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Commentary

Cut Points and Contexts
Evan L. Busch, PhD 1,2

In research, policy, and practice, continuous variables are often categorized. Statisticians have generally advised against categorization 

for many reasons, such as loss of information and precision as well as distortion of estimated statistics. Here, a different kind of problem 

with categorization is considered: the idea that, for a given continuous variable, there is a unique set of cut points that is the objectively 

correct or best categorization. It is shown that this is unlikely to be the case because categorized variables typically exist in webs of sta-

tistical relationships with other variables. The choice of cut points for a categorized variable can influence the values of many statistics 

relating that variable to others. This essay explores the substantive trade- offs that can arise between different possible cut points to 

categorize a continuous variable, making it difficult to say that any particular categorization is objectively best. Limitations of different 

approaches to selecting cut points are discussed. Contextual trade- offs may often be an argument against categorization. At the very 

least, such trade- offs mean that research inferences, or decisions about policy or practice, that involve categorized variables should 

be framed and acted upon with flexibility and humility. Cancer 2021;127:4348-4355. © 2021 The Authors. Cancer published by Wiley 

Periodicals LLC on behalf of American Cancer Society. This is an open access article under the terms of the Creat ive Commo ns Attri butio 

n- NonCo mmerc ial- NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the 

use is non- commercial and no modifications or adaptations are made. 

LAY SUMMARY: 

• In research, policy, and practice, continuous variables are often turned into categorical variables with cut points that define the bound-

aries between categories. This involves choices about how many categories to create and what cut- point values to use.

• This commentary shows that different choices about which cut points to use can lead to different sets of trade- offs across multiple 

statistical relationships between the categorized variable and other variables.

• These trade- offs mean that no single categorization is objectively best or correct. This context is critical when one is deciding whether 

and how to categorize a continuous variable. 

KEYWORDS: data analysis, statistical data interpretation, statistics, translational medical research, translational medical science.

INTRODUCTION
Why is diabetes defined as a fasting plasma glucose concentration of at least 126 mg/dL rather than a value higher or 
lower?1 Why are body mass index cut points of 18.5, 25.0, and 30.0 kg/m2 commonly used to define weight categories 
of underweight, normal weight, overweight, and obese?2 These are questions about categorizing phenomena that are 
inherently continuous.

Statisticians have generally advised against categorization for many reasons, including loss of information,3- 11  
statistical power,9,10,12- 18 and efficiency7,13,19; unrealistic assumptions of constant within- category risks3,7,12 and about 
the nature of dose- response relationships5,12,20; biased estimates3,7,9,11- 13; the incomplete control of confounding by  
adjustment for categorized confounders7,9,13,21; exacerbation of problems due to measurement error in the original  
continuous variable7,22- 25; unrealistic exaggeration of differences between individuals with values just above and just below 
a cut point15,18; and a diminished ability to discern or estimate nonlinear relationships.16,18 Opinions diverge on when 
it  remains acceptable to categorize. Some believe that it is almost never appropriate, at least not until all data collection 
and analyses are complete and one is ready to interpret.15 Others suggest that it may be fine in particular circumstances, 
such as discussions between clinicians and patients about patient health goals, specific fields requiring quick decisions like 
emergency medicine,26 or statistical situations like estimating values from a cumulative distribution function when the 
true and assumed models are highly different.27

Here, I want to talk about a different kind of problem with categorization: the idea that, for a given continuous 
variable, there is a unique set of cut points that is the objectively correct or best choice. This is not necessarily a matter 
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of whether to categorize, but rather of comparing differ-
ent possible categorizations to each other. The problem 
arises because most biological, medical, public health, and 
social science variables exist in webs of statistical relation-
ships with other variables. As we will see, the selection 
of cut points to categorize 1 continuous variable can, by 
itself, simultaneously influence the values of many statis-
tical relationships between that variable and others. When 
changing the cut points leads to changes in the values of 
multiple statistical relationships, trade- offs are likely to 
emerge that make it difficult to say that any particular 
choice of cut points is objectively best. These trade- offs 
can then have implications for policy, practice, and scien-
tific inference.

