadratic prior as follows:

which aims to suppress noise and artifacts based on the inten-
sity differences between voxels j and b in the neighborhood  
j, while preserving boundaries using the similarity coeffi-
cients �jb, calculated from the anatomical image. �jb are prox-
imity coefficients used to modulate the intensity differences 
based on their Euclidian distance. The � in Equation 1 is a reg-
ularization parameter. In this study, the similarity coefficients 
were defined using Gaussian kernels20 as follows:

where v∈ℝ
Nh is the MR anatomical image and � is a shape 

hyperparameter. The reconstruction method in Equation 1 
aims to perform PVC using a higher-resolution image grid 
and PSF modeling. As described in Section 2.3.2, for CBF 
quantification, a calibration image (M0) is also acquired 
during the ASL scan. The M0 images were reconstructed 
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F I G U R E  1  Flowchart of the motion-corrected and high-resolution anatomically assisted (MOCHA) reconstruction algorithm
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using a method similar to Equation 1 but devised for individ-
ual k-spaces as follows:

where sM0
 is the k-space data of the M0 data set and R is the 

same as defined in Equation 2. In this work, Equations 1  
and 4 were solved using the steepest decent algorithm (see 
Appendix A).

2.2 | In vivo data acquisition

Six healthy volunteers (all males, mean age (±SD) 40.1 ± 
5.4 years) were scanned on a Siemens 3T Biograph PET-MR 
scanner with a 12-channel head coil. For perfusion imag-
ing, a pCASL labeling scheme21 was used with a center-out 
3D-GRASE readout with the following parameters: TR = 
4000 ms, TE = 17.62 ms, flip angle = 150° (chosen to re-
duce blurring in the partition direction), image matrix = 64 ×  
62 × 29, nominal resolution = 4 × 4 × 4 mm3, reconstruction 
FOV = 256 × 256 × 104 mm3, slice oversampling = 10%, 
turbo factor = 29, EPI factor = 31, number of shots (seg-
ments) = 2, bandwidth = 3126 Hz/pixel, background sup-
pression = on, labeling duration = 1500 ms, PLD = 1800 ms,  
number of C-L pairs = 20, and acquisition time = 5 min-
utes 40 seconds. After excitation pulse, a three-line reference 
scan was acquired  without phase-encoding blips for phase 
correction. For CBF quantification, a calibration scan was 
performed using the same readout but without labeling and 
background suppression (see Section 2.3.2). For background 
suppression, a presaturation was applied before the pCASL 
train, and then two global inversion pulses during PLD, with 
positions chosen to minimize signal for tissues with T1s be-
tween 700 and 1400 ms. For 2 participants, high-resolution 
ASL scans with double and triple resolution in the partition 
direction (ie, 2.0 and 1.33 mm) were additionally acquired. 
The parameters remained the same except for the use of four 
and six shots, which doubled (40) and tripled (60) the num-
ber of C-L pairs to match the SNR of the lower-resolution 
acquisition, resulting in 22-minute and 48-minute 52-second  
scans, respectively. The need to perform only 2 and 3 times 
the number repetitions rather than 22 or 32 repetitions is due 
to the fact that in 3D readouts, increasing the number of  
acquired  k-space lines also increases SNR. An MPRAGE  
sequence was acquired with TR/TE/TI = 1700/2.63/900 ms, 
flip angle = 9°, FOV = 236 × 270 × 194 mm3, resolution = 
1.05 × 1.05 × 1.1 mm3, image matrix = 224 × 256 × 176, 
and acquisition time = 6 minutes 20 seconds. This study 
was approved by the research ethics committee of our insti-
tution, and written informed consent was obtained from all 
participants.

2.3 | Data preprocessing

2.3.1 | Motion estimation

To estimate head motion during acquisition, the C-L image 
pairs were individually reconstructed in their native resolu-
tion and processed with SPM1222 and the ASL toolbox.15 For 
this purpose, the M0 image of each ASL data set was reg-
istered to its corresponding T1-weighted (T1w) MR image 
using SPM with default co-registration parameters. The ASL 
toolbox rigidly registers all control and label images to the 
calibration scan, while regressing out the potential registra-
tion errors caused by the intensity differences of C-L im-
ages.23 Finally, the estimated transformations were used for 
motion correction. As MOCHA relies on perfusion-weighted 
data (ie, subtraction of control and label k-spaces), the motion 
between control and label data within a pair was neglected, 
whereas motion between pairs was estimated and corrected. 
For the other reconstruction methods used for comparison, 
motion was corrected for each image (both control and label).

