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Abstract

Background: Parkinson’s disease is a common neurodegenerative disease characterised by progressive loss of
dopaminergic neurons, leading to dopamine depletion in the striatum. Mutations in the PINK1 gene cause an autosomal
recessive form of Parkinson’s disease. Loss of PINK1 function causes mitochondrial dysfunction, increased reactive oxygen
species production and calcium dysregulation, which increases susceptibility to neuronal death in Parkinson’s disease. The
basis of neuronal vulnerability to dopamine in Parkinson’s disease is not well understood.

Methodology: We investigated the mechanism of dopamine induced cell death in transgenic PINK1 knockout mouse
neurons. We show that dopamine results in mitochondrial depolarisation caused by mitochondrial permeability transition
pore (mPTP) opening. Dopamine-induced mPTP opening is dependent on a complex of reactive oxygen species production
and calcium signalling. Dopamine-induced mPTP opening, and dopamine-induced cell death, could be prevented by
inhibition of reactive oxygen species production, by provision of respiratory chain substrates, and by alteration in calcium
signalling.

Conclusions: These data demonstrate the mechanism of dopamine toxicity in PINK1 deficient neurons, and suggest
potential therapeutic strategies for neuroprotection in Parkinson’s disease.
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Introduction

Mitochondrial dysfunction plays a major role in the pathogen-

esis of Parkinson’s disease (PD), and has been demonstrated in

mendelian PD models, toxin based PD models, and studies of

sporadic PD brain tissue [1,2]. One of the key models in

characterising mitochondrial pathology in PD has been based on

loss of PINK1 function. Mutations in the PINK1 gene cause an

autosomal recessive form of PD [3]. PINK1 is a mitochondrial

kinase that exerts a neuroprotective function. Although the

substrates of PINK1 are not established, Drosophila and

mammalian models of PINK1 deficiency have demonstrated

significant mitochondrial abnormalities in the form of aberrant

fission-fusion, loss of cristae, and mitochondrial swelling [4,5]. We

have previously studied mitochondrial physiology associated with

PINK1 deficiency and demonstrated impaired calcium homeosta-

sis, resulting in mitochondrial calcium overload and reduced

threshold for calcium-induced opening of the permeability

transition pore (PTP). In addition, we have shown that respiration

is impaired in PINK1 deficient cells due to the reduced availability

of substrates for the respiratory chain. As a result of the impaired

bioenergetic function and calcium homeostasis, PINK1 deficient

mitochondria have lower mitochondrial membrane potential, and

higher levels of mitochondrial and cytosolic ROS production.

Together this mitochondrial dysfunction may account for the

reduced viability of PINK1 deficient neurons with aging [6], and

increased susceptibility to apoptosis.

Although this mitochondrial pathophysiology exists in all

neurons in the brain, neuronal death in Parkinson’s disease is

specific for certain brain regions. In the early stages of sporadic

Parkinson’s disease, one of the pathological hallmarks is the loss of

substantia nigra pars compacta (SNpc) dopaminergic neurons,

although as the disease progresses, non-dopaminergic neurons

eventually become affected. Indeed, the initial selectivity of

dopaminergic neurons remains a fundamental question in PD

biology. Dopaminergic neurons are neurons that synthesise,

package and release dopamine, and are thus exposed to

intracellular and extracellular dopamine. Therefore it has been

suggested that dopamine itself may be the cause of the selective

cellular vulnerability in PD. However the interaction between

mitochondrial dysfunction and sensitivity to dopamine has not yet

been shown in genetic models of PD, and therefore it is unclear

how mitochondrial dysfunction may particularly render dopami-

nergic neurons vulnerable to cell death.
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In this study we have investigated the effect of dopamine in a

model of mitochondrial dysfunction in PD induced by PINK1

deficiency. We have previously reported that dopamine induces a

cytosolic calcium signal in astrocytes and neurons through

receptor- independent mechanisms [7,8]. Here we demonstrate

that the dopamine induced calcium signal has detrimental

consequences in cells with impaired mitochondrial function.

Dopamine increases mitochondrial calcium concentration, in-

creases ROS production and precipitates mPTP opening, leading

to cell death in vulnerable neurons. This work explains why

neurons with mitochondrial dysfunction that are exposed to

dopamine may be particularly susceptible to cell death in PD.

Furthermore based on the mechanism of dopamine induced cell

death, we have proposed novel strategies for neuroprotection.

Results

Dopamine induces mitochondrial depolarisation in PINK1
KO cells

We investigated the effect of dopamine on [Ca2+]c and

mitochondrial membrane potential (Dym) in postnatal midbrain

co-cultures of astrocytes and neurons from wildtype (wt) and

PINK1 knockout (ko) mice. In control cells, application of 20 mM

dopamine induced small but significant sporadic changes in

[Ca2+]c (Fura-2 ratio rose from 1.1160.02 to 1.3460.05; n = 154

for neurons; p,0.05; from 1.0160.02 to 2.160.1 for astrocytes;

n = 197). This was not associated with any change in Dym (Fig. 1a).

Application of 50 mM KCl resulted in a further increase in

[Ca2+]c caused by depolarisation of the plasma membrane and

opening of voltage gated calcium channels in neurons. Again no

change in Dym was detected in control neurons (Fig. 1a),

confirming normal mitochondrial function in these cells [6,9,10].

In contrast to wt cultures, application of dopamine to the majority

of PINK1 ko neurons (n = 101 of 167) and a subset of astrocytes

(n = 79 of 214) was associated with profound mitochondrial

depolarisation (rhodamine 123 (Rh123) signal rose to .80%,

Figure 1b; average rise in Rh123 signal is 58.8614%; p,0.001).

