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Glioma is the most common of all central nervous system (CNS) malignancies and is associated with a poor prognosis. Pyroptosis
has been proven to be associated with the progression of multiple tumors and CNS diseases. However, the relationships between
pyroptosis and clinical prognosis and immune cell infiltration are unclear in glioma. In this study, we conducted a comprehensive
exploration of pyroptosis in glioma. First, prognosis-related genes were screened at each key regulatory locus in the pyroptosis
pathway, and the prognostic ability and coexpression relationships of GSDMD and its upstream pathway genes NLRC4/
CASP1/CASP4 were identified and well validated in multiple datasets. Tissue microarray-based immunohistochemistry results
showed higher levels of NLRC4 and N-terminal GSDMD in high-grade gliomas, providing conclusive evidence of pyroptosis in
gliomas. The robustness of the prognostic model based on these four genes was well validated in TCGA and CGGA cohorts.
Bulk RNA-seq-based analysis showed that the group defined as the high-risk group according to the model showed activation
of multiple inflammatory response pathways and impaired synaptic gene expression and had a higher infiltration of bone
marrow-derived macrophages (BMDMs) and a hypersuppressed immune microenvironment. More importantly, three
independent single-cell RNA-seq (scRNA-seq) datasets demonstrated that tumor-infiltrating macrophages, particularly
BMDMs but not tissue-resident microglia, showed significant coexpression of the GSDMD and CASP genes, and BMDMs
from high-grade gliomas accounted for a higher proportion of immune infiltrating cells and had higher expression of
pyroptosis genes. Finally, we revealed the activation of pathways in response to LPS/bacteria and oxidative stress during
BMDM development toward the pyroptosis cell fate by pseudotime trajectory analysis, suggesting potential BMDM pyroptosis
initiators. The above results provide not only novel insights into the pathological mechanisms of glioma but also novel
therapeutic targets for glioma, suggesting the potential application of pyroptosis inhibitors (e.g., disulfiram).

1. Introduction

Gliomas, which usually originate from glial cells or precursor
cells and progress to astrocytomas, oligodendrogliomas, ven-
tricular meningiomas, or oligodendroglial astrocytomas,
account for approximately 80% of malignant tumors of the
central nervous system (CNS) [1]. The World Health Organi-
zation classifies gliomas into 4 grades [2]. The 10-year survival
rate for low-grade gliomas (grades I-II) is 47%, and themedian
survival time is 11.6 years, while the median overall survival

for grade IV gliomas is worse, at 15 months. With advances
in targeted tumor treatment research and technology, there
have been several breakthroughs in the identification of gli-
oma molecular markers, such as isocitrate dehydrogenase
(IDH) mutations [3] and O6-methylguanine-DNA methyl-
transferase (MGMT O6) promoter methylation [4]. However,
these established markers are limited in their ability to eluci-
date the pathogenesis of glioma and are difficult to translate
into targeted therapeutics. Therefore, it is urgent to explore
new diagnostic assessment and prognostic analysis strategies
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for glioma pathogenesis and progression mechanisms and to
obtain novel therapeutic agents based on these mechanisms.

Pyroptosis is a proinflammatory mode of programmed
cell death characterized by cell swelling and eventual rupture
and the release of inflammatory contents following the perfo-
ration of the cell membrane, which is mediated by the N-
terminal domain of the gasdermin protein [5, 6]. The gasder-
min family has six members, including GSDMA, GSDMB,
GSDMC, GSDMD, GSDME (DFNA5), and DFNB59. Except
for DFNB59, the pyroptosis-mediating ability of all members
has been well validated [7]. The inflammatory response caused
by pyroptosis promotes immune cell infiltration to eliminate
the pathogen or activate the tumor microenvironment
[8–10]. However, excessive inflammatory responses not only
damage normal cells but also reduce immune surveillance
and the suppression of malignant cells, resulting in chronic
inflammation and tumor immune escape [11]. As an impor-
tant molecular marker of pyroptosis [9], IL1β is generally
released from the pore formed by oligomerized GSDMD
[12] and has been shown to be closely associated with the for-
mation of an immunosuppressive microenvironment in sev-
eral tumor types [13–15]. Notably, several studies have
shown that the proinflammatory cytokine IL1β is significantly
elevated in the serum of glioblastoma (GBM) patients and
serves as a potential serum marker for this type of disease
[16, 17]. In addition, a very recent study showed that
monocyte-derived macrophages in gliomas secrete IL1β in
response to tumor cell induction, while Il1b knockdown sig-
nificantly prolonged the survival time of primary glioma mice
[18]. These studies suggest that aberrant pyroptosis signals
may be present in glioma. In fact, pyroptosis has been demon-
strated to be associated with the development of various
peripheral inflammatory diseases and tumors, and several
recent studies have reported that pyroptosis plays a critical
role in the progression of CNS diseases, including Alzheimer’s
disease [19], multiple sclerosis [20], and stroke [21]. However,
the relationship between pyroptosis and glioma, the most
common primary tumor of the CNS, has rarely been reported.
Here, we hypothesized that the progression of pyroptosis
within gliomas could be used as a novel criterion for disease
staging and prognostic assessment.

