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Psychiatric disorders are highly prevalent and disabling conditions of increasing public 
health relevance. Much recent research has focused on the role of cytokines in the 
pathophysiology of psychiatric disorders; however, the related family of immune proteins 
designated chemokines has been relatively neglected. Chemokines were originally 
identified as having chemotactic function on immune cells; however, recent evidence 
has begun to elucidate novel, brain-specific functions of these proteins of relevance 
to the mechanisms of psychiatric disorders. A systematic review of both human and 
animal literature in the PubMed and Google Scholar databases was undertaken. After 
application of all inclusion and exclusion criteria, 157 references were remained for the 
review. Some early mechanistic evidence does associate select chemokines with the 
neurobiological processes, including neurogenesis, modulation of the neuroinflamma-
tory response, regulation of the hypothalamus–pituitary–adrenal axis, and modulation 
of neurotransmitter systems. This early evidence however does not clearly demonstrate 
any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms 
which are shared across disorders. Notable exceptions include CCL11 that has recently 
been shown to impair hippocampal function in aging – of distinct relevance to Alzheimer’s 
disease and depression in the elderly, and pre-natal exposure to CXCL8 that may disrupt 
early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory 
chemokines, such as CCL2, CCL7, CCL8, CCL12, and CCL13, have been shown to 
drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, 
CX3CL has been implicated in promoting glial cells activation, pro-inflammatory cyto-
kines secretion, expression of ICAM-1, and recruitment of CD4+ T-cells into the CNS 
during neuroinflammatory processes. With further translational research, chemokines 
may present novel diagnostic and/or therapeutic targets in psychiatric disorders.

Keywords: depression, Alzheimer’s disease, neurogenesis, chemokine, schizophrenia, inflammation, immune, 
neurodegeneration

introduction

Psychiatric disorders are highly prevalent and disabling conditions of increasing public health 
relevance (Whiteford et al., 2013). Despite the global significance of these disorders, many patients 
remain resistant to current psychosocial and pharmacological interventions (Murdoch and Finn, 
2000; Ono et  al., 2003; Rush et  al., 2006a,b; Trivedi et  al., 2006). Contemporary advances in 
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neuroscience are yet to successfully translate into improved clini-
cal outcomes for these patients; however, there remains optimism 
within the research community that a greater translational focus 
may provide the necessary platform for development of novel 
therapeutics (Licinio, 2011). One area of neuroscience which has 
yet to receive such a translational approach is the increasing rec-
ognition of central nervous system (CNS)-specific mechanisms 
of the immune proteins designated as chemokines. The bulk 
of literature within the field of psychoneuroimmunology has 
concentrated on the application of detrimental (or more recently, 
beneficial) effects of immune cells and soluble mediators to the 
CNS through their canonical immune functions. For example, 
the putative role of pro-inflammatory cytokines and cells in 
degenerative processes which may be relevant to depressive 
disorders is analogous to their functions in the systemic immune 
system (Dantzer et al., 2008; Eyre and Baune, 2012). Discovery of 
chemokines extends back to as early as 1977 (Walz et al., 1977; 
Wu et  al., 1977; Callewaere et  al., 2007), however their role in 
modifying the neuroimmune and neurobiological processes 
received attention not until mid-90s (Tani and Ransohoff, 1994).

Chemokines were initially described as chemotactic factors 
regulating the migration of peripheral immune cells – an action 
which is likely relevant to the aforementioned pro-inflammatory 
cascades (Murphy et  al., 2000). In addition to chemotaxis, 
chemokines have been described to have potentiating and 
activating actions on peripheral immune cells directing them 
to a pro-inflammatory activation state which may contribute 
to the neurodegenerative and pro-apoptotic cascades described 
in depression and Alzheimer’s disease (AD) (Ono et  al., 2003; 
Le et al., 2004; Moylan et al., 2012; Jo et al., 2014). For example, 
CCL11 has been described as a key blood-borne factor, which 
is responsible for the aging-associated impairment in both hip-
pocampal neurogenesis, and functional learning and memory 
(Villeda et  al., 2011). Early evidence has begun to emerge 
suggesting novel non-immune and CNS-specific mechanisms 
of chemokines, including neuromodulation, neuroendocrine 
regulation, and direct neurotransmitter-like actions (Rostene 
et  al., 2007, 2011a; Reaux-Le Goazigo et  al., 2013). Moreover, 
chemokine receptor knockout mice (CCR6, CCR7, CXCR5) have 
recently been described to exhibit behavioral and neurobiological 
phenotypes of relevance to psychiatric disorders, which therefore 
may be of value as animal models of certain psychiatric symptoms 
(Harrison et al., 2014; Jaehne and Baune, 2014; Stuart et al., 2014).

We have recently systematically reviewed clinical studies of 
the association between chemokines and psychiatric disorders, 
including depression, bipolar disorder, schizophrenia, mild 
cognitive impairment, and AD – finding that alteration in serum 
or cerebrospinal fluid levels of many chemokines are broadly 
associated with psychiatric disorders irrespective of diagnostic 
category (Stuart and Baune, 2014). Taken together, the relevance 
of the aforementioned actions of chemokines to neurobiological 
mechanisms previously implicated in many psychiatric disorders, 
coupled with clinical evidence demonstrating significant differ-
ences in the expression of these chemokines broadly across the 
spectrum of psychiatric disorders are suggestive of a potential 
pathologically pertinent role of these factors in these disorders. 
Although currently there is little clinical evidence of differential 

profiles of chemokine expression in different psychiatric disor-
ders, the mechanisms by which chemokines contribute to the 
pathogenesis and/or pathophysiology of these disorders may be 
disparate. For example, the relevance of the chemokine CCL11 
as discussed above to hippocampal neurobiology in aging may 
be more relevant to AD and the second peak of depression 
incidence in older age – both of which are associated with hip-
pocampal pathology (Villeda et  al., 2011; Baruch et  al., 2014). 
Likewise, elevated levels of maternal CXCL8 has been implicated 
in increased risk of psychosis in offspring, likely due to disruption 
of early neurodevelopment, in keeping with the suggestion that 
schizophrenia may be a disorder of neurodevelopmental origin 
(Brown et al., 2004). At a mechanistic level, CXCL8 has both gross 
pro-inflammatory actions which may contribute to pathological 
cascades within the CNS as reviewed below but also has a chemot-
actic function in guiding the apoptosis and/or migration of neural 
progenitor cells – the deregulation of which may be of pathologi-
cal significance in periods of neural development (Kelland et al., 
2011). Indeed, fetal exposure to CXCL8 has been associated with 
structural brain abnormalities in adulthood (Ellman et al., 2010).