2.3.2 | Standard image reconstruction and 
CBF quantification

The standard reconstruction of ASL data was performed 
using direct inverse Fourier transform. Coil maps were es-
timated by dividing the MR image from each coil (recon-
structed by inverse Fourier transform) by the root sum of 
squares of all images obtained from all of the coils.24 The 
estimated motion transformations were used to compensate 
for motion for each control and label image. In cases in which 
PSF deblurring was applied for the standard reconstructions, 
a Lucy-Richardson deconvolution (100 iterations) was per-
formed.9 The control and label images were then subtracted 
and averaged to obtain a perfusion-weighted image (xP), 
which was converted into CBF maps (mL/100 g/min) using 
the following equation1:

where the label duration � =1500 ms, PLD = 1800 ms, brain-
blood partition coefficient �=0.9 mL/g, longitudinal relax-
ation time of blood T1,b =1650 ms at 3 T, labeling efficiency 
� = 0.85 as suggested in Alsop et al1; and xM0

 is the M0 cal-
ibration image corrected for TR = 4 seconds. The standard 
reconstructed images were then corrected for PVE using a 
3DLR method implemented in MATLAB using a kernel of  
5 × 5 × 5 voxels, on the ratio of xP∕xM0

. The FSL FAST 
tool25 was used to estimate high-resolution GM and WM PV 
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maps from structural images, which were then transformed 
into the low-resolution ASL image space using FSL’s apply-
warp with spline interpolation and a super resolution level of 
4. In Supporting Information Figure S2, the regions of inter-
est (ROIs) and GM and WM PV maps obtained from the T1-
MPRAGE of a participant are shown. The MOCHA method 
was implemented in MATLAB as summarized in Appendix A.

2.4 | Simulations

A numerical ground-truth CBF map was simulated by seg-
menting the T1w MR image (224 × 256 × 176 and 1.05 × 
1.05 × 1.1 mm3) of subject 1 into WM, GM, and CSF re-
gions using SPM. The resulting PV maps were then used to 
generate a CBF map by multiplying the tissue blood flows 
of 65 and 20 mL/100 g/min by the GM PV and WM PV 
maps, respectively.26 Furthermore, a 1.34-mL circular WM  
hyperperfused lesion with a blood flow of 100 mL/100 g/min,  
a regional hyperperfusion (78.9 ± 8.6 mL/100 g/min), and 
hypoperfusion (36.6 ± 3.8 mL/100 g/min) were created to 
evaluate the effect of mismatches between anatomical and 
perfusion information on the reconstructed CBF maps. To 
simulate realistic high-resolution control, label and M0 im-
ages, the M0 and the first control k-space images of subject 1 
were reconstructed in the resolution space of the T1w image 
using the method described in Equation 4.

Using the simulated high-resolution CBF, M0 and control 
images, a high-resolution label image was then created based 
on Equation 5 with the default parameters. The control, label, 
and M0 images were then resampled into the resolution of 
ASL data (the same as our in vivo data). In these simulations, 
20 pairs of C-L images were considered. To simulate motion, 
each image was incrementally rotated, leading a maximum 
angular drift of 3° between the first and last C-L pair and 
translation of 15 mm (see Supporting Information Figure S1).  
The images were then downsampled to match the native 

resolution of our in vivo ASL data, blurred in the partition di-
rection using a 6-mm FWHM Lorentzian filter, modulated by 
the calculated coil sensitivity maps, and Fourier-transformed 
to obtain a multichannel k-space data set. Gaussian noise was 
added to the k-space data to obtain an SNR of 15 dB. Finally, 
the motion transformation of each C-L pair was estimated 
with the procedure described in Section 2.3.1. Figure 2 shows 
the high-resolution T1w and CBF images together with the 
simulated low-resolution M0, first control and label images, 
and the CBF maps estimated by the standard method with 
and without motion correction.

2.5 | Evaluation and parameter selection

The standard, 3DLR, and MOCHA methods were evaluated 
for quantification of CBF in WM, cortical GM, and differ-
ent subcortical GM regions of the simulated and in vivo data 
sets. The T1-MPRAGE images were parcellated into GM, 
WM, thalamus, caudate, putamen, pallidum, and hippocam-
pus using FreeSurfer.27 For simulations, the reconstruction 
methods were evaluated based on the mean CBF in differ-
ent parcellated regions. For 3DLR, depending on the ROI, 
the most appropriate of either the GM or WM PV–corrected 
maps was used to extract the mean values. The normalized 
RMS error (NRMSE) was defined as

where xGT is the ground-truth CBF map. For the simulated 
data, the � parameter of the MOCHA was optimized based 
on minimization of NRMSE over the whole brain, whereas 
the rest of the parameters were empirically set to �= 0.15, 
 = 3 × 3 × 3, and Nit =100 iterations of the steepest decent 