Although there have been several studies on prognosis-
related pyroptosis genes in glioma [22, 23], they have been
limited to establishing a prognostic model based on regression
analysis while ignoring the correlation between pyroptosis and
the tumor immune microenvironment. Moreover, these stud-
ies have tended to analyze all pyroptosis-related genes in gen-
eral, but different gasdermin-mediated pyroptosis pathways
are relatively independent from each other, and many genes
are involved in other biological functions, such as apoptosis,
so each pathway should be explored independently to reflect
the situation of pyroptosis in glioma more accurately. The
aim of this study was to identify the potential origin of pyrop-
tosis activation signals in glioma through bioinformatics anal-
ysis of bulk RNA-seq data and single-cell RNA sequencing
(scRNA-seq) data from glioma patients and to develop a risk
score model based on markers of this signaling pathway to
more effectively predict patient prognosis. This model will
help to explore the relationship between pyroptosis and the

progression of glioma. In addition, we explored the potential
link between pyroptosis and the immune microenvironment
in glioma. We also used single-cell transcriptomics data to
identify cell clusters in tumors with the ability to induce pyr-
optosis, and these clusters can provide targets for the develop-
ment of novel therapies for glioma.

2. Materials and Methods

2.1. Data Acquiring. The bulk RNA-seq and clinical infor-
mation of glioma patients were obtained from TCGA data-
base (https://portal.gdc.cancer.gov/), CGGA database
(http://www.cgga.org.cn/), and GEO database (https://www
.ncbi.nlm.nih.gov/geo/). TCGA cohort contained 702 tumor
samples, the CGGA cohort contained 325 tumor samples,
the Bao dataset (GSE48865) [24] contained 274 tumor sam-
ples, and the Gravendeel dataset (GSE12907, GSE4271) [25]
contained 276 tumor samples. TCGA and CGGA cohorts
are used for candidate gene screening and prognostic model
establishment and validation, while the other cohorts are
used for candidate gene screening only. TCGA and CGGA
datasets used for prognostic modeling screened samples
according to the following criteria: (1) having WHO grade
classification and ≥II; (2) having complete survival informa-
tion, including overall survival and final events; and (3) hav-
ing not received immune checkpoint blocker therapy. There
were 597 samples in the filtered TCGA dataset and 306 sam-
ples in the CGGA dataset, and detailed clinical characteris-
tics are summarized in Table 1.

The scRNA-seq expression profiles and cell annotation
files of Cyril Neftel et al. (GSE131928) [26], which contained
a total of 7930 cells from 28 patients, were obtained from the
Single Cell Portal database (https://singlecell.broadinstitute
.org/single_cell). The scRNA-seq expression profiles of Kai
Yu et al. (GSE117891) [27], which contained 6148 cells from
13 patients, were obtained from the CGGA database. The
scRNA-seq expression profiles of Andrew Venteicher et al.
(GSE89567) [28], which contained 6341 cells from 10
patients, were obtained from the GEO database. A simplified
workflow for the current study is depicted in Figure (1).