Although aforementioned examples have clear disease-specific 
relevance for most chemokines, there is little specific data which 
imply pathotropism for a specific clinical entity. In light of the 
paucity of data on most chemokines, this review will focus on 
shared mechanisms of significance across clinical categories, such 
as neuroendocrine dysregulation, pro-inflammatory state and 
neurodegeneration, neurogenesis, and neurotransmitter system 
dysregulation. This review aims to systematically evaluate the 
immune and non-immune mechanisms by which chemokines 
may contribute to the pathophysiology or pathogenesis of psychi-
atric disorders both in adulthood and early neurodevelopmental 
periods. This is the first review to draw together both mechanisms 
analyzing combined effects with the purpose of illuminating areas 
of opportunity for further translational research. Given the aim 
of this study to enhance translational research and the paucity of 
postmortem human data, the scope of the review includes both 
rat/murine data and studies of human tissue where possible.

Materials and Methods

The literature search for this review was carried out according to 
the PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-analyses) guidelines as they apply to systematic reviews 
(Liberati et al., 2009; Moher et al., 2010). The checklist items from 
PRISMA as relevant to this review, for example those related to 
search and writing approaches, were included and the items 
not relevant, for example those related to meta-analyses, were 
excluded. The search strategy is included in Appendix. A total of 
183 full text manuscripts were retrieved. Both human and rodent 
data were included. At this stage, 26 studies were excluded fol-
lowing the exclusion criteria as per Figure 1. In all, 157 articles 
remained for this review.

For clarity, all chemokines in this paper will be referred 
in agreement with the systematic nomenclature based on the 
position of their conserved cysteine residues as approved by the 
International Union of Pharmacology (Murphy et al., 2000). 
A list of common synonyms for all chemokines included in 
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this review is provided in Table  1, along with a brief sum-
mary of their canonical functions in systemic immunity [see, 
for reviews, Murdoch and Finn (2000), Ono et al. (2003), and 
Le et al. (2004)].

Chemokines in the CNS

introduction to Chemokines
The term “chemokine” is a portmanteau of “chemotactic cytokine” 
and first coined in 1992 to accommodate a growing list of related 
proteins with chemotactic functions (Murphy et  al., 2000). 
With the notable exception of CX3CL1 which has a membrane 
bound form, these proteins are present in a secreted soluble 
form. Receptors for these chemokines are primarily located on 
leukocyte subsets, and many receptors bind multiple ligands with 
variable affinity (Cyster, 1999; Murphy et al., 2000). Chemokines 
act through common intracellular signaling mechanisms to 
increase intracellular calcium (Nelson and Gruol, 2004) and 
their direct signaling is through G-protein-coupled receptors 
(Baggiolini et al., 1997). These chemotactic proteins are known 
to be important for leukocyte migration and activation under 
both physiological and pathological conditions. These processes 
are vital to physiological immune surveillance as well as inflam-
matory responses. Chemokines have also long been recognized 
to have additional functions, including inducing the release of 
pro-inflammatory mediators and control of T-helper (Th)-1/Th-2 
phenotypic polarization (Cyster, 1999). Indeed, they have been 
categorized functionally into homeostatic and inflammatory 
chemokines. The former being always expressed in constitutive 
levels in certain organs and tissues and are required for basal 
immune cells migration, for example migration of the dendritic 
cells to the local-draining lymph nodes, where they activate more 

FiGURe 1 | Study inclusion flowchart. It depicts the methodology for search and collection of relevant articles for this review, following PRISMA guidelines 
(Liberati et al., 2009; Moher et al., 2010).

antigen-specific T cells. The latter, on the other hand, are expressed 
under the influence of pro-inflammatory factor, for example LPS, 
TNF-α, IL-1β) and further participate to upregulate the inflam-
matory response by attracting immune cells (e.g., macrophages, 
fibroblasts, T cells) to the site of inflammation (Rossi and Zlotnik, 
2000; Zlotnik and Yoshie, 2000).

In this review, we will first describe the cellular and regional 
expression of chemokines and receptors before highlighting their 
roles in neurobiological processes implicated in the pathogenesis 
and pathophysiology of psychiatric disorders.

Chemokines Receptor and Ligand expression in 
CNS by Cell Type
The chemokine receptors and their ligands are broadly expressed 
throughout both the developing and adult CNS [see, for reviews, 
Bajetto et al. (2001), Miller et al. (2008), Rostene et al. (2011b), 
and Jaerve and Muller (2012)]. Several of these chemokines are 
constitutively expressed under normal conditions, including 
CCL2, CCL3, CCL19, CCL21, CXCL8, CXCL12, and CX3CL1 
(Jaerve and Muller, 2012). Other chemokines are upregulated in 
response to injury or inflammation. Chemokines and receptors 
expressed in the CNS under either basal or inflammatory condi-
tions are listed by cell type in Table 2. It can be appreciated from 
this table that the capacity to express chemokine receptors is the 
rule rather than the exception for most CNS cell types.

The regulation of the expression of chemokines and their 
receptors involves a complex and poorly understood interplay 
between several systems. For example, in paradigms of CNS injury 
or inflammation, such as experimental autoimmune encepha-
lomyelitis (EAE), the expression of chemokines and chemokine 
receptors may be increased through several mechanisms 
(Ubogu et al., 2006). These mechanisms include increase in their  
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TABLe 1 | Nomenclature and biological characteristics of chemokines [compiled from reviews (Murdoch and Finn, 2000; Ono et al., 2003;  
Le et al., 2004)].