(6)NRMSEi(%)=100 ×
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F I G U R E  2  Simulated brain arterial spin labeling phantom comparing the ground-truth CBF map with the low-resolution cerebral blood flow 
(CBF) maps reconstructed using the standard method with motion correction (MC) and without motion correction (No MC)
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algorithm. The same parameters and the  same � were then 
used for in vivo reconstructions. For simulations, the PSF 
through-plane FWHM was set to 1.5 times the slice thickness 
to mimic an acquisition with T2 decay during the 3D-GRASE 
echo train. For in vivo data, the PSF was modeled as a 
Lorentzian with FWHM of one slice thickness. The PSF es-
timation was performed using autocorrelation of the residu-
als as described in Chappell et al.28 In this method, multiple 
C-L differences are mean-subtracted to generate voxel-level 
residuals. A one-dimensional series of residuals in the su-
perior–inferior direction were then obtained by averaging 
across measurements, as well as in the anterior–posterior and 
left–right directions. The autocorrelation of these residuals 
was fitted with the autocorrelation of a Lorentzian, giving an 
estimate of the PSF width.

To evaluate the performance of the MOCHA method 
for accelerated ASL imaging, an in vivo data set was recon-
structed with a retrospectively reduced number of 10 and  
5 C-L pairs.

All results were evaluated in T1w space.

3 |  RESULTS

3.1 | Simulations

Figure 3 shows the simulation results of the standard, 3DLR, 
and MOCHA reconstruction methods (all including motion 
correction). As shown, the standard method notably suffers 
from PVE and loss of details. The 3DLR method separates the 
GM and WM CBFs for each voxel of the standard CBF map, 
resulting in partial recovery of estimated CBF in the GM, 
although at the cost of loss of boundaries in the simulated 

hyper/hypo perfused regions, severe smoothing and suppres-
sion of the simulated lesion (see arrows). It was also apparent 
that some deep GM structures such as putamen and caudate 
were not appropriately PV-corrected by the 3DLR method. In 
contrast, MOCHA showed tissue boundaries and recovered 
deep GM CBF to a good extent. Due to the severe blurring 
introduced and low acquisition resolution simulated, uniform 
intensity of GM CBF across uniform regions (such as the thin 
cortical ribbon) could not be achieved. Importantly, the hy-
perperfused lesion and hyperperfused/hypoperfused regions 
were well delineated, despite there being no corresponding 
structure on the anatomical image used for guidance.

Supporting Information Figure S3 shows the results 
of a similar analysis as in Figure 3 without the motion- 
correction step, showing substantial degradation of the recon-
structed maps. Importantly, no motion artifacts are apparent 
for MOCHA in Figure 3 with the relatively large simulated 
motion, despite its neglect of within-pair motion.

Figure 4 shows the performance of the methods in terms 
of mean and SD of CBF values and NRMSEs in different re-
gions of the brain. The corresponding values (with and with-
out motion-correction step) are summarized in Supporting 
Information Tables S1 and S2.

In terms of mean ROI values, the standard reconstruction 
overestimates CBF in WM and pallidum, and underestimates 
CBF in all others with −44%, −25%, and −14% in the WM 
lesion and GM hyper/hypo regions, respectively (ROIs of 
mismatch between anatomy and perfusion). The MOCHA 
technique is closer to the ground-truth values than the stan-
dard reconstruction in all cases (with −29%, −16%, and −6% 
in the mismatch ROIs). Three-dimensional LR is closer to 
the true values than the standard method in all regions except 
the pallidum and WM lesion (with −62%, +1%, and +5% in 

F I G U R E  3  Results for the reconstruction of simulated data for a motion-corrected CBF map obtained from the standard method, corrected 
for partial-volume averaging of gray matter (GM) and white matter (WM) using the 3D linear regression (3DLR) method and reconstructed using 
the MOCHA high-resolution method. The arrows point to where MOCHA outperforms 3DLR in the caudate and simulated WM lesion. On the 
low-resolution 3DLR data, the boundaries of the simulated GM lesions are also not well defined
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the mismatch ROIs). The slightly better match to the ground 
truth of the 3DLR compared with MOCHA for cortical GM 
(−14% vs. −19%) and WM (+1% vs. +10%) is due to the 
fact that the 3DLR values reported here explicitly contain 
only contributions from either GM or WM 3DLR maps. The 
MOCHA technique shows more accurate CBF values than 
3DLR for caudate and pallidum (20% improvements), hip-
pocampus (9% improvement), and particularly in the GM 
hyperperfusion. Three-dimensional LR is slightly better 
than MOCHA in the putamen (−1 vs. −6%) and in the GM 
hyperperfusion mismatch region. Despite 3DLR showing 
mean ROI values closer to the ground truth in some regions, 
MOCHA provided lower voxel-level NRMSEs in all regions 
(with reductions of 112%, 2%, and 10% in the mismatch ROIs 
vs. 3DLR). The NRMSE for 3DLR was higher than for the 
standard reconstruction in the WM, WM lesion, and GM hy-
poperfusion regions. Removing the motion-correction step 
causes an increased NRMSE for all methods/regions, and a 
general CBF underestimation, particularly in all the anatomi-
cal/perfusion mismatch regions.