IMPACT OF CUT- POINT SELECTION ON 
ANALYTIC RESULTS
Let us explore how the choice of cut points can influence 
the values of statistical relationships between the catego-
rized variable and other variables. For simplicity, most of 
the examples use dichotomization so that only a single 
cut point is involved, but the upshot extends to ordi-
nal variables with more than 2 categories and therefore 
multiple cut points. To illustrate the context of different 
variables, Figure 1 depicts a generic health process with 
hypothetical relationships between population exposures, 
the distribution of a health state, and outcomes. The left 
half of the figure— relationships between the exposures 
and health state— is the etiologic portion of the process, 
whereas the right half— relationships between the health 
state and outcomes— is the survivorship portion. Within 
each of the etiologic and survivorship settings, we may be 

interested in differing mixtures of causal and predictive 
analyses.

Measures of Association
We begin purely in terms of association. Although the fol-
lowing example uses 2 common types of relative measures 
of association— odds ratios and hazard ratios— the impli-
cations extend to other types of relative measures (eg, risk 
ratios) as well as absolute measures (eg, risk differences).

In an analysis of patients with endometrial can-
cer,28 the exposure of immediate concern was body mass 
index (specifically obesity), the disease state was endo-
metrial tumor expression of the estrogen receptor (ER) 
biomarker, and the outcome was mortality, of which 2 
kinds were evaluated: 1) the time from endometrial can-
cer diagnosis to all- cause mortality and 2) the time from 
diagnosis to endometrial cancer– specific mortality. ER, 
measured as the continuous percentage of tumor cells that 
expressed the marker, was dichotomized as high expres-
sion (ie, above the cut point) or low expression (ie, below 
the cut point). Varying the ER cut point changed which 
tumors were considered to have high expression.

For ER cut points ranging from 0% to 50% in incre-
ments of 10%, Table 1 presents estimates for 3 different 
associations: between obesity and dichotomous tumor 
ER status (odds ratios), between ER status and time to 
all- cause mortality (hazard ratios), and between ER sta-
tus and time to endometrial cancer– specific mortality 
(hazard ratios). ER status was the dependent variable in 
the association with obesity and an independent variable 
in the associations with mortality. Each estimate repre-
sented a result from a different model. From row to row 

Figure 1. Simple process of health or disease.
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within each type of association— for example, compar-
ing all the obesity- ER models to one another— the only 
change was the cut point to dichotomize ER. Everything 
else remained the same, including, as appropriate, the set 
of participants in the model, the coding of obesity and 
other variables, and the observed time from diagnosis to 
mortality.

Inspecting Table 1, we find several consequences of 
choosing one cut point over other possibilities. First, for 
each of the 3 associations, the magnitude and precision 
of the estimate changed as the cut point changed. For a 
particular association, one cut point may yield the esti-
mate of greatest magnitude (the point estimate furthest 
from the null value of 1.00) and another may yield the 
best precision (the smallest confidence limit ratio). For 
the obesity- ER association, the greatest magnitude was at 
an ER cut point of 10% and the most precise estimate 
was at 50%.

Second, when comparing associations, the cut point 
with the greatest magnitude for one association may not 
have the greatest magnitude for other associations. In 
Table 1, the ER cut point yielding the greatest magnitude 
was 10% for the association with obesity; a tie between 
20%, 30%, and 40% for the association with all- cause 
mortality; and 50% for the association with endometrial 
cancer– specific mortality.

Third, while the choice of cut point can influence 
the numerical values of estimates of association, it can also 
affect our inferences. Suppose we interpreted the results 
strictly by statistical significance. Making 10% the cut 
point would lead to the conclusions that ER expression 
was associated with obesity and was not associated with 
all- cause mortality. Had 30% been chosen, we would 
have reached the opposite conclusions.

Examining multiple cut points revealed a series of 
trade- offs between them, even though we confined our 

attention to 1 exposure, 1 measure of the disease state, 
and 2 outcomes. The story becomes vastly more compli-
cated when we remember that each node in Figure 1 could  
include any number of variables and that many processes 
require more complicated figures with more nodes. The 
cut points chosen for a variable could potentially affect 
the magnitude and precision of its association with every 
variable at every node.