Chemokine nomenclature Receptor(s) Synonyms Classical peripheral functionsa CNS functions

CC FAMiLY
CCL1 CCR8 I-309, TCA-3 mø, B Lø, DC chemotaxis Unknown

CCL2 CCR2 MCP-1 mø, T Lø, DC chemotaxis, and activation NSC/NPC chemotaxis and 
differentiation
Microglial phenotype modulation
?HPA axis modulation

CCL3 CCR1 MIP-1α nø chemotaxis and activation NSC/NPC, microglial chemotaxis

CCL4 CCR1 MIP-1β mø, T Lø, NK chemotaxis Microglial chemotaxis

CCR5

CCL5 CCR5 RANTES T Lø, bø, eø chemotaxis, and activation Microglial chemotaxis
?HPA axis modulation

CCL7 CCR2 MARC, MCP-3 mø chemotaxis Unknown

CCL11 CCR2
CCR3
CCR5

Eotaxin eø, bø chemotaxis Impairs neurogenesis 
?mechanism

CCL13 CCR2
CCR3
CCR5

MCP-4, NCC-1 mø, T Lø, bø, eø chemotaxis Unknown

CCL15 CCR1
CCR3

Leukotactin-1, MIP-5, HCC-2, 
NCC-3

mø, T Lø, nø chemotaxis Unknown

CCL18 GPR30 MIP-4, PARC T Lø chemotaxis Unknown

CCL20 CCR6 ELC, Exodus-3, Ckβ11 T Lø, nø, DC chemotaxis T Lø chemotaxis

CCL24 CCR3 Eotaxin-2, MPIF-2, Ckβ6 T Lø, eø, bø, nø chemotaxis Unknown

CCL25 CCR9 TECK mø, T Lø, DC chemotaxis Unknown

CCL26 CCR3 Eotaxin-3, MIP-4α, IMAC, 
TSC-1

eø, bø chemotaxis and activation Unknown

CCL27 CCR10 CTACK, ILC, Eskine, Skinkine T Lø chemotaxis Unknown

CXC FAMiLY

CXCL1 CXCR2 Gro-α, GRO1, NAP-3, KC nø chemotaxis NSC/NPC chemotaxis and 
differentiation

CXCL2 CXCR2 Gro-β, GRO2, MIP-2α nø chemotaxis Unknown

CXCL8 CXCR1 IL-8, NAP-1, MDNCF, GCP-1 nø, eø, bø, T Lø, B Lø, NK, DC chemotaxis NSC/NPC chemotaxis

CXCR2 nø, mø, bø activation ?HPA axis modulation

CXCL9 CXCR3 MIG, CRG-10 T Lø chemotaxis NSC/NPC differentiation

PIC infiltration

CXCL10 CXCR3 IP-10, CRG-2 mø, T Lø, NK, DC chemotaxis PIC infiltration

CXCL11 CXCR3
CXCR7

IP-9, I-TAC, β-R1 T Lø chemotaxis PIC infiltration

CXCL12 CXCR4
CXCR7

SDF-1, PBSF T Lø, mø chemotaxis
Inhibit hematopoietic stem cell 
proliferation + differentiation
Promote angiogenesis

NSC/NPC chemotaxis
Enhance neurogenesis 
?mechanism
Modulate glutamate + GABA 
neurotransmission
?direct neurotransmitter-like 
effects
?HPA axis modulation

CX3C FAMiLY

CX3CL1 CX3CR1 Fractalkine, Neurotactin, 
ABCD-3

mø, T Lø, chemotaxis, and endothelial 
adhesion
NK activation

Regulate microglial activation 
state

aThis list is not exhaustive but includes the classical functions associated with each chemokine.
mø, monocyte/macrophage; Lø, lymphocyte; nø, neutrophil; bø, basophil; eø, eosinophil; DC, dendritic cell; NK, natural killer cell; NSC/NPC, neural stem/progenitor cell; PIC, 
peripheral immune cell; HPA axis, hypothalamus–pituitary–adrenal axis.
? represents Unknown.
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TABLe 2 | Chemokine receptor expression in the CNS (both human and rodent).

Chemokine receptor Microglia Astrocyte Oligodendrocyte Neuron NSC/NPCa Reference

CC FAMILY
CCR1 + + + ± + Meucci et al. (1998), Nguyen et al. (2003), Eltayeb 

et al. (2007), Tran et al. (2007), Kan et al. (2012)

CCR2 + + − + + Banisadr et al., 2002a, 2005, Tran et al. (2007)

CCR3 + + + + + van der Meer et al. (2000), Flynn et al. (2003), 
Krathwohl and Kaiser, 2004

CCR4 + + + Meucci et al. (1998), Flynn et al. (2003)

CCR5 + + − − + Spleiss et al. (1998), Nguyen et al. (2003), Ji et al. 
(2004), Eltayeb et al. (2007), Tran et al. (2007), Kan 
et al. (2012)

CCR6 + + − Coughlan et al. (2000), Flynn et al. (2003)

CCR7 + + + Dijkstra et al. (2006), Liu et al. (2007), Gomez-
Nicola et al. (2010)

CCR8 + + + Trebst et al. (2003), Liu et al. (2007)

CCR9 + + + Liu et al. (2007), de Haas et al. (2008)

CCR10 − + + Flynn et al. (2003), Liu et al. (2007)

CXC FAMILY

CXCR1 + + + + + Puma et al. (2001), Flynn et al. (2003), Omari et al. 
(2005), Weiss et al. (2010)

CXCR2 + + + + − Giovannelli et al. (1998), Flynn et al. (2003), Omari 
et al. (2005), Weiss et al. (2010)

CXCR3 + + + + + Coughlan et al. (2000), Flynn et al. (2003), Omari 
et al. (2005), Tran et al. (2007)

CXCR4 + + + + + Banisadr et al. (2002b, 2011a), Tran et al. (2007), 
Gottle et al. (2010)

CXCR5 + + + + Petito et al. (2001), Flynn et al. (2003), Bagaeva 
et al. (2006), Weiss et al. (2010)

CXCR7 − + + + ± Schonemeier et al. (2008), Gottle et al. (2010)

CXCL14 receptor (unidentified) + Banisadr et al. (2011b)

CX3C FAMILY

CXCR1 + + + + Meucci et al. (1998), Ji et al. (2004), Sunnemark 
et al. (2005)

aNeural stem/progenitor cells (NSC/NPC) isolated from either hippocampal or subventricular zone populations.