The mitochondrial depolarisation was associated with a rise in

[Ca2+]c in 64% neurons (Figure 1d), but also occurred in the

absence of any detectable change in [Ca2+]c in 46% neurons

(Figure 1c). We have previously reported that dopamine is able to

induce a calcium signal in both astrocytes and neurons using a

receptor independent mechanism [7,8]. The dopamine induced

calcium signal in PINK1 ko neurons and astrocytes was confirmed

also to be receptor independent as it was not blocked either in the

presence of the D1/D5-like antagonist (20 mM SCH-23390)

(n = 39; Fig. 1e) or by the D2-like receptor antagonist (20 mM

sulpiride) (n = 45). Pre-incubation of cells with dopamine receptor

antagonists also had no effect on the dopamine induced

mitochondrial depolarisation in PINK1 ko cells (Fig. 1e).

The dopamine induced decrease in Dym (but not the dopamine

induced calcium signal) was prevented by pre-incubation with a

PTP inhibitor, Cyclosporin A (0.5 mM) (dopamine-induced

depolarisation reduced from 58.8614% to 18.961.3%;

Figure 1c, n = 64 neurons; n = 122 astrocytes, Figure 1f). Thus

non-toxic concentration of dopamine is able to induce PTP

opening in PINK1 ko cells, but not in control cells. This led us to

investigate the two major factors that influence the induction of

PTP opening: (1) Mitochondrial calcium overload and (2)

overproduction of reactive oxygen species.

Dopamine induces changes in mitochondrial calcium in
PINK1 KO cells

Cells were loaded with Rhod-5n and fluo-4 to simultaneously

measure [Ca2+]m and [Ca2+]c respectively. Application of dopa-

mine 50 mM to wt neurons and astrocytes induced a small and

sustained increase in [Ca2+]c (fluo-4 fluorescence signal rose by

640656 arb. U. for neurons (n = 56 neurons; Figure 2ai, ii); fluo-4

signal rose by 750680 arb.U; n = 127 astrocytes). In wt neurons

and astrocytes there were non significant changes in the Rhod-5n

fluorescence ([Ca2+]m).

We have previously performed an indirect quantification of the

basal level of mitochondrial calcium and demonstrated that

PINK1 ko is associated with higher basal levels of mitochondrial

calcium [6]. Using the non-ratiometric dye rhod-5n we observed

again that the basal level of [Ca2+]m appeared higher in PINK1 ko

neurons than in wt neurons (n = 87; Figure 2b). Interestingly in

PINK1 ko neurons exposed to dopamine, there was an initial rise

in mitochondrial rhod-5n fluorescence (Figure 2bi). The rise in

mitochondrial calcium was followed by the rapid disappearance of

the rhod-5n signal within single mitochondria associated with PTP

opening and the redistribution of the dye to the cytosol. This was

not observed in wt cells in Figure 2a.

In PINK1 ko astrocytes, application of dopamine induced

[Ca2+]c oscillations (fluo-4 signal rose by 14356124 arb. U.) which

were associated with an increase in [Ca2+]m, which eventually led

to a rapid decrease of mitochondrial rhod-5n signal (n = 112;

Figure 2bii.). This is due to the opening of the PTP, as it was

prevented by incubation with CsA. Figure 2e In another study we

reported the mechanism of the dopamine-induced calcium signal

in astrocytes, and demonstrated that it could be blocked by

application of an inhibitor of monoamine oxidase (MAO) – 20 mM

selegiline [8]. In PINK1 ko astrocytes 20 mM selegiline completely

blocked both [Ca2+]c and [Ca2+]m changes (n = 67; Figure 2c).

The inhibitor of MAO did not prevent against the dopamine

induced rise in cytosolic or mitochondrial calcium in PINK1 ko

neurons (n = 54; Figure 2d). However selegiline did prevent the

PTP opening associated with dopamine in PINK1 ko neurons, and

thus prevent the loss of the rhod-5n signal seen in Fig. 2b.

In order to test whether the dopamine induced rise in

mitochondrial calcium was responsible for dopamine induced

PTP opening, cells were incubated with the calcium chelator

Bapta-AM which rapidly penetrates both the cytosol and

mitochondria and buffers [Ca2+]c and [Ca2+]m. 10 min preincu-

bation of PINK1 ko midbrain neurons with 50 mM Bapta-AM

prevented the dopamine induced Dym depolarisation (the

dopamine-induced depolarisation was reduced from 58.8614%

to 17.861.4%; n = 52; p,0.001; Figure 2f).

Dopamine induces a rise in ROS in PINK1 KO and WT
neurons

Previously we demonstrated that PINK1 deficiency is associated

with increased basal production of ROS in the mitochondria and

cytosol (mediated by NADPH oxidase). We therefore inhibited

basal ROS generated by NADPH oxidase using diphenylene

iodonium (DPI, 0.5 mM) for 20 minutes prior to these experiments

in order to investigate the specific effects of dopamine. Application

of 50 mM dopamine to wt and PINK1 ko neurons in the presence

of 0.5 mM DPI produced a profound activation of ROS

production in both wt and PINK1 ko neurons (100% is the basal

rate in untreated wt cells; 196.5611.5% is the rate of production

in dopamine treated cells, n = 54; p,0.001; and 207.5616.4% is

the rate of production in dopamine treated PINK1 ko cells, n = 48;