When cut points are identified using a particular 
dataset to make the selection based on largest effect sizes 
or smallest P values, they may not replicate in other data 
sets.3,29 But even if the final choice of cut points replicates 
successfully, we would still have to contend with trade- 
offs such as those shown before.

Other Statistics
Trade- offs between cut- point values extend to statis-
tics other than measures of association. Sensitivity and 
specificity are well- known examples. Table 2 presents 
a variety of prediction statistics that can vary with 
the choice of cut points.30 The C- index, a measure 
of discrimination, is the censored- outcomes analogue 
of the area under the receiver operating characteristic 
(ROC) curve.31 The rest of the table consists of various 
measures from the risk reclassification framework for 
prediction models.31- 33 The risk reclassification calibra-
tion statistic is a measure of model calibration (larger 
P values indicate better calibration), whereas the event 
and nonevent net reclassification indices (NRIs) and 
integrated discrimination improvement are measures 
of improvement in model discrimination (larger values 
indicate greater improvement).

As with measures of association, for each statis-
tic, the magnitude can change depending on whether 
a variable is modeled as continuous or categorized, and 
if categorized, the magnitude also depends on cut- point 

TABLE 1. Associations of Endometrial Tumor ER Expression With Obesity and Mortality Outcomes

ER Cut Point, %

Obesity/ER Association ER/All- Cause Mortality Association
ER/Cancer- Specific Mortality 

Association

OR 95% CI CLR HR 95% CI CLR HR 95% CI CLR

0 2.83 1.26- 6.37 5.06 0.62 0.29- 1.30 4.48 0.32 0.13- 0.83 6.38
10 2.92 1.34- 6.33 4.72 0.61 0.30- 1.22 4.07 0.27 0.11- 0.65 5.91
20 2.40 1.22- 4.74 3.89 0.55 0.30- 1.03 3.43 0.29 0.12- 0.69 5.75
30 1.54 0.86- 2.75 3.20 0.55 0.31- 0.97 3.13 0.23 0.10- 0.51 5.10
40 1.35 0.78- 2.36 3.03 0.55 0.31- 0.96 3.10 0.21 0.09- 0.48 5.33
50 1.10 0.65- 1.87 2.88 0.59 0.34- 1.02 3.00 0.20 0.09- 0.47 5.22

Abbreviations: CI, confidence interval; CLR, confidence limit ratio (upper limit/lower limit); ER, estrogen receptor; HR, hazard ratio; OR, odds ratio.
ER expression was measured as the continuous percentage of positive tumor cells (0%- 100%) and then dichotomized at a given cut point (ER+ vs ER– ). ER+ was 
defined as expression at or above the cut point except for a cut point of 0%, where ER+ was only expression above the cut point. The dichotomous ER status was 
the dependent variable in obesity- ER models and an independent variable in ER- mortality models. The obesity variable was a dichotomization of the body mass 
index (≥30 vs <30 kg/m2). This table was adapted with permission from Tables 2 and 4 in Busch et al.28
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selection. Comparing the 3 dichotomization cut points 
in Table 2 to each other, once again we find trade- offs. 
A cut point of 0.85 yields the best calibration. In terms 
of discrimination, 0.85 is best according to the C- index 
and event NRI, whereas 0.52 is best according to the 
nonevent NRI and integrated discrimination improve-
ment. Furthermore, the event NRI and the nonevent 
NRI are best considered together as a pair of values 
without being collapsed into a single summary mea-
sure.32 The table illustrates different trade- offs between 
the event/nonevent NRI “pairs.” Which pair should be 
considered best depends on substantive considerations 
of the cost of misclassifying a true event compared to 
misclassifying a true nonevent. Similarly to association 
measures, none of these findings would necessarily rep-
licate in other data sets, but if they did, the trade- offs 
would remain.