September 2015 | Volume 9 | Article 3575

Stuart et al. Chemokines in psychiatric disorders

Frontiers in Cellular Neuroscience | www.frontiersin.org

expression on lymphocytes from the cerebrospinal fluid and T cells 
that migrate across the blood-brain barrier (BBB), as well as on 
glial cells within the brain, particularly astrocytes. Likewise, while 
CX3CR1-deficiency in microglia has been shown to enhance 
beneficial microglial activity, increase amyloid clearance, and 
prevent neuron loss in mice models of AD (Harrison et al., 1998; 
Fuhrmann et al., 2010; Liu et al., 2010), this has also been shown 
to dysregulate microglial response and increase neurotoxicity 
following peripheral lipopolysaccharide injections in the CX3CR1 
KO mice (Cardona et al., 2006), and decrease neurotoxicity with 
no harmful effects on microglia in mice models with focal cerebral 
ischemia (Dénes et al., 2008) or have no neurotoxic effects at all 
in neuroinflammatory conditions other than AD in mice (Jung 
et al., 2000). By contrast, CCR2 deficiency in microglia aggravated 
amyloid deposition; possibly due to the decreased migration and 
recruitment of inflammatory monocytes to the site of amyloid 
deposition in a transgenic mouse model of AD (Naert and Rivest, 
2011). These examples are clearly suggestive of the complex mecha-
nisms associated with chemokines and their receptors in the CNS.

Classical immune mediators are known to regulate the 
expression of chemokines both peripherally and in the CNS. For 
example, the Th1 cell-derived cytokine interferon-γ is known to 
induce the expression of the chemokines CXCL9, CXCL10, and 
CXCL11: the ligands for CXCR3 (Shurin et al., 2007). Similarly, 
a study showed that CCR8 failed to express with no rapid onset 
of inflammation in TNF KO mice models of EAE, suggest-
ing TNF derived from the infiltrating hematopoietic cells is 
essential for the expression of CCR8 by the resident microglia 
(Murphy et al., 2002). Moreover, IL-33 released from damaged 
oligodendrocytes during CNS injury has recently been shown 
to induce expression of monocyte attracting chemokines, 
such as CCL2 and CXCL10, on local astrocytes and microglia 
(Gadani et al., 2015). Notably, IL-33, a member of IL-1 family 
of cytokines, is produced by intracellular complexes called 
as inflammasomes, commonly seen in glial cells, including 
microglia and astrocytes (Singhal et  al., 2014). Other studies 
have also shown expression of IL-33 by glial cell, primarily 
astrocytes (Foster et al., 2015; Pomeshchik et al., 2015), which 
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therefore suggests that expression of cytokines and chemokines 
on glial cells may be inter-regulated. Several neurotrophins also 
regulate the expression of certain chemokine receptors. It has 
been shown that brain-derived neurotrophic factor (BDNF), 
nerve growth factor (NGF), and neurotrophin-3 (NT-3) can 
regulate the expression of the chemokine receptors CXCR3, 
CXCR4, and CCR5 in the brain (Ahmed et al., 2008; Avdoshina 
et al., 2011). These receptors were selected for study due to their 
relevance to human immunodeficiency virus (HIV)-related 
dementia; however, further investigation of the capacity for 
neurotrophins to regulate chemokine receptors is warranted, 
given the reciprocal functions of chemokines in regulating 
neurotrophic processes.

The Mechanistic Relevance of 
Chemokines to the Pathophysiology and 
Pathogenesis of Psychiatric Disorders

Regulation of Neurogenesis by Chemokines
In recent years, a major focus of biological psychiatry research 
has been the processes of neurogenesis by which new neurons are 
generated, differentiated, and integrated into functional circuits. 
This is relevant to psychiatric disorders both in the context of early 
neurodevelopmental periods, and in adult neurogenesis  –  par-
ticularly in the hippocampal dentate gyrus. The disruption of 
early neurodevelopment has been implicated in many psychiatric 
disorders, particularly schizophrenia where a number of pre-
natal maternal environmental factors have been proposed as risk 
factors for development of this disorder – for example smoking, 
infections, maternal mental illness, and stressful life events 
(Hunter et al., 2011; Betts et al., 2014a,b). An increasing body of 
both animal and human data has also implicated dysregulation of 
adult hippocampal neurogenesis in the pathophysiology of several 
psychiatric disorders, including depressive disorders and anxiety 
disorders (Eisch and Petrik, 2012; Eyre and Baune, 2012), while 
enhancement of hippocampal neurogenesis has been associated 
with several clinically efficacious treatment modalities, includ-
ing exercise, omega-3 fatty acids, electroconvulsive therapy, and 
conventional antidepressant pharmacotherapy (Eisch and Petrik, 
2012; Kang and Gleason, 2013; Moylan et  al., 2013a; Dukart 
et al., 2014; Smitha et al., 2014). Some early evidence has begun 
to implicate several chemokines in processes relevant to neu-
rogenesis both in early neurodevelopmental periods and adult 
neurogenic niche as discussed below.

CC Chemokines
Similar to their roles as chemotactic factors for immune cells, 
chemokines are involved in the regulation of neural stem/
progenitor cell (NSC/NPC) migration in both endogenous 
neurogenic niches of the adult brain [hippocampus and subven-
tricular zone (SVZ)] and exogenous (transplanted) cells to sites 
of lesions. We will not consider the regulation of exogenous stem 
cell migration here, as this is discussed in several recent reviews 
[see, for reviews, Martino et al. (2011), Jaerve and Muller (2012), 
and Kokaia et al. (2012)]. Many chemokines are known to have 
receptors expressed on NPC/NSCs derived from the SVZ or hip-
pocampus (Table  2), and several of these have been shown to 

exert chemotactic effects on these cells in vitro through modified 
Boyden chamber assays. These include CCL2, CCL3, CXCL1, 
CXCL8, and CXCL12 (Imitola et al., 2004; Widera et al., 2004; 
Gordon et al., 2009; Kelland et al., 2011). In addition, several of 
these chemokines are implicated in in vivo migration of these cells 
to the site of chemically induced experimental injury (Gordon 
et al., 2009).

CXC Chemokines
From available evidence, it appears that most chemokine or 
chemokine receptor knockout mice are viable and demonstrate 
no obvious neural deficit, likely owing to the aforementioned 
significant redundancy in receptor–ligand interactions across 
chemokines (Bajetto et al., 2001). A notable exception is CXCL12 
and its receptor CXCR4, where knockouts of either in mice result 
in a grossly malformed cerebellum with the absence of foliation 
secondary to aberrant premature migration of granular cells and 
a non-viable phenotype (Ma et  al., 1998). Moreover, we have 
also recently demonstrated for the first time an enhancement 
in adult hippocampal neurogenesis with a relevant behavioral 
phenotype in a chemokine receptor knockout mouse, CXCR5−/− 
(ligand CXCL13) (Stuart et  al., 2014). However, in the latter 
case, the specific mechanisms underlying this phenotype remain 
unclear. Although no major deficits have been described in other 
chemokine/receptor knockouts, chemokines have been described 
to influence relevant underlying processes, such as neuronal/glial 
migration, proliferation, and differentiation (Zou et  al., 1998; 
Stumm and Höllt, 2007; Turbic et al., 2011).