p,0.001; Figure 3a,b,c). The metabolism of dopamine in cells by
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Figure 1. The effect of dopamine on Dym and [Ca2+]c in midbrain neurons and astrocytes. a: Dopamine 20 mM induces a modest rise in
[Ca2+]c in wt neurons and astrocytes, as measured by fura-2 ratio. There are no associated changes in Dym, as measured by Rhodamine 123
fluorescence. Depolarisation of the plasma membrane using 50 mM KCl induces opening of voltage sensitive calcium channels and a further rise in
[Ca2+]c, with no change in DYm. b: Dopamine 20 mM induces a larger rise in [Ca2+]c in PINK1 ko cells. Furthermore this increase in [Ca2+]c is associated
with a reduction in DYm. Application of 50 mM KCl induces a further rise in [Ca2+]c and profound mitochondrial depolarisation. Figure bi
demonstrates the increase in Rh123 fluorescence at 1 minute, 6 minutes and 12 minutes that reflects mitochondrial membrane depolarisation in
PINK1 ko cells. c, d: Single cell traces of PINK1 ko neurons demonstrating that dopamine induced decrease in DYm occurs independently of any
change in [Ca2+]c in some cells (Figure 1c), whereas in other cells dopamine induced decrease in DYm co-incides with a rise in [Ca2+]c (Figure 1d). e:
Incubation with D1/D5 receptor antagonist SCH23390 (20 mM) did not alter the dopamine induced calcium signal or mitochondrial depolarisation in
PINK1 ko neurons. f: Dopamine induced mitochondrial depolarisation was prevented by application of the PTP inhibitor 1 mM cyclosporine A.
doi:10.1371/journal.pone.0037564.g001
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monoamine oxidase (MAO) results in production of H2O2, and

subsequent generation of free radicals [11]. MAO inhibition by

selegiline (20 mM) prevented the dopamine induced ROS

production in both wt and PINK1 ko neurons. However in

PINK1 ko neurons, the effect of selegiline was smaller than in wt

cells (the rate of HEt fluorescence was reduced to 133.268.7% in

PINK1 ko midbrain neurons (n = 37, Figure 3b) compared to

111.567.6% for wt, n = 44, Figure 3a), suggesting that there is a

Figure 2. The effect of dopamine on [Ca2+]c and [Ca2+]m. a: Image demonstrates two wt midbrain neurons on a bed of astrocytes loaded with
fluo-4 (green) and rhod-5n (red). Application of dopamine induced an increase in the fluo-4 fluorescence with minor change in the rhod-5n
fluorescence. (ai) A single neuron demonstrating the dopamine induced rise in [Ca2+]c (measured by fluo-4, green) with no concomitant rise in
[Ca2+]m (measured by rhod-5n, red). (aii) A single astrocyte demonstrating the dopamine induced oscillations in [Ca2+]c with no concomitant rise in
[Ca2+]m. b: Image demonstrates a PINK1 ko midbrain neuron loaded with fluo-4 and rhod-5n. Dopamine induced initially a significant increase in the
rhod-5n fluorescence, indicating mitochondrial calcium overload. This is followed by rapid redistribution of the rhod-5n dye from the mitochondria to
the cytosol, representing mitochondrial permeability transition pore opening. (bi) Trace of single PINK1 ko midbrain neuron demonstrating an initial
high level of rhod-5n fluorescence suggesting higher [Ca2+]m. There is an increase in the [Ca2+]m followed by rapid reduction reflecting PTP opening.
No change in [Ca2+]c is detected. (bii) Trace of single PINK1 ko midbrain astrocyte demonstrating dopamine induced oscillations in [Ca2+]c, associated
with an increase in [Ca2+]m, followed by PTP opening. c,d: The effect of selegiline on dopamine induced calcium signal: in PINK1 ko astrocytes (c),
application of selegiline abolished the dopamine induced rise in [Ca2+]c and [Ca2+]m. In PINK1 ko neurons (d), application of selegiline did not abolish
the dopamine induced rise in [Ca2+]m. e: Application of CsA did not affect the dopamine induced rise in mitochondrial calcium, but did prevent the
rapid decline in rhod-5n signal induced by PTP opening. f: Dopamine induced mitochondrial depolarisation in PINK1 ko neurons was blocked by
addition of a calcium chelator BAPTA-AM 50 Mm.
doi:10.1371/journal.pone.0037564.g002
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component of the excessive ROS production which is independent

of both NADPH oxidase and MAO. As oxidation of hydro-

ethidium is not selective for H2O2, our method may also capture

secondary free radicals (OH2, O2
2).

The interaction of dopamine and a PINK1 deficient state results

in three sources of free radicals: (1) respiratory chain in

mitochondria (2) NADPH oxidase and (3) MAO. We tested the

effects of inhibiting each source of free radicals on dopamine

induced mitochondrial depolarisation in PINK1 ko neurons. Pre-

incubation of cells with the mitochondrially localised antioxidant

MitoQ (10 mM) prevented the dopamine induced mitochondrial

depolarisation in PINK1 ko neurons (dopamine-induced depolar-

Figure 3. The role of ROS in dopamine induced mitochondrial depolarisation in PINK1 ko neurons. a: Dopamine induces a rise in
cytosolic ROS production in wt neurons, in the presence of inhibitor of NADPH oxidase, 0.5 mM DPI. Dopamine induced ROS production was
prevented by application of the MAO inhibitor, 20 mM selegiline. b: Dopamine induced a similar rise in ROS production in PINK1 ko neurons, which is
partially inhibited by the application of MAO inhibitor, selegiline. c: Histogram demonstrating the increase in ROS production in PINK1 ko neurons
compared to wt neurons, and the dopamine induced increase in ROS in both wt and PINK1 ko neurons. The dopamine induced increase in ROS may
be reduced in both wt and PINK1 ko neurons by application of selegiline. d: Application of an inhibitor of NADPH oxidase, DPI, partially prevented
dopamine induced mitochondrial depolarisation in PINK1 ko neurons. e: Application of mitochondrially located antioxidant, MitoQ, partially
prevented dopamine induced mitochondrial depolarisation in PINK1 ko neurons. f: Application of MAO inhibitor, selegiline, completely prevented the
dopamine induced mitochondrial depolarisation in PINK1 ko neurons. g: Histogram demonstrating the effect of antioxidants, verapamil, and
dopamine receptor antagonists on the dopamine-induced calcium signal in PINK1 ko astrocytes and neurons. The effect of dopamine on the calcium
signal (fura-2 ratio) was normalised to 1.0. Selegiline has a selective effect in reducing the calcium signal in astrocytes, while verapamil has a selective
effect in reducing the calcium signal in neurons.
doi:10.1371/journal.pone.0037564.g003
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isation reduced from 58.8614% to 21.363.7%; n = 42; p,0.001;