Weighing costs also applies to predictive calibra-
tion in the form of the relative costs of overpredic-
tion versus underprediction. Consider prostate cancer 
screening using the continuous biomarker prostate- 
specific antigen. The consequences of underdiagnosing 
potentially lethal tumors (death) may be more serious 
than those of overdiagnosing indolent tumors (unneces-
sary surgeries sometimes leading to complications such 
as impotence or incontinence), but the costs of overdi-
agnosis are not negligible, and more patients are likely 
to be overdiagnosed than underdiagnosed.34 The trade- 
off between overdiagnosis and underdiagnosis depends 
on the cut point defining a positive test. Creating this 
trade- off by categorizing occurs regardless of whether 

categorization is done directly on the biomarker mea-
surements or is delayed until after calculating the prob-
ability of cancer based on the biomarker and any other 
predictors. Miscalibration in either direction has costs, 
and there can be a further trade- off between calibration 
and discrimination.35- 37

Summarizing and extending these observations, 
Table 3 lists examples of statistical quantities that can be 
sensitive to the selection of cut- point values. The list is 
not exhaustive.

TABLE 2. Prediction of All- Cause Mortality After the Addition of E- Cadherin Measurements to Standard 
Diagnostic Tests of Cancer Cell Detachment From Colorectal Primary Tumors

E- Cadherin Variable Added to Standard Tests

Continuous

Dichotomous E- Cadherin Cut Point

0.52 0.60 0.85

C- index, % (95% CI) 66 (58 to 72) 51 (41 to 59) 54 (45 to 62) 56 (48 to 63)
Reclassification metric

No. (%) moved to higher risk category 47 (25) 11 (6) 27 (14) 41 (22)
No. (%) moved to lower risk category 55 (29) 93 (49) 83 (44) 70 (37)
Total No. (%) reclassified 102 (54) 104 (55) 110 (59) 111 (59)
Reclassification calibration statistic P value .1 .1 .1 .2
Event net reclassification index, % (95% CI) 14 (– 11 to 30) – 22 (– 38 to – 7) – 7 (– 23 to 10) 3 (– 15 to 21)
Nonevent net reclassification index, % (95% CI) 13 (3 to 35) 54 (44 to 63) 41 (29 to 52) 24 (12 to 37)
Integrated discrimination improvement, % (95% CI) 3.4 (1.9 to 5.6) 4.3 (2.2 to 6.8) 3.4 (1.8 to 5.3) 3.7 (1.7 to 5.9)

Abbreviation: CI, confidence interval.
E- cadherin was measured on a continuous average intensity scale of 0 to 3 and then modeled as either continuous or dichotomized at a given cut point. Each  
C- index value is for a Cox model of all- cause mortality based on standard diagnostic tests of cancer cell detachment (lymph node evaluation and radiologic imag-
ing) plus the respective E- cadherin variable. Reclassification metrics compare a Cox model of standard diagnostic tests estimating all- cause mortality to a Cox 
model of standard diagnostic tests plus the respective E- cadherin variable. This table was modified with permission from Table 4 in Busch et al.30, which was 
published under a CC BY 4.0 license.

TABLE 3. Quantities Sensitive to Choices of 
Variable Category Cut- Point Values

Number and proportion of units within the category
Measures of association (relative and absolute)a

Model fit statistics (eg, AIC and BIC)
P values
Hypothesis test statistics
Correlationsa

Splines
Sensitivitya

Specificitya

Positive predictive valuea

Negative predictive valuea

C- statistic (ie, area under ROC curve)a

C- index
Predicted probability of an outcome
Event net reclassification indexa

Nonevent net reclassification indexa

Integrated discrimination improvementa

Reclassification calibration statistica

Number and proportion of units reclassified across outcome risk 
categories

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information 
criterion; ROC, receiver operating characteristic.
The list in this table is not exhaustive.
aBoth the magnitude and the precision of the measure are sensitive to  
cut- point selection.
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LIMITATIONS OF CUT- POINT 
SELECTION APPROACHES
The choice of cut points might affect the values of many 
different quantities, but are there not several ways to ob-
jectively identify the best possible choice? Many statistical 
tools are thought of this way, but none of them deserve 
that much deference. We will consider 7 approaches to cut- 
point selection: quantiles, model fit statistics, magnitude 
of effect, statistical significance, mean squared error, ROC 
curves, and machine learning. An exhaustive, theoretically 
rigorous discussion will not be attempted here. Instead, 
practical problems will be illustrated that cast doubt on the 
notion that any of these tools invariably selects the best or 
correct cut points in real- world applications.