CX3C Chemokine: CX3CL1
As sated above, chemokines may have additional actions on NPC/
NSCs, including the regulation of proliferation and differen-
tiation. Of the chemokines involved in supporting neurogenesis, 
CX3CL1 is one of the most studied. This chemokine is highly 
expressed on mature neurons and astrocytes, and its receptor 
CX3CR1 is mostly expressed on microglia, with expression on 
mature neurons noted as well (Hatori et al., 2002; Ji et al., 2004; 
Kim et al., 2011; Vukovic et al., 2012). This chemokine has been 
shown to have multiple actions in the CNS of rodents, including 
regulation of microglial activation state (Cardona et  al., 2006), 
microglial synaptic pruning of mature neurons (Paolicelli et al., 
2011), and modulation of several neurotransmitter systems 
(Ragozzino et al., 2006; Heinisch and Kirby, 2009; Piccinin et al., 
2010). Interestingly, CX3CL1 has been shown to decrease with 
aging in the male Fisher rats and is associated with the age-
related suppression of neurogenesis (Bachstetter et  al., 2011). 
Direct exogenous replacements of CX3CL1 or exercise-induced 
CX3CL1 have been shown to act via microglia to enhance in vivo 
neurogenesis and in vitro NSC/NPC activity (Bachstetter et al., 
2011; Vukovic et al., 2012).

A Short Note on the Role of Above Three Families of 
Chemokines in Inducing Neurogenesis
This indirect enhancement of neurogenesis by CX3C chemokines 
via modulation of microglial phenotype (as mentioned above) 
may be relevant to the actions of other families of chemokines too. 
Indeed, other chemokines, such as CXCL12, have been shown to 
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enhance neurogenesis, however the mechanism of this remains 
unclear (Wu et al., 2009). Conversely, the chemokine CCL11 has 
been implicated as mediator under the regulation of interferon 
which impairs hippocampal neurogenesis in the context of aging 
(Baruch et al., 2014). It is important to note conflicting findings 
regarding the in vitro effects of CX3CL1 and CXCL12, and CCL5, 
which have also been reported to impair proliferation in NPC/
NSC cultures (Krathwohl and Kaiser, 2004). One potential mech-
anism of these effects may be that they are mediated through the 
regulation of neurotrophic factors (e.g., BDNF/NGF); however, 
to our knowledge no chemokines have been shown to influence 
the expression of neurotrophic factors in the CNS.

In addition to regulation of proliferation, several chemokines 
have a role in the regulation of NSC/NPC differentiation. Indeed, 
it has been shown that CCL2, CCL21, and CXCL9 favor neuronal 
differentiation, while CXCL1 and CXCL9 also favor oligodendro-
cyte differentiation in the adult mouse brain (Turbic et al., 2011). 
However, no chemokines have been noted to influence microglial 
or astroglial differentiation as of now.

Regulation of CNS inflammatory State by 
Chemokines: Neurodegenerative and 
Neuroprotective effects
The most recognized functions of chemokines in the CNS are 
to regulate the inflammatory state associated with various 
pathological conditions, including paradigms of CNS injury 
such as ischemic stroke and trauma or autoimmune responses as 
in multiple sclerosis or EAE (Stefini et al., 2008). The functional 
contribution of chemokines in these states has been extensively 
reviewed elsewhere (Jaerve and Muller, 2012).

CC Chemokines
The monocyte chemotactic protein (MCP) family including 
CCL2, CCL7, CCL8, CCL12, and CCL13 (designated as MCP 
1–5, respectively) exert potent pro-inflammatory actions through 
chemotaxis of monocyte-derived macrophages and other inflam-
matory leukocytes to the inflamed or injured CNS as seen after 
focal transient ischemia in rats (Yamagami et al., 1999). Of these 
chemokines, CCL2 is the most studied and has been shown to 
be selectively translocated across endothelial cells of the BBB 
enabling chemotaxis of circulating leukocytes (Weiss et al., 1998; 
Ge et al., 2008). CCL2 has also been shown to have similar effects 
on microglia, inducing migration and proliferation but did not 
directly induce a pro-inflammatory or neurotoxic phenotype 
(Hinojosa et al., 2011). Interestingly, CCL2 treatment of microglia 
may indirectly increase pro-inflammatory activity by increasing 
the migration of P2 × 4 purinergic receptors to the cell surface 
(Toyomitsu et al., 2012). Activation of these receptors by adeno-
sine triphosphate (ATP) has been shown to induce the expression 
of pro-inflammatory cytokines by microglia (Inoue, 2006).

The chemokines CCL3, CCL4, and CCL5 have been shown 
to exhibit diverse chemotactic functions in the inflamed CNS, 
including actions on monocytes, microglia, and neutrophils via 
their receptors CCR1, CCR3, and CCR5 (Murphy et  al., 2000; 
Cowell et al., 2002; Johnson et al., 2011). However, the effects of 
these chemokines in inflammatory states remain unclear, with 
divergent effects reported in different brain regions and models 

(Hau et al., 2008; Passos et al., 2009; Buschmann et al., 2012). For 
example, during early and late cuprizone-induced demyelination, 
the resultant microgliosis/astrocytosis appeared to be greater in 
the subcortical white matter tract corpus callosum than in the gray 
matter cortex region, in concurrent with the expression of the key 
chemokines CCL2 and CCL3 (Buschmann et al., 2012). Likewise, 
mononuclear cells derived from the human umbilical cord have 
been shown to cause increase of CCL3 and CCL5 chemokines in 
neurons with noticeable reduction in apoptosis (Hau et al., 2008). 
By contrast, MIP-1α and CCR5 have been shown to be essential 
for the accumulation of activated glial cells in the hippocampus of 
mice models of AD leading to inflammation and cognitive failure 
(Passos et al., 2009).