Figure 3e). Application of 0.5 mM DPI also prevented the collapse

of Dym induced by dopamine (the change in Rh123 fluorescence

decreased from 58.8614% to 20.461.9; n = 47; P,0.001;

Figure 3d). Furthermore, application of 20 mM selegiline produced

an even more protective effect on the Dym (dopamine-induced

depolarisation reduced from 58.8614% to 3.260.2; n = 68;

p,0.0001; Figure 3f). Importantly in the presence of each

individual antioxidant there was still a small change in the Dym

induced by dopamine. In summary all three sources of free

radicals contribute to reducing the threshold for dopamine

induced PTP opening.

We next investigated the effect of antioxidants and verapamil on

the dopamine-induced calcium signal in PINK1 ko astrocytes and

neurons (Figure 3g). The effect of dopamine on the calcium signal

(measured by the fura-2 ratio) was normalised to 1.0. Selegiline has

a selective effect in reducing the dopamine induced calcium signal

in astrocytes, while verapamil has a selective effect in reducing the

dopamine induced calcium signal in neurons. Note that other

antioxidants and inhibitors of ROS production have no effect in

neurons or astrocytes. We also confirmed our earlier finding that

the dopamine receptor antagonists did not alter the dopamine

induced calcium signal in PINK1 ko astrocytes or neurons (Fig. 3g).

Previously we demonstrated that the dopamine induced calcium

signal in neurons was dependent on dopamine uptake by the

dopamine transporter DAT. Here we confirm that the dopamine

induced calcium signal in PINK1 deficient neurons is also

dependent on uptake of dopamine by DAT, and can specifically

be blocked by the inhibitor GYKI 52895 (20 mM) in neurons but

not in astrocytes (Fig. 3g).

Respiratory chain substrates affect dopamine induced
PTP opening

We have shown that provision of the respiratory chain

substrates pyruvate, malate and methyl-succinate to PINK1

deficient cells increases respiratory chain activity, increases the

resting mitochondrial membrane potential, and normalises the

mechanism used to maintain Dym [6]. We sought to determine

whether provision of substrates would affect the dopamine induced

PTP opening in PINK1 ko neurons. Neurons were incubated with

5 mM pyruvate prior to the application of dopamine. Under these

conditions, dopamine did result in a transient but reversible

mitochondrial depolarisation (as seen by a rise in the Rh123

fluorescence, Fig. 4a). Cells were then pre-loaded with either

5 mM methyl succinate or 5 mM pyruvate for 40 minutes prior to

application of dopamine, and the ROS production measured.

Both substrates significantly reduced both the basal rate of

mitochondrial ROS production in PINK1 neurons (basal rate in

dopamine treated wt cells is 100%; rate in dopamine treated

PINK1 ko cells was 376626%; rate in dopamine treated PINK1

ko cells pretreated with pyruvate was 128.869.6%, n = 45;

p,0.001; rate in dopamine treated PINK1 ko cells pretreated

with me-succinate was 156.467.8%; n = 58; p,0.05; Figure 4b).

Although pyruvate has a recognised antioxidant effect, methyl

Figure 4. The effect of respiratory chain substrates on
mitochondrial membrane potential and ROS generaton. a:
Application of 5 mM pyruvate reduced the dopamine induced
mitochondrial depolarisation, but did not completely prevent it. b:
Dopamine induced a rise in mitochondrial superoxide in PINK1 ko
neurons, but not in wt neurons. 5 mM pyruvate and 5 mM Me-

succinate both reduced the dopamine-induced mitochondrial ROS
production. c: Histogram comparing the reduction of dopamine
induced mitochondrial depolarisation by different compounds: the
PTP inhibitor CsA, calcium chelator BAPTA-AM, NADPH oxidase inhibitor
DPI, mitochondrial antioxidant MitoQ, MAO inhibitor selegiline,
respiratory chain substrates pyruvate and me-succinate, and the
calcium channel blocker verapamil all resulted in a statistically
significant reduction in dopamine induced mitochondrial depolarisa-
tion in PINK1 ko neurons.
doi:10.1371/journal.pone.0037564.g004
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succinate does not, and therefore [12] the observed reduction in

ROS production is a specific effect of provision of mitochondrial

substrates for the respiratory chain.

We tested the ability of different compounds to protect against

dopamine induced PTP opening by measuring the degree of

dopamine induced depolarisation in dopamine treated PINK1 ko

neurons (column 1, Figure 4c), and dopamine treated PINK1 ko

neurons preincubated with the following compounds: the PTP

inhibitor CsA, calcium chelator BAPTA-AM, NADPH oxidase

inhibitor DPI, mitochondrial antioxidant MitoQ, MAO inhibitor

selegiline, respiratory chain substrates pyruvate and me-succinate,

and the calcium channel blocker verapamil (Figure 4c). PTP

inhibition, calcium signal inhibition, and compounds reducing

ROS all had a statistically significant effect in reducing dopamine

induced mitochondrial depolarisation, but were protective to

differing degrees. Pre-incubation of cells with 5 mM pyruvate or

5 mM me-succinate reduced, but did not fully block the effect of

dopamine on Dym (dopamine-induced depolarisation reduced

from 58.8614% to 26.763.1%; n = 61 for pyruvate and to

31.862.7%; n = 39 for me-succinate; Figure 4c). We note that the

improvement in respiration and reduction in ROS production

brought about by mitochondrial substrates did not prevent the

mitochondrial depolarisation induced by dopamine, but rather

rendered it fully reversible (in contrast to the irreversible PTP

opening seen previously in dopamine treated PINK1 ko neurons).