Supporting Information Figure S4 presents similar recon-
structions as in Figure 3, but with additional PSF deconvolu-
tion for the standard and 3DLR methods using the same PSF 
used for MOCHA. The images show improved contrast for 
the standard reconstruction method, at the expense of noise 
amplification. Supporting Information Figure S5 shows that 
PSF deblurring slightly changed the NRMSE of standard re-
construction (on average by 4.7% reduction, variable across 
ROIs); for the 3DLR method there were small reductions in 
WM lesion, cortical GM NRMSE and deep GM NRMSE, 
with a slight increase in the GM mismatch regions and WM 
NRMSE.

Supporting Information Figure S6 shows CBF profiles for 
the studied methods with respect to ground truth. As shown, 
PSF deblurring amplified the noise for the standard recon-
struction, and slightly increased the CBF for 3DLR in GM 
hyperperfusion. MOCHA, which takes PSF into account in 
the reconstruction, followed the true profiles more closely.

Supporting Information Figure S7 shows the NRMSE 
performance of the MOCHA as a function of the regulariza-
tion parameter � for different regions of the simulated brain 
phantom. In Supporting Information Figure S8, the MOCHA 
reconstructions for different � values are shown. Supporting 
Information Table S3 summarizes the results and highlights 
the � values that result in the lowest NRMSE in each region. 
The results show that as the � increases, the errors in the GM 
and especially WM reduce, although at the expense of in-
creasing errors in the WM lesion. The value of �=20 was 
chosen for minimal errors in whole brain, a good compromise 
in the simulated anatomical/perfusion mismatch regions. The 
same value was used for the in vivo data.

The performance of the 3DLR method was also evalu-
ated as a function of kernel size. As shown in Supporting 
Information Figure S9, by increasing the kernel size the GM 
CBF maps are smoother and have fewer details. However, 
the quantitative results show that mean WM reduces very 
slightly for larger kernel sizes, while the GM CBF is stable. 
Hippocampal and deep GM CBF values tend to increase 
very slightly (ie, better overall PVC performance in these 
regions). At the same time, the WM lesion’s CBF notably 
reduces. Hence, as mentioned earlier, in this study a kernel of  
5 × 5 × 5 voxels was used, which provided a balanced per-
formance for the 3DLR method for the WM lesion and small 
GM structures.

F I G U R E  4  The mean and SD of CBF values estimated by the studied methods in different regions of the simulated brain phantom with 
motion correction. Note the GM region only contains cortical GM. Abbreviation: NRMSE, normalized RMS error
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3.2 | In vivo data

Figures 5 and 6 show the results of 2 subjects, comparing 
different methods. Supporting Information Figures S10 and 
S11 show similar results for another 2 subjects. All of the in 
vivo data were motion-corrected. These results show that the 
standard CBF maps suffer PVE, especially in the partition-
encoding direction. The 3DLR method results in increased 
GM CBF values, although at the expense of some loss of 
details, including smoothing of the apparent local high 
perfusion indicated by arrows in Figure 5. In comparison,  

the MOCHA method appears to correct for PVE while pre-
serving local hyperperfusions and recovering details in the 
partition direction (see coronal and sagittal views). Figure 7  
shows the quantitative performance of the reconstruction 
methods in different regions of the brain, averaged over all 
4 subjects (values found in Supporting Information Table 
S4). Similarly to the simulation results, in these in vivo data, 
MOCHA reduces the WM CBF and increases CBF in most 
GM regions.

Figure 8 and Supporting Information Figure S12 show 
the MOCHA reconstruction of the standard low-resolution 

F I G U R E  5  Anatomical image and CBF results for subject 1 calculated using the standard, 3DLR, and MOCHA reconstruction methods. 
Note that data from this subject were also used for simulations. The arrows indicate an area of apparent local high perfusion

F I G U R E  6  Anatomical image and CBF results for subject 2 calculated using the standard, 3DLR, and MOCHA reconstruction methods
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data of subjects 5 and 6 compared with their correspond-
ing higher-resolution data. As shown previously, MOCHA 
enhances the anatomical tissue boundaries. Most impor-
tantly, many details of the high-resolution data that are lost 
in the standard low-resolution reconstruction have been reli-
ably recovered in the MOCHA reconstruction. Quantitative 
analysis of these results for the 2 volunteers are shown 

individually in Figure 9, and the values averaged over the 
2 volunteers are found in Supporting Information Table S5. 
The MOCHA method not only enhances the visual appear-
ance of the low-resolution CBF maps but also improves their 
quantitative accuracy toward the values found in the refer-
ence high-resolution CBF map for most ROIs. The averaged 
cortical GM CBF values for these volunteers were 40.2, 
37.7, and 40.7 mL/100 g/min for the high-resolution stan-
dard, low-resolution standard, and low-resolution MOCHA 
reconstructions, respectively.