2.2. Tumor Microenvironment Estimation. Immune score,
stromal score, and ESTIMATE score were calculated using
the ESTIMATE R package [29]. CIBERSORT was used to
predict the abundance of each type of cell infiltration in
the tumor microenvironment (TME) [30]. Dysfunctional
CD8+ T cell infiltration levels for TCGA_LGG and
TCGA_GBM were obtained from the Tumor Immune Dys-
function and Exclusion (TIDE) portal (http://tide.dfci
.harvard.edu/) [31]. Response to immune checkpoint block-
ade therapy in TCGA and CGGA cohorts was also predicted
in the TIDE portal. In addition, we used single sample gene
set enrichment analysis (ssGSEA) to predict immune inhibi-
tion scores and TGF-β response scores (TBRS) in each sam-
ple based on the gene sets identified by Mariathasan et al.
[32] (Supplementary Table. S1).

2.3. Differentially Expressed Gene Analysis and Functional
Annotation. Analysis and functional annotation of
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differentially expressed genes (DEGs) were performed using
an empirical Bayesian approach by using the limma R pack-
age. Adjusted p values less than 0.05 and absolute Log2 fold

changes (log2FC) greater than 1.5 were considered DEGs
and used for GO and KEGG functional annotation by the
clusterProfiler R package.

Prognosis-related
Gasdermin gene
identification

1. Correlation analyis

1. Gene colocalization

1. Data integration 2. Pseudotime analysis

2. DEGs enrichment 3. Scissor

Training:
TCGA

Validaion
CGGA

1. GO
✓ BMDM / Microglia

✓ Immune inhibition
✓ ICB response2. KEGG

3. GSEA

2. Metascore

1. TCGA-LGGGBM (n = 702)

bu
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 R
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se

q

1. GSE131928
2. GSE117891
3. GSE89567

2. CGGA (n = 325)
3. GSE48865(n = 275)
3. Gravendeel_data (n = 276)

(GSE12907+GSE4271)
sc

RN
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se
q

Figure 1: The complete research workflow. IHC: immunohistochemistry; DEGs: differentially expressed genes; GO: Gene Ontology
analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: gene set enrichment analysis; TME: tumor microenvironment;
BMDM: bone marrow-derived macrophages; ICB: immune checkpoint blockade.
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2.4. Visualization of the Pyroptosis Pathway. To explore the
GSDMD upstream signaling pathway, we divided TCGA
cohort into the high- and low-expression groups by median
GSDMD expression values and screened DEGs. The network
building tool MetaCore™ version 5.4 (GeneGo) was used for
pathway enrichment of differentially expressed genes as
described previously [33], and the upstream signaling path-
ways of GSDMD were selected for visualization and analysis.

2.5. Tissue Microarray and Immunohistochemistry (IHC).
Tissue microarrays purchased from Bioaitech were used for
IHC. Each microarray contained 11 normal brain tissues, 7
grade I glioma samples, 32 grade II glioma samples, 22 grade
III glioma samples, and 36 grade IV glioma samples. Anti-
human GSDMD-N antibody (abcam, ab215203), anti-
human NLRC4 antibody (abclonal, A13117), and anti-
human PD1 antibody (servicebio, GB12338) were used for
staining. The degree of IHC staining was reviewed and
scored independently by two observers who were unaware
of the clinical characteristics. The intensity of staining was
scored according to the following criteria: cells with <25%
staining were scored as (−, 1); cells with 25-49% staining
were scored as (+, 2); cells with 50-74% staining were scored
as (++, 3); and cells with 75-100% staining were scored as (+
++, 4). The staining color was scored as negative light-yellow
particle (1), brown-yellow particle (2), and brown particle
(3). The final score was defined as the staining number score
multiplied by the staining color score.

2.6. Generation of Riskscore. To establish a risk score that
can assess the degree of activation of apoptotic pathways in
individual patients, we performed multivariate Cox analysis
on the screened highly conserved co-expressed gene cluster
NLRC4/CASP1/CASP4/GSDMD using TCGA cohort as a
training set. The Riskscore formula was constructed based
on the coefficients of multivariate Cox analysis and validated
for stability in the CGGA cohort. Kaplan–Meier curves were
plotted to prove the prognostic value of the Riskscore, and
log-rank tests were employed for analyzing statistical differ-
ences between the high- and low-risk groups. The accuracy
of the Riskscore was assessed using receiver operating char-
acteristic (ROC) curves. The independence of Riskscore was
assessed using univariate and multifactorial Cox analyses.