Interestingly application of verapamil, which successfully inhibits

the dopamine induced calcium signal in neurons [7], was able to

partially prevent the dopamine-induced mitochondrial depolar-

isation in PINK1 ko neurons (Rh123 signal reduced from

58.862.4% to 16.762.1%, n = 42; p,0.001; Figure 4 C).

Dopamine induced mitochondrial depolarisation results
in cell death

We first tested the effect of different concentrations of dopamine

on cell viability in wt and PINK1 ko midbrain co-cultures of

astrocytes and neurons (Figure 5a). Dopamine consistently results

in higher levels of toxicity in PINK1 ko cells compared to wt cells

across a range of concentrations (5 mM–100 mM). However

application of dopamine 50 mM was the first concentration that

produced a low level but detectable rise in cell death in wt cells,

and significantly different effect in PINK1 ko cells. Therefore this

concentration was used throughout the study in order to dissect

the mechanism of dopamine induced toxicity in PINK1 deficient

cells.

Incubation with dopamine 50 mM for 24 hrs resulted in an

increase in cell death in both wt and PINK1 ko cells, although the

level of cell death was greater in PINK1 ko cells (34.863.1%,

n = 13; p,0.001 in wt compared to 55.164.8%, n = 16, p,0.001

in PINK1 ko). We next investigated whether the compounds that

had been shown to reduce dopamine induced mitochondrial

depolarisation had any effect on dopamine induced cell death. Of

note, pre-incubation of cells with the inhibitor of PTP, 1 mM CsA,

significantly reduced the number of dead cells in PINK1 co-

cultures (back from 55.164.8% to 30.462.1%; p,0.05; Figure 5)

confirming that the difference between dopamine induced cell

death in wt and PINK1 ko cells is purely due to PTP opening. CsA

had no effect in wt cells, confirming that PTP opening is a

mechanism unique to PINK1 ko cells.

Preincubation of cells with the intracellular calcium chelator

20 mM Bapta-AM did not protect cells against toxic doses of

dopamine: in fact, the % dead cells was higher in both wt and

PINK1 ko (86.767.6% of dead cells for wt, n = 5 and 88.768.1%

for ko, n = 5, Figure 5). This is likely to be attributed to the

inherent toxicity of Bapta-AM. Pre-incubation of cells with

0.5 mM DPI significantly protected both wt cells (% dead cells

reduced from 34.863.1 to 11.961.6%; n = 6 experiments;

p,0.001) and PINK1 ko cells (from 55.164.8% to

17.9461.6%; n = 6; p,0.001; Figure 5). Inhibition of MAO with

20 mM selegiline very effectively protected PINK1 ko cells from

dopamine induced cell death (more than 3-fold decrease in % cell

death – from 55.164.8% to 14.761.5%; n = 10; p,0.001;

Figure 5). General scavenging of ROS in dopamine-treated cells

by MnTBAP significantly reduced cell death in both wt cells (from

34.863.1% to 14.461.5%; n = 6 experiments; p,0.05) and

PINK1 ko cells (from 55.164.8% to 12.561.4%, n = 6;

p,0.001, Figure 5). The mitochondrial substrates pyruvate and

methyl succinate, exhibited highly significant protective effects on

dopamine induced cell death in both wt and PINK1 ko cells.

Figure 5. Dopamine induced cell death in PINK1 ko midbrain
cultures. a: 24 hr incubation of cells with 50 mM dopamine resulted in
a significant increase in cell death in PINK1 ko cultures compared to wt
cultures (measured by proportion of cells stained with propidium
iodide.). b: Co-application of dopamine with mitochondrial substrates
malate, pyruvate, or methylsuccinate, or antioxidants DPI, MnTBAP, or
selegiline, or verapamil resulted in a reduction in dopamine induced cell
death in both PINK1 ko and wildtype cells. For the wt cultures, the
reduction in dopamine induced cell death was statistically significant
for DPI, MnTBAP, pyruvate and verapamil (compared to wt cultures
treated only with dopamine). For the PINK1 ko cultures, the reduction in
dopamine induced cell death was statistically significant for DPI,
selegiline, MnTBAP, pyruvate, me-succinate, malate, CsA and verapamil
(compared to PINK1 ko cultures treated with dopamine alone).
doi:10.1371/journal.pone.0037564.g005
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Thus, 5 mM pyruvate decreased cell death by 5.2-fold in PINK1

ko cells (from 55.164.8% to 10.661.6%; n = 5; p,0.001; Figure 5)

and by 3-fold in wt cells (from 34.863.1% to 10.161.2%; n = 5;

p,0.001). Me-Succinate also protected PINK1 ko cells effectively

(% dead cells decreased from 55.164.8% to 18.762.7%; n = 10

experiments; p,0.05) and much less for wt cells (from 34.863.1 to

22.962.2%; n = 10; Figure 5). A 2-fold reduction in cell death in

PINK1 ko cultures was seen after application of another substrate

for mitochondrial compex I – 5 mM malate, confirming that the

protective effect of pyruvate and Me-succinate was induced by

their effect on the mitochondrial respiratory chain (n = 5

experiments; p,0.05; Figure 5).