Although chemokines have potent functions in regulation 
of neuroinflammation in models of trauma or EAE, for most 
chemokines it remains to be studied whether their functions are 
also relevant to regulation of the chronic, low grade inflamma-
tory state hypothesized to be relevant to psychiatric disorders. 
An exception to this is in the context of aging where CCL11 and 
CCL17 (as well as CXCL10) were demonstrated to be downstream 
mediators of the effects of systemic interferons on inflammatory 
state at the choroid plexus and correlated hippocampal neuro-
genesis and hippocampal-dependent learning and memory tasks 
(Villeda et al., 2011; Baruch et al., 2014). Aged mice demonstrate 
higher levels of CCL2, CCL11, CCL12, and CCL19 in association 
with deficits in hippocampus-dependent learning and memory 
tasks, ex vivo hippocampal slice electrophysiological induction 
of long-term potentiation, reduction in size and number of 
neurospheres (readout of NSC/NPC populations), and number 
of doublecortin positive, NeuN positive, and bromodeoxyuridine 
uptake positive immature neuronal cells (Villeda et  al., 2011). 
The effects of aging on these parameters could be replicated by 
intracerebroventricular injection of recombinant CCL11, and 
the effects of aging could be prevented by systemic or intracer-
ebroventricular administration of neutralizing antibodies for 
CCL11 (Villeda et  al., 2011). Interestingly, however, parabiosis 
of a young animal to an aged animal was not sufficient to reverse 
the effects of aging on CCL11 expression at the choroid plexus, 
suggesting that under conditions of normal aging both systemic 
and brain-derived factors (including interferon-γ) may drive 
CCL11 expression (Baruch et  al., 2014). Taken together, these 
findings implicate CCL11 as a key player in the systemic immune 
influence on hippocampal function  –  with great relevance to 
psychiatric disorders, particularly depressive disorders and AD.

CXC Chemokines
A major role of chemokines in regulation of CNS inflammatory 
states is the regulation of neutrophil chemotaxis. This is a major 
function of the chemokines CXCL1–CXCL8: ligands for CXCR2 
which is highly expressed on neutrophils (Murphy et al., 2000). 
The overall beneficial/detrimental effect of these chemokines 
in enhancing or impairing neuronal survival and repair under 
inflammatory conditions remains unclear (Jaerve and Muller, 
2012), as is the role of neutrophils themselves (Stirling et  al., 
2009). For example, CXCR2 and its ligand CXCL1 have been 
shown to exert neuroprotective effects in the mouse model of 
EAE (Omari et  al., 2009), however the opposite effects have 

http://www.frontiersin.org/Cellular_Neuroscience/archive
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org


September 2015 | Volume 9 | Article 3578

Stuart et al. Chemokines in psychiatric disorders

Frontiers in Cellular Neuroscience | www.frontiersin.org

also been reported in a similar model (Kerstetter et al., 2009). 
Similarly, the chemokines CXCL1, CXCL2, and CXCL8 were 
shown to have neuroprotective effects in a model of β-amyloid 
toxicity in vitro (Watson and Fan, 2005), however in vivo neu-
tralization of CXCL8 has been shown to mitigate neurological 
and histological deficits in a model of ischemic stroke (Villa 
et  al., 2007). This suggests that complex differences related to 
both the specific disease pathology, and nuances of the temporal 
activities of different cell types targeted by these chemokines may 
each be relevant to their overall beneficial/detrimental effect 
[see, for reviews, Ubogu et  al. (2006) and Mirabelli-Badenier 
et  al. (2011)]. This would render these chemokines difficult 
therapeutic targets.

The chemokines CXCL9–CXCL11 have clearer detrimental 
pro-inflammatory effects through CXCR3-mediated chemot-
axis of natural killer cells, Th1 cells, and their associated clas-
sically activated (M1) pro-inflammatory monocyte-derived 
macrophages (Murphy et  al., 2000). For example, CXCL10 is 
known to be translocated across vascular endothelial cells from 
the CNS (Mordelet et  al., 2007). Blockade of CXCR3 reduced 
the infiltration of the aforementioned cell types, reduced tissue 
damage, and reduced functional deficit in the mouse and rat 
models of EAE (Jenh et  al., 2012), but selective knockout of 
CXCL10 did not impair the severity of EAE in mice – likely due 
to redundancy in functions with CXCL9 and CXCL11 (Klein 
et al., 2004).

CX3C Chemokine: CX3CL1
While CX3CL1 has been shown to be neuroprotective and upreg-
ulate in the CA1, CA3 and dentate gyrus of the rat hippocampus 
during synaptic scaling in the healthy brain of adolescent male 
Wistar rats (Sheridan et al., 2014), recent studies have provided 
an evidence for its role in promoting microglial and astrocytic 
activation, pro-inflammatory cytokines secretion, expression of 
intracellular adhesion molecule (ICAM-1) and recruitment of 
CD4+ T-cells into the CNS during neuroinflammatory processes, 
in particular multiple sclerosis and AD (Sheridan and Murphy, 
2013; Blauth et al., 2015; Plese et al., 2015). In an in vitro study 
on frozen postmortem brain tissues from cases with different 
neuropathological states of AD and age-matched controls, an 
enhanced expression of CX3CL1 in brain regions with more 
vulnerability to AD-related changes, such as hippocampus, has 
also been noted where the level of CX3CL1 expression reflected 
the course of disease (Strobel et al., 2015). Moreover, CX3CL1 
induced at the choroid plexus by the extracellular adenosine 
has been shown to trigger migration of lymphocytes into the 
CNS in mice models of EAE (Mills et al., 2012). Interestingly, 
randomized controlled trials on rodent models of AD have 
indicated that it is the membrane bound CX3CL1 and not its 
soluble form that regulate microglial phagocytosis of Aβ, as well 
as neuronal microtubule-associated protein tau (MAPT) phos-
phorylation (Lee et  al., 2014), which when accumulated may 
result in instability of microtubules, consequent loss of effective 
transport of molecules and organelles, and ultimately neuronal 
death (KoSIK et  al., 1986). However, a positive correlation 
between the plasma levels of soluble CX3CL1, and the course 
of AD and mild cognitive impairment has also been reported, 

providing an evidence for the involvement of soluble CX3CL1 
in the pathogenesis of AD (Kim et al., 2008). For neuroinflam-
matory vs. neuroprotective effects of CX3CL1, please see review 
by Ferretti et al. (2014).

Non-immune Neuromodulatory Activities of 
Chemokines
Recent evidence has also begun to elucidate neurotransmitter-
like and/or neuromodulatory actions of select chemokines, 
distinct from their immune function. This has been the subject 
of several recent reviews, however we will summarize the mecha-
nisms of these neuron–neuron interactions for the most studied 
chemokine receptor examples [see, for reviews, Rostene et  al. 
(2007, 2011b) and Melik-Parsadaniantz and Rostene (2008)]. 
These actions are best studied in the chemokine CXCL12 and its 
receptors CXCR4 and CXCR7; however, early evidence suggests 
similar roles for other chemokines, including CCL2, CCL5, and 
CCL21.