The performance of MOCHA was further evaluated for 
acquisitions with a lower number of C-L pairs (or repeats), 
which would entail reduced scan time and correspondingly 
reduced SNR. For this purpose, a data set was retrospectively 
reduced to 10 and 5 C-L pairs out of 20 pairs, equivalent to 
SNR reductions of 1.4 and 2, respectively. Figure 10 com-
pares the reconstruction results of the standard and MOCHA 
methods. As shown, for a lower number of C-L pairs, the 
standard CBF map appears slightly noisier compared with 
the reference 20-pairs image, whereas MOCHA shows more 
consistent maps. Supporting Information Table S6 summa-
rizes the quantitative performance of the methods. The re-
sults show a slight GM CBF decrease with the increase of 
C-L pairs used, which could be potentially attributed to a 
physiological decrease of CBF during the 6-minute acquisi-
tion. The expected acquisition times for 5-pair and 10-pair 
acquisitions are, including dummy scans and M0 data collec-
tion, 100 seconds and 180 seconds compared with 340 sec-
onds of the reference 20-pair scan.

F I G U R E  7  Cerebral blood flow results averaged over four 
in vivo data sets for standard, 3DLR, and MOCHA reconstruction 
methods. The error bars show the SD of the mean CBF values 
calculated for each subject in each region

F I G U R E  8  Anatomical image and 
CBF maps from standard-resolution  
(4 × 4 × 4 mm3; 5-minute 40-second 
acquisition; standard and MOCHA 
reconstructions; right) and doubled 
resolution in the inferior–superior direction 
(high resolution; 4 × 4 × 2 mm3; 22-minute 
acquisition; standard reconstruction; left) 
for subject 5. Note that due to the sequential 
nature of the acquisitions, there might be 
physiological differences between low-
resolution and high-resolution CBF maps
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The performance of MOCHA was also evaluated for un-
dersampled ASL scans. For this purpose, the k-space data 
of subject 4 were retrospectively undersampled at two lev-
els (acceleration factor R of 2 and 4) in the phase-encoding 
(anterior–posterior) direction. The performance of MOCHA 
was then compared with the standard CBF maps recon-
structed using SENSE and SENSE with total variation regu-
larization.29 As shown in Supporting Information Figure S13,  
MOCHA reduces noise and undersampling artifacts and 
maintains an image quality similar to fully sampled data, 
demonstrating good potential for undersampled acquisitions 
with highly accelerated acquisition times.

4 |  DISCUSSION

In this study, the proposed MOCHA reconstruction frame-
work was compared with the 3DLR PVC method. The 3DLR 
method separates the GM and WM signals within each voxel 
of the standard low-resolution CBF maps by solving a sys-
tem of equations in which the GM and WM PV fractions 
are known coefficient values. This method assumes that all 
voxels in the neighborhood (kernel) of a given voxel have 
the same GM and WM CBF values; hence, the system is 
uniquely solved by a least-squares estimator, although at 
the expense of smoothing image details, as shown here and 

F I G U R E  9  Region of interest–averaged CBF results for the double-resolution (left) and triple-resolution (right) arterial spin labeling scans. 
The error bars show the standard deviations over each region

F I G U R E  1 0  Cerebral blood flow 
results for subject 4 calculated using 
standard and MOCHA reconstruction 
methods using different numbers of control-
label pairs (ie, 1-20, 1-10, and 1-5)
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by others. Recently, a Bayesian approach was proposed to  
solve the underdetermined system by using the kinetic model 
of the GM-WM signals in multi-PLD ASL acquisitions to-
gether with a previous modeling of the spatial correlation 
of kinetic parameters.6 Because, in our study, the data were 
acquired with single PLD and perfusion was quantified 
using Equation 5, as recommended by Alsop et al,1 rather 
than using a kinetic curve fitting as in Chappell et al,6 the 
Bayesian method was not included to avoid any discrepancy 
caused by the perfusion estimation method. However, Oliver 
et al compared the 3DLR (3 × 3 × 3 kernel) and Bayesian 
methods in 6 healthy controls.17 Despite comparable mean 
GM-CBF values, the Bayesian method retained structural de-
tails at the expense of increased sensitivity to noise. Recently, 
Zhao et al compared a 2DLR (3 × 3 kernel) with the Bayesian 
method using comprehensive simulations and in vivo data,30 
and similar results were observed.