Finally inhibition of the dopamine-induced calcium signal in

neurons by verapamil led to a significant reduction in the

percentage of dead cells in both wt and PINK1 ko cultures (to

24.761.9% for wt, p,0.05; and to 19.261.6 in PINK1 ko, n = 4;

p,0.001; Figure 5).

Discussion

One of the major questions in PD pathogenesis remains why the

SNc dopaminergic neurons are particularly vulnerable to cell

death, especially in comparison to the neighbouring VTA neurons,

which are also dopaminergic. Several hypotheses for the selective

neuronal vulnerability have been proposed [13]: (1) Dopamine

itself may be toxic through oxidative stress caused by auto-

oxidation or by its metabolism by MAO. During auto-oxidation

dopamine is converted to semiquinone and superoxide anion,

which reacts with another dopamine molecule to generate

semquionone and hydrogen peroxide. During metabolism dopa-

mine is converted to 3,4 dihydroxyphenylacetaldehyde (DOPAA)

and to 3,4-dihydroxyphenylacetic acid (DOPAC), with generation

of hydrogen peroxide. (2) Dopamine neurons are known to rely on

Lv type calcium channels for autonomous pacing, and are

therefore exposed to high levels of calcium for prolonged periods

of time. Blockade of these calcium channels with concomitant

reduction in cytosolic calcium in the SNc dopamine neurons

diminishes their sensitivity to PD-associated toxins [14]. Further-

more it has been demonstrated using an electrochemical approach

that the cytosolic dopamine concentration is higher in levodopa-

treated SNc neurons than levodopa-treated VTA neurons, and

that high levels of cytosolic dopamine are sufficient to induce

neurotoxicity. Thus the vulnerability of the SNc dopaminergic

neurons may be based on a synergistic effect of high levels of

dopamine, and higher concentrations of calcium [15].

In this study we have demonstrated that neurons with loss of

PINK1 function display enhanced sensitivity to the toxic effects of

dopamine. This dopamine-induced toxicity is mediated specifically

by permeability transition pore opening in PINK1 deficient cells,

which does not occur in wildtype cells. PINK1 deficient neurons

exhibit basal mitochondrial dysfunction with impairment of the

respiratory chain, increased cytosolic and mitochondrial ROS

production, and mitochondrial calcium overload. These factors

result in a basal lowered threshold for PTP opening, thus leading

to a tendency to induction of the PTP by dopamine.

Permeability transition in the mitochondria is defined as the

opening of a proteinaceous pore located in the inner mitochon-

drial membrane that enables solutes ,1500 Da to enter and exit

the matrix. Opening of the PTP results in osmotic swelling of the

mitochondrial matrix, dissipation of the mitochondrial membrane

potential, cessation of ATP synthesis and the release of apopto-

genic factors such as cytochrome c, AIF, and Smac/Diablo, that

are able to trigger apoptosis. The major inducers of mPTP

opening are (1) high cytosolic levels of calcium, resulting in

mitochondrial calcium overload and opening of the PTP, and (2)

oxidative stress [16]. Other factors include an alkaline matrix pH,

reduction of adenine nucleotide pools, and an increase in

inorganic phosphate levels and polyphosphate levels [17,18].

We have demonstrated that in PINK1 deficient cells, dopamine

is able to induce opening of the PTP through two major processes

that may act synergistically: calcium signalling and ROS

production. Dopamine is able to induce a calcium signal in

neurons and astrocytes by receptor dependent as well as receptor

independent mechanisms. In astrocytes, dopamine induces a

calcium signal by MAO-dependent metabolism producing hydro-

gen peroxide, which activates lipid peroxidation resulting in

activation of phospholipase C, release of IP3 and a Ca2+ signal

[7,8]. This dopamine induced calcium signal is prevented by

selegiline in wildtype astrocytes. In neurons, dopamine induces a

calcium signal by dopamine uptake via the dopamine transporter

resulting in plasmalemmal depolarisation, opening of voltage

dependent calcium channels (VDCC) and calcium influx [7,8].

Thus verapamil and GYKI52895 are able to prevent the

dopamine induced calcium signal in wildtype neurons.

In both wildtype and PINK1 deficient cells, we have confirmed

that dopamine induces a receptor independent calcium signal i.e

the calcium signal is MAO dependent in astrocytes, and VDCC

dependent in neurons. Importantly, in wildtype cells, this

dopamine induced cytosolic Ca2 signal is not associated with

significant changes in mitochondrial Ca2+. However in PINK1

deficient cells dopamine induces a mitochondrial Ca2+ signal,

which may occur with or without concomitant visual changes in

the cytosolic Ca2+. In neurons and astrocytes mitochondria act as

the major buffer for cytosolic Ca2+, and exist in close relation

either to the potential dependent calcium channels, or to the

endoplasmic reticulum. Such microdomains result in alterations in

calcium signal being visualised in single compartments within the

cell, such as the mitochondria but not necessarily in the cytosol

[19,20]. We have previously shown that PINK1 ko neurons have

higher basal levels of mitochondrial Ca2+ due to an impairment of

mitochondrial calcium efflux [6]. In PINK1 deficient neurons

therefore, we observe a dopamine induced increase in mitochon-

drial Ca2+ that is sufficient to induce opening of the PTP and cause

mitochondrial membrane depolarisation. This dopamine-induced

mitochondrial depolarisation can be prevented by the use of

calcium chelation in both neurons and astrocytes. Thus the

inherent mitochondrial calcium dysregulation caused by loss of

PINK1 function, renders neurons particularly vulnerable to

repeated dopamine induced calcium elevations.