Chemokines have the capacity to modulate the release of classi-
cal neurotransmitters from neurons. For example, CCL5 has been 
shown to modulate the release of glutamate from both cortex and 
spinal cord in mice through interactions with its receptors CCR1 
and CCR5 (Di Prisco et al., 2012). Likewise, CXCL12 has been 
shown to pre-synaptically regulate glutamatergic and GABAergic 
neurotransmission in the rat substantia nigra  –  resulting in 
modulation of their downstream dopaminergic neurons (Guyon 
et al., 2006). Another study on the male Wistar rats showed that 
CXCL12 may also have direct neurotransmitter-like post-synaptic 
effects on these dopaminergic neurons through interactions with 
CXCR4 expressed on those neurons (Skrzydelski et  al., 2007). 
These findings may be relevant as therapeutic targets for the 
management of psychosis or the mitigation of extrapyramidal 
side effects of convention anti-psychotic pharmacotherapy. 
Similar effects of CXCL12 and CX3CL1 on glutamatergic and 
GABAergic signaling regulation of serotonergic neurons in the 
dorsal raphe nucleus of rats have also been demonstrated with 
evident potential relevance to mood disorders (Heinisch and 
Kirby, 2009, 2010).

Although direct signaling of chemokines is through G protein-
coupled receptors, these may be linked to ionotropic receptors and 
other intracellular signaling pathways that converge to increase 
intracellular calcium – indicating a potential role in contributing 
to synaptic plasticity or indeed to excitotoxicity, however these 
functional roles remain speculative (Rostene et al., 2007, 2011b).

Regulation of Neuroendocrine Function by 
Chemokines
Early evidence for a role of chemokines in regulation of neu-
roendocrine function has also recently been reviewed (Rostene 
et  al., 2011a; Verburg-van Kemenade et  al., 2013). It has been 
suggested that several chemokines, most notably CCL2, CCL5, 
CXCL8, and CXCL12, are involved in the regulation of the hypo-
thalamus–pituitary–adrenal (HPA) axis influencing each of the 
major neuroendocrine hormones and their broad physiological 
functions in stress, metabolisms, feeding behaviors, reproduc-
tion, and fluid/electrolyte balance. Considering the relevance of 
the HPA axis to psychiatric disorders and extensive use of rodent 
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models in psychiatric research, we restrict our discussion to the 
HPA axis system in rodents.

Upregulation of pro-inflammatory chemokines, including 
CCL2 and CXCL1 both peripherally and in the CNS, occurs in 
response to various stressors, including peripheral LPS injection, 
intermittent cold stress, and immobilization stress (Girotti et al., 
2011). On the contrary, the expression of these pro-inflammatory 
chemokines is down-regulated by glucocorticoids (Sorrells and 
Sapolsky, 2007; Zhou et al., 2007). There is some suggestion that 
chemokines may participate in the regulation of the HPA axis; 
however, this has not been studied in vivo. For example, CXCL8 
is known to be expressed in the paraventricular nucleus – one 
region where negative feedback on the HPA axis is exerted 
(Licinio et al., 1992), and CXCL1 is known to stimulate release of 
adrenocorticotrophic hormone from cultured pituitary neurons 
(Sawada et al., 1994). It is therefore tempting to speculate that the 
pro-inflammatory chemokines may participate in the modula-
tion of glucocorticoid receptor-mediated negative feedback in 
psychiatric disorders in a similar manner to other cytokines.

Discussion

Given the emerging clinical evidence demonstrating an asso-
ciation between altered serum, CSF, and brain tissue levels of 
many chemokines and several major psychiatric disorders, it has 
become relevant to consider the possible mechanisms by which 
these factors may interact with known neurobiological processes 
which have been strongly implicated in the pathogenesis and 
pathophysiology of these disorders (Stuart and Baune, 2014). As 
we have described above, some early mechanistic evidence does 

associate select chemokines with the neurobiological processes, 
including neurogenesis, modulation of the neuroinflammatory 
response, regulation of the HPA axis, and modulation of neuro-
transmitter systems. As with the current clinical evidence, this 
early evidence does not clearly demonstrate any specificity for a 
certain psychiatric disorder, but is primarily relevant to mecha-
nisms which are shared across disorders. In Figure 2, we present 
a prototypical model of the role of chemokines in a psychiatric 
disorder using the example of depression where chemokines 
interact with pathophysiological cascades implicated in the 
neurobiology of depressive disorders (Eyre and Baune, 2012; 
Stuart and Baune, 2012). These inter-linked cascades culminate 
in enhancement of the neuroinflammatory response, oxidative 
stress and apoptotic pathways, impairment of neurogenesis, 
loss of HPA axis regulation, and disruption of serotonergic and 
glutamatergic neurotransmission. In this figure, chemokines 
(e.g., CX3CL1, CXCL12, CCL5) with direct neurotransmitter-
like or neuromodulatory actions may directly influence neu-
rotransmitter systems that are implicated in depression. These 
neurotransmitter systems interact bidirectionally with neuro-
genesis and HPA axis dysregulation. Classical pro-inflammatory 
chemokines, including the CXCL1–8 family, directly activate 
leukocytes and glia to a pro-inflammatory state (Th1 T cells, M1 
macrophages, activated glia) (Murphy et al., 2000), while indi-
rectly contributing to loss of GR-mediated negative feedback on 
the inflammatory response (when chronic). Pro-inflammatory 
chemokines, including those with a primarily chemotactic activ-
ity (e.g., CCL2, CCL7, CCL8, CCL12, CCL13, CXCL9–11), may 
also contribute via selective chemotaxis of pro-inflammatory 
type cells (as above) to the CNS or choroid plexus (Yamagami 
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et  al., 1999). This selective recruitment of pro-inflammatory 
cells may drive the inflammatory response. The gross effects 
of a chronic pro-inflammatory state in contributing to clinical 
episodes of depression have been described elsewhere, however 
in brief will include an inter-linked impairment of neurogenesis, 
enhancement of neurotoxicity, disruption of neurotransmitter 
systems, dysregulation of the HPA axis, suppression of neuro-
trophic factors, and aberrant tryptophan metabolism (Dantzer 
et al., 2008; Moylan et al., 2013b).