Perhaps the most common way of setting category 
cut points is to use quantiles of the distribution, such as 
the median or quartiles. This approach has at least 2 prob-
lems.38 First, since quantile cut points derive from the 
distribution irrespective of how the categorized variable 
relates to any other variable, the cut points may not cor-
respond to physically, biologically, or socially important 
thresholds within the distribution. Second, the observed 
distribution of the variable could vary from study to study, 
so that the values defining the quantile cut points in one 
study may not match their counterparts in another study. 
This last point means that studies ostensibly categorizing 
the variable in the same way— say, into quartiles— might 
not be genuinely comparable. Using a larger number of 
categories, such as creating a 4-  or 5- category variable 
rather than dichotomizing, may soften, but not eliminate, 
the drawbacks of categorization.4,21,25,29

The use of magnitudes of association, statistical sig-
nificance, model fit, or the mean squared error as cut- 
point selection tools is premised on the idea of choosing 
cut points that, in a certain data set, provide an extreme 
(“optimal”) value of a particular statistic: largest magni-
tude of association or smallest P value, model fit statistic, 
or mean squared error. Such an approach can be biased 
in the sense that selection is based on a value in a par-
ticular direction; in addition, the chosen cut points may 
not replicate using the same procedures in other data 
sets.3,7,9,11- 13,29 The mean squared error has another prob-
lem in that it is heavily influenced by outliers because 
squaring the terms weights large errors more than small 
errors.39 It is worth noting that statistical significance 
thresholds such as α = .05 are themselves cut points on 
a continuum.

The limitations of choosing cut points based on 
extreme statistical values are illustrated by a study of a 
candidate biomarker to identify patients with colorectal 

cancer at risk for distant spread of disease, the major cause 
of cancer- related death.40 Prior literature had suggested 
that at least 25% of the patients should be flagged as high 
risk.41 The biomarker analysis examined multiple cut 
points to dichotomize patients into high- risk and low- risk 
groups based on tumor expression of the biomarker. For 
the association between dichotomous marker status and 
time to mortality, the best model fit and the largest mag-
nitude of association each corresponded to a cut point 
that would have flagged fewer than 10% of patients as 
high risk, much lower than the target proportion. In this 
case, picking a cut point based on model fit or magnitude 
of association would lead to a clinical disaster.

The ROC curve is used for research questions about 
prediction rather than causality. Researchers commonly 
generate an ROC curve and select the variable cut point 
corresponding to the most upper- left point of the curve.42 
However, this choice tells us nothing about model cal-
ibration,35 absolute levels of risk,43 or the proportion 
of subjects at a given level of risk.43 It also assumes that 
false- negative and false- positive results are of equal conse-
quence, which is unlikely in many applications.

One could also select cut points using various  
machine learning methods, but their results can still  
create substantive trade- offs. Machine learning does not 
erase the biases, errors, or limitations of the data used 
to develop, test, or validate the model. In addition,  
categorization algorithms usually have methodologic 
trade- offs embedded in them because they must account 
for 2 competing considerations: first, finding intervals 
of the continuous variable that are uniform in terms of 
some attribute of interest (information quality) and, sec-
ond, maintaining enough sample size within each interval 
to ensure quality estimation (statistical quality).44 Some 
machine learning methods focus on information quality, 
others focus on statistical quality, and still others make 
different intermediate trade- offs between information 
and statistical quality.44 Many categorization algorithms 
have been developed, such as entropy- based, χ2- based, 
Gini, and Fusinter criteria; Bayesian scores; description 
length; overall percent accuracy in classification; and  
effect strength for sensitivity.44- 46 In practice, the best 
one would normally do is to run multiple learning algo-
rithms on the best available data and hope to obtain sim-
ilar results. However, to claim that machine learning has 
delivered an inarguably best or correct categorization of 
a variable requires clearing a high bar. One would need 
to arrive at the same categorization from each of an ex-
haustive set of algorithms run in multiple large, unbiased, 
error- free real- world data sets and repeat this for every 
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relationship of the categorized variable to every other 
 variable in its context.