PTP opening is also regulated by the redox state of mitochon-

dria. We have demonstrated that dopamine induces a change in

ROS balance in control cells and PINK1 deficient cells. The

mechanism of ROS production in PINK1 deficient cells is three-

fold: (1) activation of NADPH oxidase and (2) respiratory chain

deficiency both occur in the basal PINK1 deficient state, and (3)

MAO activity in metabolism of dopamine. Preventing ROS

production through each mechanism is able to prevent the

dopamine-induced PTP opening in PINK1 deficient neurons,

proving that dopamine induced ROS production is sufficient to

induce PTP opening in vulnerable neurons. An increase in Dym

leads to an increase in the threshold of PTP opening [21]. Of note,

normalisation of the resting mitochondrial membrane potential

and respiratory chain function by the provision of respiratory

chain substrates to the cell is able to prevent irreversible dopamine

induced PTP opening in PINK1 deficient cells, and results in

transient reversible PTP opening only.

It is well recognized that there is considerable interplay and

reciprocal interaction between calcium and ROS balance within
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the mitochondria in both signaling and disease. Therefore

dissecting the relative importance of each in dopamine induced

PTP opening is challenging. We have previously established that

an increase in calcium activates NADPH oxidase with a resultant

increase in ROS in PINK1 deficient cells [6]. However we were

still able to demonstrate dopamine induced ROS production in

the presence of the NADPH oxidase inhibitor DPI, which is not

likely to be dependent on calcium. Vice versa, the presence of

antioxidants to reduce ROS altered the dopamine induced

calcium signal in astrocytes but not in neurons. In astrocytes, the

dopamine induced calcium signal is highly dependent on ROS

production via MAO [8]. However in neurons the dopamine

induced calcium signal is independent of ROS production.

Therefore we conclude that the dopamine induced calcium signal

and dopamine induced ROS are independently important in the

PTP opening in neurons, but act interdependently in the PTP

opening in astrocytes.

Our findings have several implications on therapy in PD. First

they raise the controversial question whether exogenous dopamine

administration in the form of levodopa therapy may contribute to

neuronal toxicity. Dopamine has been known to be toxic to

neurons in vitro but evidence of dopamine or L-dopa toxicity in

vivo models is lacking, and administration of L-dopa to normal

rodents or primates does not result in oxidative damage or nigral

cell degeneration. Clinical studies in PD patients have also failed to

demonstrate an effect of l-dopa toxicity. However imaging studies

accompanying clinical trials have suggested that there is a higher

rate of decline in ligand uptake in patients on L-dopa compared to

placebo (CALM-PD, REAL-PET, ELL-DOPA studies) which

raise the possibility that L-dopa administration accelerates cell

death [22]. The in vitro data presented here suggests that

dopamine is likely to be non-toxic to normal neurons, but in

certain vulnerable conditions associated with mitochondrial

dysfunction and calcium dysregulation, dopamine may induce

toxicity.

This study has further enabled us to deduce novel intervention

strategies for neuroprotection in PD. Reduction of oxidative stress

within mitochondria using mitochondrial directed antioxidants has

been suggested as a therapeutic strategy and this data lends

support that it may reduce cell death. However we have found that

optimisation of the mitochondrial respiratory function in PINK1

deficient neurons is also highly efficient at preventing dopamine-

induced cell death in vitro. The provision of respiratory substrates

may therefore represent an intervention that needs to be validated

in vivo models of PD. The role of MAO inhibition in PD has been

controversial for many years: experimental data has raised the

possibility that MAO inhibition may be neuroprotective although

the mechanisms remained unclear. We provide evidence that

MAO inhibition may prevent dopamine-induced cell death in

vitro by limiting ROS production in astrocytes, and by preventing

the astrocytic calcium signal induced by dopamine. Finally we

have highlighted the role of manipulating neuronal calcium

signaling to protect against dopamine induced PTP opening and

cell death. Verapamil acts as a calcium channel blocker that

reduces the dopamine induced calcium signal in neurons and

protects against dopamine induced depolarisation and cell death in

susceptible PINK1 deficient neurons.

In summary, we have utilised a genetic primary mammalian

model of PD to demonstrate the mechanism of dopamine induced

neuronal degeneration. Dopaminergic neurons exposed to dopa-

mine over long periods of time will be susceptible to repeated rises

in ROS and calcium. Cells that have reduced ability to handle

oxidative stress or calcium fluxes, are unable to handle persistent

low doses of dopamine which, over time, may become sufficient to

induce PTP opening. PINK1 deficient dopaminergic neurons lack

the neuroprotective mechanisms to maintain their calcium and

ROS homeostasis and are prone to dopamine toxicity. Of note,

manipulation of calcium signaling and the redox state of such cells

may represent successful strategies to prevent cell death in PD.

Materials and Methods

Cell culture: primary PINK1 ko mouse neuronal model
The PINK1 deficient mice were generated by Lexicon Genetics

Inc. (The Woodlands, Texas, USA) (6). For primary mouse

midbrain cultures pups were taken at postnatal D2–4. Embryos/

pups were obtained either by crossing homozygote animals and

comparing same age control animals, or by crossing two

heterozygote animals and comparing genotypes within a litter.