In contrast to these two methods, MOCHA aims to re-
construct directly a high-resolution CBF map corrected for 
different sources of PVE, such as large voxel sizes, PSF, and 
motion blurring. The MOCHA technique uses all C-L pairs 
to reconstruct a single perfusion-weighted image, such that 
the averaging is performed during reconstruction rather than 
after reconstruction of the individual C-L pairs. The same 
idea was recently used by Spann et al31 to explore temporal 
redundancy and spatial similarity of the C-L pairs for ASL 
reconstruction. As expected, in simulations both 3DLR and 
MOCHA produced averaged GM/WM CBF values closer to 
ground truth than the standard reconstruction. The MOCHA 
method provided sharper anatomical boundaries, whereas 
3DLR showed increased blurring. The 3DLR mean values 
were slightly closer to the ground truth in cortical GM and 
hyperperfused GM, whereas MOCHA performed a lot better 
in the WM hyperperfusion region. Furthermore, MOCHA 
provided the lowest NRMSE in all of the analyzed regions.

The MOCHA technique relies on anatomical images for 
regularization of high-resolution CBF maps. Although this 
improves the quality of the reconstructed CBF maps, we are 
aware that some functional features (ie, geometry of flow 
territories, vascular artifacts) influencing CBF are not cap-
tured by anatomy (ie, GM/WM/CSF PV fractions or tissue 
appearance on T1w images); hence, any method (including 
LR) relying on anatomical information for PVE correction 
could lead to partly biased results, and a high-resolution 
perfusion signal cannot be completely recovered solely by 
using anatomical information. At the same time, we have 
shown that by combining low-resolution perfusion data 
and high-resolution anatomical information, MOCHA does 
go some way toward correcting functional maps for PVE 
and blurring, and thus improving their spatial and quanti-
tative accuracy. We have considered a number of scenarios 
to demonstrate this by simulating anatomy/perfusion mis-
matches, (ie, hyperperfusion/hypoperfusion in GM and WM 

regions with no corresponding structural abnormalities). 
Although MOCHA’s quantitative accuracy varies depend-
ing on the region, it always offers an improvement compared 
with the standard reconstruction, and in all cases provides 
an improved preservation of boundaries and the lowest vox-
el-level errors (NRMSE) compared with the ground truth. 
In these situations, 3DLR’s quantitative performance is also 
variable, and not being able to rely on PV information, it is 
inherently affected by large blurring, the extent of which 
depends on the chosen kernel size. As an additional compar-
ison, we also show in Supporting Information Figure S14 a 
CBF map obtained from the combination of the 3DLR GM 
and WM maps weighted by GM and WM PVFs.

We have also used in vivo data sets acquired with 
high-resolution protocols as high-quality references to val-
idate the MOCHA reconstructions obtained from standard 
low-resolution (4 × 4 × 4 mm) 6-minute acquisition time 
data sets. To obtain these references, we doubled and tripled 
the slice resolution, requiring long acquisitions of 22 minutes 
and 49 minutes, respectively, for full k-space sampling with 
equivalent SNR. It was apparent that many of the details in 
the long-acquisitions/high-resolution CBF maps are in fact 
well reproduced in the MOCHA images reconstructed from 
low-resolution data. This suggests an effective resolution im-
provement, which is beyond purely visual improvement.

Finally, we have provided evidence that MOCHA-
reconstructed CBF maps are robust to a severe reduction in 
the number of C-L pairs (averages) collected, with reduc-
tions tested up to a factor of 4, and k-space undersampling, 
also tested up to a speed-up factor of 4. Although there are 
clear advantages, MOCHA nonetheless has some limitations. 
Inclusion of PSF and downsampling and using an anatom-
ical prior leads to only partial recovery of the lost high- 
frequency information. In Boussion et al,32 a similar idea of 
transferring the high-frequency information from structural 
MR to low-resolution emission tomography data has been 
proposed without segmentation of the MR image. The PSF 
was assumed to be shift-invariant and motion-independent. 
Following Elad and Hel-Or,33 the blurring B was therefore 
used as the front-end operator in Equation (1), which allows 
the motion transformation and downsampling operators to be 
merged into one single spatial transformation, reducing the 
computational burden of the model.