This brings us to a problem with most approaches 
to cut- point selection. They typically involve choosing 
a statistic, identifying the cut- point values that optimize 
the statistic— often for the relationship of the categorized 
variable to just 1 other variable— and then treating that 
set of cut points as “objectively” best simply for that rea-
son. Nothing guarantees that the categorization that op-
timizes any particular statistic will optimize every statistic 
relating the categorized variable to every other variable in 
its context, raising the question of why the chosen statistic 
is the one necessary and sufficient arbiter of the best cate-
gorization. Given that the choice of cut points may influ-
ence an entire web of statistical relationships between the 
categorized variable and other variables, a better approach 
would be to use statistics such as those discussed in this 
section as one of several contributions to evaluating cut 
points, but not definitive by themselves.

WHY THE SEARCH FOR OBJECTIVELY 
BEST CUT POINTS MAY OFTEN 
BE POINTLESS
What would make a particular categorization the  
objectively correct or best choice for a given continuous 

variable? It would have to optimize every statistical prop-
erty of every substantively relevant statistical relationship 
to every other variable in every study of every process in 
which the variable is involved. Anything less would mean 
that another choice is better in some way, and then we are 
dealing with trade- offs and judgment calls.

To illustrate, let us return to the study of endome-
trial tumor ER expression. The disease process involves 
more variables than those mentioned earlier. Besides body 
mass index, additional exposures include age, hormone 
therapy use, smoking, parity, oral contraceptive use, and 
genetic factors. Patient outcomes beyond mortality could 
be disease progression, response to therapy, recurrence, 
and a return to normal levels of circulating monitoring 
biomarkers. An objectively best cut point to dichotomize 
the tumor ER status would yield the greatest magnitude 
and best precision of the associations of ER with each 
exposure and outcome of interest. That same cut point 
would also yield the best model fit, minimize the loss 
function, and be suggested by the dose- response curve for 
the relationship of the variable with each of the other vari-
ables in the process, and so far this might account only 
for causal analyses. If there are important prediction ques-
tions, the cut point would need to optimize every mea-
sure of discrimination, calibration, classification accuracy, 

Figure 2. Partial context of body mass index: a sampling of upstream and downstream variables.
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and improvement in decision- making for any prediction 
models of disease etiology and survivorship. These do 
not exhaust the statistical requirements that the cut point 
would need to satisfy to be considered objectively best, 
and it would also need to outperform every other possible 
cut- point value on all statistical measures in every repli-
cation study.

This is easier to see with a variable such as ER that 
is being dichotomized and sits in the middle of a diagram 
like Figure 1, but the same requirements apply to vari-
ables at any diagram node or with multiple cut points. 
Body mass index, an exposure in the context of endome-
trial cancer, is commonly categorized into 4 bins with cut 
points at 18.5, 25.0, and 30.0 kg/m2.2 The World Health 
Organization has suggested that relationships between 
body mass index and a range of health outcomes might 
vary across different populations.47 But even if the stated 
4- category scheme optimized every statistical relationship 
between body mass index and other variables for every 
population in the context of endometrial cancer, for 18.5, 
25.0, and 30.0 kg/m2 to be the objectively best set of cut 
points would require that they also optimize the relation-
ship of body mass index to every other variable upstream 
and downstream from it in any context. Figure 2 suggests 
the implausibility that any single categorization of body 
mass index would optimize every statistical aspect of every 
causal or predictive relationship in the figure.

While perhaps possible in theory, in practice it is 
extremely unlikely that any particular categorization of a 
continuous variable can be proven to be objectively best, 
with no quantitative arguments in favor of any other 
possibility.

CONCLUSIONS
The cut points used to categorize continuous variables 
can influence our conclusions about causal and predic-
tive relationships, and about whether and how to act for 
public health, medical, economic, or social purposes. The 
mathematical sharpness of cut points can obscure a real- 
life fuzziness, as the choice of cut points for one variable 
at any part of a process can lead to a complicated cascade 
of statistical consequences that reverberate throughout 
that process and other processes involving the variable. 
Demonstrating the contextual trade- offs entailed by a 
categorization would be a useful contribution whenever 
categorization is warranted. The fact that there are likely 
no objectively correct or best cut points to categorize any 
particular continuous variable may often amount to an ar-
gument against categorization. At the very least, it means 

that inferences, or decisions about policy or practice, that 
involve categorized variables should be framed and acted 
upon with flexibility and humility.
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