Animal husbandry and experimental procedures were performed

in full compliance with the United Kingdom Animal (Scientific

Procedures) Act of 1986. Heads were collected in chilled dissection

medium [HBSS without calcium or magnesium, supplemented

with 0.45% (v/v) D-(+) glucose, 1 mM sodium pyruvate and

10 mM HEPES pH 7.4]. The whole brain was removed from the

skull case in a Petri dish containing chilled dissection medium

under sterile conditions, and the meninges were removed. The

cortices or midbrain was carefully dissected and transferred to a

sterile micro tube containing ,0.5 ml chilled dissection medium

and allowed to settle under gravity. Dissection medium was

replaced with 500 ml pre-warmed trypsin solution for 15 minutes

at 37uC with gentle agitation halfway through incubation. The

trypsination solution was aspirated and the cortices/midbrain

washed three times with 500 ml pre-warmed attachment medium

[16Modified Eagles Medium (MEM) with Earles and glutamine

(Invitrogen), 1 mM pyruvic acid, 0.45% (w/v) D-(+) glucose

(Sigma) and 10% (v/v) heat inactivated fetal bovine serum

(Invitrogen)]. The tissue was triturated using sterile fire-polished

glass pipettes of differing pore diameter until a smooth suspension

was produced. Cells were placed in a humidified CO2 incubator

(5% CO2 in air) at 37uC for 3–4 hrs, before replacing the

attachment medium with prewarmed maintenance medium

[Neurobasal medium (Invitrogen), 2% (v/v) B27 supplement,

2 mM glutamine, 100 I.U./ml penicillin and 100 I.U./ml strep-

tomycin (Sigma) and 0.45% (v/v) D-(+) glucose]. Once the cells

were in maintenance medium, half of the medium was replaced

weekly. All live cell imaging experiments were performed between

d10-d14 in culture.

Neurones were easily distinguishable from glia: they appeared

phase bright, had smooth rounded somata and distinct processes,

and lay just above the focal plane of the glial layer.

For measurements of [Ca2+]c and [Ca2+]m, cells were loaded for

30 min at room temperature with either 5 mM fura-2 AM or fluo-

4 AM in combination with either 5 mM Rhod-5n, and 0.005%

pluronic acid in a HEPES-buffered salt solution (HBSS) composed

of (mM): 156 NaCl, 3 KCl, 2MgSO4, 1.25 KH2PO4, 2 CaCl2, 10

glucose and 10 HEPES; pH adjusted to 7.35 with NaOH. Previous

work using direct and indirect approaches confirmed that the

mitochondrial calcium concentration is high in PINK1 ko cells

and we have found that the low affinity calcium indicator Rhod-

5N is more sensitive to detecting mitochondrial calcium changes in

these cells than using a high affinity indicator such as XRhod-1 or

Rhod-2. Furthermore at the time of PTP opening the high

mitochondrial calcium content will result in the fluorescence of all

indicators being fully saturated prior to redistribution on

membrane disruption (eg PTP opening). We have therefore used

Rhod-5N to detect mitochondrial calcium in this study.
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For simultaneous measurement of [Ca2+]i and Dym, cells were

loaded with fura-2 for 30 minutes, and Rh123 (1 mg/ml;

Molecular Probes) was added to the culture during the last

15 min. Cells were washed five times prior to the experiment.

Under these loading conditions, Rh123 is non toxic and gives a

reliable and reproducible measure of Dym through the ‘dequench’

of mitochondrial fluorescence.

For measurement of mitochondrial ROS production, cells were

pre-incubated with MitoSOX (5 mM, Molecular Probes, Eugene,

OR) for 10 mins at room temperature. For measurement of

cytosolic ROS production, dihydroethidium (2 mM) was present in

the solution during the experiment to avoid any artefacts related to

redistribution of the dye. No preincubation (‘loading’) was used for

dihydroethidium to limit the intracellular accumulation of

oxidized products.

Toxicity Experiments
For toxicity assays we loaded cells simultaneously with 20 mM

propidium iodide (PI), which is excluded from viable cells but

exhibits a red fluorescence following a loss of membrane integrity,

and 4.5 mM Hoechst 33342 (Molecular Probes, Eugene, OR),

which gives a blue staining to chromatin, to count the total

number of cells. A total number of 600–800 cells were counted in

20–25 fields of each coverslip. Each experiment was repeated five

or more times using separate cultures.

Fluorescence Measurements
Fluorescence measurements were obtained on an epifluores-

cence inverted microscope equipped with a620 fluorite objective.

[Ca2+]i and Dym were monitored in single cells using excitation

light provided by a Xenon arc lamp, the beam passing through

monochromator centred sequentially at 340, 380 and 490 nm

(Cairn Research, Kent, UK). Emitted fluorescence light was

reflected through a 515 nm long-pass filter to a cooled CCD

camera (Retiga, QImaging, Canada). All imaging data was

collected and analysed using software from Andor (Belfast, UK).

The fura 22 data has not been calibrated in terms of [Ca2+]i

because of the uncertainty arising from the use of different

calibration techniques. Accumulation of Rh123 in polarised

mitochondria quenches the fluorescent signal; in response to

depolarisation the fluorescence signal is dequenched; an increase

in Rh123 signal therefore signals mitochondrial depolarisation.

Wherever possible, we have normalised the signals between resting

level (set to 0) and a maximal signal generated in response to the

uncoupler FCCP (1 mM; set to 100%).

Confocal images were obtained using a Zeiss 510 uv-vis CLSM

equipped with a META detection system and a 406oil immersion

objective. The 488 nm Argon laser line was used to excite fluo-4

fluorescence which was measured using a bandpass filter from

505–550 nm. Illumination intensity was kept to a minimum (at

0.1–0.2% of laser output) to avoid phototoxicity and the pinhole

set to give an optical slice of ,2 mm. For MitoSOX or Rhod-5N

measurements the 543 nm laser line and 560 nm longpass filter

were used. For Het, we generated ratios of the oxidised form

(ethidium) excited at 543 nm and measured using a 560 nm

longpass filter and the reduced form with excitation at 351 nm,

measured between 375–470 nm. All data presented were obtained

from at least 5 coverslips and 2–3 different cell preparations.

Statistical analysis
Statistical analysis and exponential curve fitting were performed

using Origin 8 (Microcal Software Inc., Northampton, MA)

software. Results are expressed as means 6 standard error of the

mean (S.E.M.). Paired T-tests were performed for statistical

analysis.
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