It is relevant to note that all of these findings remain early, 
few chemokines have been investigated in each context, and 
each finding awaits independent replication. Of importance is 
the extensive expression of many chemokines and receptors on 
many cell types throughout the CNS which is suggestive of func-
tional relevance that remains unappreciated (Table  2). Further 
study in all areas will therefore be required in order to draw any 
reliable conclusions regarding the neurobiological significance 
of the observed clinical associations between chemokines and 
psychiatric disorders. From the clinical literature, the most 
robust chemokine associations are noted for CXCL8 and CCL2 
(Stuart and Baune, 2014), however outside of their classical 
inflammatory activities no reports are available regarding the 
presence or absence of CNS-specific biological functions of these 
chemokines. Although this absence of data may simply reflect 

the incomplete reporting of negative animal studies, it is relevant 
to consider these chemokines as promising candidates for future 
mechanistic investigations.

Concluding Remarks

Previously chemokines have been relatively neglected family 
of immune proteins in investigations of CNS-immune axis 
dysfunction in psychiatric disorders. Early clinical evidence has 
however begun to associate chemokines with psychiatric disor-
ders, irrespective of current diagnostic category. Similarly, early 
mechanistic evidence provides plausible mechanisms by which 
these chemokines may contribute to the pathophysiology of these 
disorders, however both these clinical and basic science results 
will require further replication. With further study, chemokines 
may become relevant as novel diagnostic markers or therapeutic 
targets in psychiatric disorders.
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Appendix

A systematic literature search was performed using the PubMed 
and Cochrane Library databases covering publications from 1969 
to 2015. The following limits were applied: published online, 
English language, published between 1969 and April 2015. The 
following search terms were used: [“Chemokines” (Mesh)] OR 
Chemokine* OR CCL1 OR CCL2 OR CCL3 OR CCL4 OR CCL5 
OR CCL6 OR CCL7 OR CCL8 OR CCL9 OR CCL10 OR CCL11 
OR CCL12 OR CCL13 OR CCL14 OR CCL15 OR CCL16 OR 
CCL18 OR CCL19 OR CCL20 OR CCL21 OR CCL22 OR CCL23 
OR CCL24 OR CCL25 OR CCL26 OR CCL27 OR CCL28 OR 
CCR1 OR CCR2 OR CCR3 OR CCR4 OR CCR5 OR CCR62 OR 
CCR7 OR CCR8 OR CCR9 OR CCR10 OR I-309 OR TCA-3 OR 
MCP-1 OR MIP-1a OR RANTES OR C10 OR MRP-2 OR C10 OR 
MRP-2 OR MARC OR MCP-3 OR MCP-2 OR MRP-2 OR CCF18 
OR Eotaxin OR MCP-5 OR MCP-4 OR NCC-1 OR Leukotactin-1 
OR MIP-5 OR HCC-2 OR NCC-3 OR LEC OR NCC-4 OR LMC 
OR TARC OR dendrokine OR ABCD-2 OR PARC OR DC-CK1 
OR AMAC-1 OR MIP-4 OR ELC OR Exodus-3 OR LARC OR 
Exodus-1 OR SLC OR 6Ckine OR Exodus-2 OR TCA-4 OR MDC 
OR MPIF-1 OR MIP-3 OR MPIF-1 OR Eotaxin-2 OR MPIF-2 
OR TECK OR Eotaxin-3 OR MIP-4a OR IMAC OR TSC-1 OR 
CTACK OR ILC OR Eskine OR PESKY OR skinkine OR MEC 
OR CXCL1 OR CXCL2 OR CXCL3 OR CXCL4 OR CXCL5 OR 
CXCL6 OR CXCL7 OR CXCL8 OR CXCL9 OR CXCL10 OR 
CXCL11 OR CXCL12 OR CXCL13 OR CXCL14 OR CXCL15 
OR CXCL16 OR CXCL17 OR CXCR1 OR CXCR2 OR CXCR3 
OR CXCR4 OR CXCR5 OR CXCR6 OR CXCR7 OR Gro-a OR 
GRO1 OR NAP-3 OR KC OR Gro-b OR GRO2 OR MIP-2a OR 

GRO3 OR MIP-2 OR PF-4 OR ENA-78 OR GCP-2 OR NAP-2 
OR CTAPIII OR beta-Ta OR PEP OR IL-8 OR NAP-1 OR 
MDNCF OR GCP-1 OR MIG OR CRG-10 OR IP-10 OR CRG-2 
OR I-TAC OR beta-R1 OR IP-9 OR SDF-1 OR PBSF OR BCA-1 
OR BLC OR BRAK OR bolekine OR Lungkine OR WECHE OR 
SRPSOX OR DMC OR VCC-1 OR XCL1 OR XCL2 OR XCR1 
OR Lymphotactin a OR SCM-1a OR ATAC OR Lymphotactin 
b OR SCM-1beta OR CX3CL1 OR CX3CR1 OR Fractalkine 
OR Neurotactin OR ABCD-3) AND ((Psychiatry*OR psychi-
atric) OR (Depression OR depress*OR (“Depression”[Mesh]) 
OR dysthymia OR dysthymi*OR melanchol*OR melancholia 
OR antidepress*OR (“Antidepressive Agents”[Mesh]) OR 
ECT OR (“Electroconvulsive Therapy”[Mesh]) OR ((learned 
AND helplessness) OR (“Helplessness, Learned”[Mesh])) OR 
“chronic mild stress” OR “chronic unpredictable mild stress” 
OR “unpredictable chronic mild stress” OR “sucrose preference 
test” OR “tail suspension test” OR “forced swim test” OR “porsolt 
test” OR “sickness behavior” OR “olfactory bulbectomy” OR 
“intracranial self-stimulation”) OR (“Bipolar Disorder” [Mesh] 
OR bipolar OR mania OR manic) OR (“Schizophrenia”[Mesh] 
OR schizophreni*OR psychosis OR psychotic OR “prepulse 
inhibition”)). At this stage, 1847 abstracts were reviewed and 
studies were excluded if they did not include original data on 
the measurement of a chemokine and a psychiatric disorder or 
animal model of a psychiatric disorder. This resulted in 1664 
abstracts being excluded. Three articles were also obtained from 
a review of reference lists. A total of 183 full text manuscripts 
were retrieved. At this stage, studies were further excluded as 
per Figure 1. In all, 157 articles remained for this review (see 
Figure 1).
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