As tissue boundaries of the anatomical data influence the 
MOCHA reconstruction of the perfusion images, any mo-
tion left unaccounted for, as well as any distortions or mis-
registrations affecting the alignment of the structural and 
perfusion data, can all negatively affect the accuracy of the 
reconstruction. Although a number of steps were taken to 
minimize these effects, further improvements are possible 
and will be undertaken. The current MOCHA implementa-
tion only takes into account motion occurring between C-L 
pairs and neglects motion during each acquisition/pair. For 
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the continuous motion in our simulations and our healthy 
volunteers, the current interframe motion correction ap-
peared to be sufficient, but more complex motion patterns 
may occur, especially for non-cooperative patients. A pos-
sible solution to address frame-by-frame motion is to re-
construct a motion-corrected control image from all control 
data and likewise for all label data, and then to perform a 
postreconstruction subtraction. Additionally, it is possible to 
identify motion-corrupted “outlier” pairs (such as by using 
ENABLE34) and remove them from the analysis. In our data 
with limited PSF blurring, the M0 to T1w rigid-body regis-
tration produced satisfactory registration. However, we are 
aware that, in general, for 3D-GRASE ASL, which suffers 
from T2 blurring, registering CBF maps with GM PV maps, 
as in Mutsaerts et al,35 has been shown to be more reliable; 
this method is therefore recommended for a more general ap-
plication of MOCHA.

In this paper, susceptibility-induced geometric distortions 
were not included in our forward model. Instead, they were 
minimized by the 2-fold segmentation in the phase-encoding 
(anterior–posterior) direction. However, small, residual, lo-
calized spatial mismatches between anatomical and perfusion 
images can remain. Future work should include estimation 
and correction of the spatial distortions, such as using re-
versed gradient (blip up/down) acquisitions, further reducing 
this potential source of error.

All of these various misalignment errors discussed can 
cause some local or global CBF errors. However, their mag-
nitude also depends on the strength of the regularization (�) 
and the shape of the Gaussian similarity coefficients (�). In 
this work, �, (neighborhood size) and the number of itera-
tions were chosen heuristically. Larger values of � reduce the 
impact of MR information, as the resulting weights will tend 
to be more uniform. We have found � values in the range of 
0.1-0.3 result in appropriate weighting of the structural in-
formation from T1w images. The value of   was set to 3 ×  
3 × 3, as in our CPU-based implementation. Larger neigh-
borhoods are memory demanding, and based on our previous 
experience, larger neighborhoods do not notably lead to im-
proved regularization. We used a large number of iterations 
to ensure that the steepest descent algorithm (which improves 
upon gradient descent by step-size optimization) converges to 
at least a fixed point. In our experience, the most important 
hyperparameter is �, which was optimized.

For the main results, we compared MOCHA to 3DLR 
with a 5 × 5 × 5 voxel kernel and no PSF modeling. The ker-
nel size of the LR method affects its performance in terms of 
robustness to noise,30 geometric distortion,36 and of repeat-
ability between scans.37 This was chosen based on our tests 
with kernels ranging from 3 × 3 × 3 to 9 × 9 × 9 voxels. 
Taking into account the PSF for 3DLR only provided a small 
reduction in NRMSE in GM ROIs and the WM lesion, but not 
in the GM hypoperfusion/hyperperfusion regions; therefore, 

for the main results, PSF modeling was not included, which 
is consistent with the most common use of 3DLR in the ex-
isting literature. However, we also acknowledge that the PSF 
should always be taken into account when downsampling38 
and preparing the data for 3DLR.36 One way to estimate PSF 
is through simulation of the vascular signal through the pulse 
sequence, as in Vidorreta et al.40

Admittedly, the 3DLR performance in some deep GM re-
gions could have been improved with a different PV estima-
tion method, such as the recently developed tissue probability 
maps with better subcortical performance.39 However, this 
would not have improved 3DLR results in areas of anatomi-
cal/functional mismatches and highlights the dependence of 
the 3DLR on PV tissue fraction and its estimation method.

We have not at this stage examined the noise properties of 
the final CBF images obtained, and finding the endpoint noise 
properties would be an interesting topic for future work. This 
would require consideration of the noise propagation from the 
M0 and C-L images to the final reconstructed MOCHA image.

Our method is computationally intensive due to the in-
clusion of motion, spatial mapping, and PSF operators in 
the forward model. The computation time for 1 and for 100 
iterations in MATLAB R2017a (running on a 20-core Intel 
Xeon 3.10-GHz workstation, for a data set of 20 averages) 
was approximately 1 minute and 1.5 hours, respectively. The 
objective  function of MOCHA is convex and continuously 
differentiable; hence, the steepest descent algorithm guaran-
tees convergence to the global minimizer, regardless of the 
initial estimate.

To our knowledge, MOCHA is the first fully model-based 
high-resolution reconstruction method for ASL data. Our re-
sults show a good performance of MOCHA in simulations 
including areas of anatomical/perfusion mismatch. In vivo 
data demonstrated that MOCHA can reliably reconstruct 
high-resolution CBF maps from standard low-resolution data 
sets, featuring many of the details observed in the higher- 
resolution data sets (which require impractically long acqui-
sition times). The robustness of the reconstruction to short 
acquisitions and/or undersampling was also demonstrated. 
The actual clinical benefits of MOCHA will be evaluated in 
collaboration with radiologists, using the patient data pre-
sented with and without MOCHA reconstruction.