2.7. Copy Number Variation and Tumor Mutational Burden
Analysis. To determine copy number alteration events, we
used the set of discrete copy number calls provided by GIS-
TIC 2.0: homozygous deletion (−2); hemizygous deletion
(−1); no-change (0); low-level gain (1); and high-level ampli-
fication (2). When more than half of the genes in the ampli-
fied or deleted peak region were high-level amplification (2)
or homozygous deletion (−2), the copy number of the peak
region is defined as changed. The oncoplot function in the
maftools R package was used to visualize the general condi-
tion of the Mutation Annotation Format (MAF) of TCGA
cohort in the form of a waterfall chart.

2.8. Bone Marrow-Derived Macrophage (BMDM) and
Microglia Estimation. We used the single sample gene set
enrichment analysis (ssGSEA) to predict BMDM and

microglia infiltration scores in each sample based on the
DEGs between microglia and BMDM demonstrated by
Bowman et al. [34] as gene sets (Supplementary Table. S2).
The gene set of DEGs in BMDM and microglia identified
by Muller et al. [35] was used to validate the robustness of
the above prediction. The same approach was used to pre-
dict the BMDM and microglia infiltration scores of macro-
phage subpopulations in the scRNA-seq dataset to
distinguish BMDM and microglia at the single-cell level.

2.9. scRNA-seq Data Processing. The Seurat R package was
used for scRNA-seq data processing as previously described
[36]. Cells were removed if the number of expressed genes
was less than 200 or more than 6,000, the UMI count was
less than 1,000 and/or the percentage of mitochondrial genes
was more than 0.1. The NormalizeData and ScaleData func-
tions are used to normalize the matrix for subsequent cell
clustering and dimensionality reduction. The first 2,000
highly variable genes identified by the FindVariableFeatures
function were used in the RunPCA function for principal
component analysis (PCA). The FindClusters function is
used to cluster cells at a resolution of 0.5. RunTSNE is used
to project cells into two dimensions and visualize them. The
FindAllMarkers function was used to identify specific macro-
phage cluster DEGs compared to all other macrophage clus-
ters. The harmony R package was used for integration and
batch effect correction of expression profiles of BMDM and
microglia from different datasets [37]. The monocle R package
was used for performing differential expression and time-
series analysis for single-cell expression experiments.

2.10. Identifying Phenotype-Associated Subpopulations. As
previously described, the Scissor R package was used for
phenotype-guided single-cell subpopulation identification
[38]. Briefly, the Cyril Neftel single-cell expression matrix,
TCGA bulk expressionmatrix, and phenotype of interest (over-
all survival in this study) were processed using Scissor. All cells
can be divided into Scissor-positive (Scissor+) cells and Scissor-
negative (Scissor−) cells, which are positively and negatively
associated with the phenotype of interest, respectively.

2.11. Statistical Analysis. All statistical analyses were per-
formed using R (4.1.2) software. Student’s t-test (unpaired,
two-tailed) was used to assess differences between two indepen-
dent groups, and the Wilcoxon test is used for nonparametric
tests between data that do not conform to a normal distribu-
tion. One-way analysis of variance (ANOVA) was used as a
parametric method for data from more than two groups. The
chi-square test was executed for the comparison of categorical
variables between the high- and low-risk groups. The survivor
and survminer R packages were used for survival analysis.

3. Results and Discussion

3.1. GSDMD Significantly Correlated with the Progression
and Overall Survival of Glioma. Gasdermin proteins are the
final executors of pyroptosis, and their expression level
directly affects the possibility of pyroptosis occurring [39].
Considering that the gasdermin family contains five mem-
bers that have been confirmed to mediate pyroptosis, we
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examined the relationship between the different gasdermin
genes and the progression or prognosis of glioma to investi-
gate the most critical gene for the execution of pyroptosis in
gliomas.