5 |  CONCLUSIONS

Simulation and in vivo data results demonstrate that the pro-
posed direct high-resolution CBF map reconstruction method 
effectively corrects motion and PVE. The MOCHA technique 
is advantageous in preservation of structural details and hy-
poperfused/hyperperfused regions. The MOCHA framework 
has the potential to improve the diagnostic confidence and 
applicability of current ASL protocols in clinical practice.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.
FIGURE S1 Simulated motion (translation and rotation) in 
our simulation data set
FIGURE S2 Regions of interest (ROIs) and GM partial-vol-
ume (PV) estimates obtained from the parcellation of the T1-
MPRAGE MR image using the Freesurfer and FSL (FAST 
and applywarp) software. The arrow points to the pallidum 
that has been erroneously identified as WM
FIGURE S3 Same as Figure 3, except for the omission of the 
motion-correction step
FIGURE S4 Same as Figure 3, except for the addition of 
point-spread-function deblurring for the standard and 3DLR 

methods. Note: The motion-correction step is included for all 
methods
FIGURE S5 Effect of point-spread-function (PSF) deblur-
ring on NRMSE performance of the standard and 3DLR 
methods for simulations
FIGURE S6 Cerebral blood flow profiles of the studied re-
construction methods through simulated WM lesion and GM 
hyperperfusion
FIGURE S7 The NRMSE performance of MOCHA in dif-
ferent regions of the simulated brain phantom as a function of 
the regularization parameter �
FIGURE S8 Reconstruction results of the MOCHA method 
as a function of regularization parameter
FIGURE S9 Effect of kernel size on the qualitative (top) and 
quantitative (bottom) performance of the 3DLR method in 
comparison with the standard method and the ground-truth 
simulated brain phantom
FIGURE S10 Cerebral blood flow results for subject 3 
calculated using the standard, 3DLR, and MOCHA recon-
struction methods. The arrows point to the most notable 
differences between MOCHA and standard reconstruction 
methods
FIGURE S11 Cerebral blood flow results for = subject 5 
calculated using the standard, 3DLR, and MOCHA recon-
struction methods. The arrows point to some regions where 
there are notable differences between MOCHA and standard 
reconstruction methods
FIGURE S12 Anatomical image and CBF maps from stan-
dard-resolution acquisition (4 × 4 × 4 mm3; 5-minute 40-sec-
ond acquisition), standard, and MOCHA reconstructions; 
right) and tripled resolution in the slice direction (high res-
olution, 4 × 4 × 1.33 mm3; 49-minute acquisition; standard 
reconstruction only; left) data sets for subject 6
FIGURE S13 Cerebral blood flow results of subject 4 
calculated using the standard and MOCHA reconstruction 
methods for different undersampling factors (R). The arrow 
shows an undersampling artifact. Standard and SENSE re-
constructions show increased noise as R increases. Total-
variation SENSE (TV-SENSE) also shows visible changes 
between R = 2 and R = 4. The MOCHA method shows the 
highest visual consistency between reconstructions at R = 1, 
R = 2, and R = 4
FIGURE S14 Top: Similar to Figure 3, including GM 
and WM partial-volume fractions (pGM and pWM) and a 
combined image corresponding to pGM* 3DLR-CBFGM + 
pWM* 3DLR-CBFWM. As shown in the combined image, 
the cortex appears thinned and the contrast of the synthetic 
WM lesion is substantially decreased. Bottom: Quantitative 
comparison of the method; as shown, MOCHA achieves bet-
ter performance in deep GM structures, and the combined 
method results in CBF values very similar to the standard 
method
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APPENDIX A

The steepest  descent  algorithm

TABLE S1 Quantitative performance of the standard, 3DLR, 
and MOCHA methods in terms of CBF (mean ± SD) in dif-
ferent regions of the simulated brain phantom with and with-
out motion correction
TABLE S2 The NRMSE (%) of the studied methods with 
and without motion correction in different regions of the sim-
ulated brain phantom
TABLE S3 The NRMSE performance of MOCHA in differ-
ent regions of the simulated brain phantom as a function the 
regularization parameter �
TABLE S4 Mean and steepest decent of CBF values aver-
aged over 4 healthy subjects

TABLE S5 Mean and steepest decent of CBF values aver-
aged over the 2 high-resolution healthy subjects
TABLE S6 Mean and steepest decent values of CBF maps 
for a subject calculated for different control-label pairs
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