We first analyzed the expression of gasdermin family
genes in different-grade gliomas in TCGA-LGGGBM and
CGGA cohorts. The results showed that among the five pyr-
optosis genes of this family, only the expression of GSDMD
showed a stable correlation with disease progression in both
cohorts, and higher WHO grades corresponded to higher
GSDMD expression (Figures 2(a) and 2(b)). This finding is
consistent with the findings reported by Liu et al. that (1)
GSDMD protein levels were elevated in clinical glioma tissue,
accompanied by significant cleavage bands, and (2) GSDMD
protein expression in GBM samples was higher than that in
LGG samples [40]. IDH represents a major biomarker with
diagnostic, prognostic, and predictive implications in glioma,
and mutant phenotypes have a worse prognosis (Figure S1).
The expression of multiple gasdermin genes in TCGA and
CGGA cohorts was significantly different among the IDH
phenotype groups (Figures 2(c) and 2(d)). However, in
TCGA cohort, the expression of GSDMD (wild type vs.
mutant) Log2FC = 1:784 was compared with the expression
of gasdermin Log2FC in -0.823~0.899; in the CGGA cohort,
the expression of GSDMD (wild type vs. mutant) Log2FC =
1:603 was compared with the expression of gasdermin
Log2FC in -0.553~0.815. Therefore, among the gasdermin
family members, GSDMD is the most differentially
expressed gene among different IDH phenotypes of glioma.

To further confirm that GSDMD has a more significant
indicative role in glioma than other gasdermin genes, we
evaluated the overall survival time of each group based on
the clinical information of patients from TCGA and CGGA
datasets and gasdermin gene expression profiles, using the
median expression of each gene as a cutoff point to divide
the high and low expression groups (Figures 2(e) and 2(f)).
The results showed that GSDMA, GSDMC, and GSDMD
were significantly correlated with prognosis in both TCGA

and CGGA datasets and high expression of GSDMA and
GSDMD corresponded to shorter survival, but GSDMC
showed the opposite results. However, GSDMB and GSDME
showed only limited prognostic relevance in a single dataset.
Notably, in TCGA and CGGA cohorts, compared to the
high expression group, the median survival time was pro-
longed 4.36-fold and 5.22-fold in the GSDMD low-
expression group, while it was prolonged only 2.38-fold
and 1.63-fold in the GSDMA low-expression group.

In conclusion, multiple gasdermin-mediated complex
pyroptosis signaling networks may exist in gliomas. How-
ever, compared with other gasdermin genes, the pyroptosis
triggered by GSDMD plays the most critical role in both
the progression and the prognosis of glioma. Therefore, we
performed subsequent data mining work around GSDMD.

3.2. The NLRC4/CASP1/CASP4/GSDMD Pyroptosis Signaling
Axis Can Be Used as a Prognostic Factor for Glioma. The pro-
cess of pyroptosis requires not only gasdermin expression but
also upstream activation signals leading to gasdermin cleavage
and N-terminal domain release, which are equally crucial. It
has been well demonstrated that caspase-1, caspase-4, and
caspase-5 are activators of GSDMD, capable of cleaving
GSDMD at hGSDMD276 and releasing GSDMD-NT, leading
to pyroptosis [5]. CASP1, CASP4, and CASP5 were all signif-
icantly associated with overall survival in TCGA cohort
(Figure 3(a)). Among them, CASP1 and CASP4 showed a par-
ticularly significant positive correlation with GSDMD
(R > 0:75, p < 10−16), while the coexpression of CASP5 was
discrete (Figure 3(b)). The highly conserved coexpression rela-
tionships between CASP1/GSDMD and CASP4/GSDMD
were validated in three other independent datasets
(Figure S2), indicating CASP1/CASP4/GSDMD signaling
axis activation in glioma.

Inflammasomes are the activator of multiple caspases,
among which multiple inflammasomes such as NLRP1,
NLRP3, and NLRC4 are directly involved in classical or non-
classical pyroptosis pathways and act as receptors of

Su
rv

iv
al

 p
ro

ba
bi

lit
y

High expression

Low expression

CG
G

A
 d

at
as

et

p = 0.007

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Time (day)

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Time (day)

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Time (day)

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Time (day)

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Time (day)

p = 0.0013 p = 0.0055 p < 0.0001 p = 0.16

Lo

GSDMA GSDMB GSDMC GSDMD GSDME

(f)

Figure 2: GSDMD expression was significantly associated with the progression and prognosis of glioma. (a, b) Expression levels of
gasdermin family genes in patients with different WHO grades in TCGA and CGGA cohorts. (c, d) Expression levels of gasdermin
family genes in patients with different IDH mutation phenotypes in TCGA and CGGA cohorts. (e, f) Kaplan–Meier plots for overall
survival time (OS) of patients with different gasdermin family gene expression in TCGA and CGGA cohorts, using the median
expression of each gene as a cutoff point to divide the high and low expression groups. Statistics were calculated using two-tailed,
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pyroptosis [41]. Therefore, to explore the upstream activation
signals of CASP genes, we selected representative NLRP1,
NLRP2, NLRP3, NLRC4, and NOD2 inflammasome genes
to examine their correlation with CASP1/CASP4/GSDMD.
Univariate Cox regression analysis revealed that only NLRC4
of the CASP1 upstream inflammasome genes had a significant
effect on overall survival (HR = 2:594, p < 0:0001), and multi-
variate Cox regression analysis demonstrated that NLRC4/
CASP1/CASP4/GSDMD could jointly affect overall survival
in TCGA cohort (Figure 3(c)). Among inflammasome genes,
NLRC4 demonstrated its unique prognostic value in the
CGGA cohort and Gravendeel dataset (Figure S3).
Furthermore, we screened differentially expressed genes
(DEGs) between the high and low GSDMD expression
groups using the limma R package, performed pathway
enrichment of DEGs, and analyzed GSDMD upstream gene
hits using the network building tool MetaCore. The
visualization results again demonstrated the unique
association of the NLRC4 (CARD12 in the map) gene with
GSDMD among inflammasome genes (Figure 3(d)). In
addition, the expression of the CASP1, CASP4, and NLRC4
genes in TCGA cohort increased with disease progression
and showed higher expression in the wild-type IDH group
(Figures 3(e) and 3(f)), and the NLRC4/CASP1/CASP4/
GSDMD coexpression relationship was verified in TCGA
cohort and three other independent datasets (Figure S4). To
further confirm pyroptosis in gliomas, we examined the
protein levels of N-terminal GSDMD (GSDMD-N), which is

produced by cleavage of full-length GSDMD by caspase-1
and caspase-4 and is the most classic marker of pyroptosis, in
gliomas of different disease grades and normal brain tissue.
We also examined the protein levels of NLRC4. The results
showed that GSDMD-N and NLRC4 were barely detectable
in the normal brain tissue, while the levels of both GSDMD-
N and NLRC4 increased in matched samples with increasing
disease grade (Figure 3(g)). Semiquantitative analysis also
showed significantly higher levels of GSDMD-N and NLRC4
in higher-grade glioma samples (Figures 3(h) and 3(i)), which
provided conclusive evidence for GSDMD-mediated
pyroptosis in gliomas.

To investigate in depth whether this signaling axis can
be used as a valid guide for predicting patient prognosis,
we constructed a scoring system based on the NLRC4/
CASP1/CASP/GSDMD pyroptosis axis. We extracted the
4 genes with significant coefficients in the multivariate
Cox analysis of TCGA dataset, used these data as the
training set, and finally obtained the risk score formula:
Riskscore = 1:02065 × exprCASP4 + 0:46802 × exprGSDMD +
0:31184 × exprCASP1 + 0:09562 × exprNLRC4. The Riskscore
for each patient was calculated, and the patients were
divided into the high- and low-risk groups according to
the median Riskscore (Figures 4(a) and 4(b)). There were
significant differences in the histological classification,
WHO grade, IDH mutation phenotype, and chromosome
1p19q codeletion phenotype between the two groups,
while chemotherapy and temozolomide acceptance
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Figure 3: NLRC4/CASP1/CASP4/GSDMD signaling axis genes in TCGA cohort have similar expression patterns and jointly affect overall
survival. (a) Kaplan–Meier plots for the OS of patients with different CASP gene expression in TCGA cohort, using the median expression of
each gene as a cutoff point to divide the high- and low-expression groups. (b) Scatter plot of the correlation between the GSDMD gene and
the expression of three caspase genes in TCGA cohort. The degree of correlation was examined using Spearman’s coefficient. (c) Univariate
Cox analysis of the effects of GSDMD, CASP4, and CASP1 and their upstream inflammasome gene expression on overall survival. Genes
with p < 0:05 were selected for multivariate Cox analysis. Hazard ratios are presented as forest plots. (d) Pathway enrichment of DEGs
between the GSDMD high- and low-expression groups using Metacore and visualization of CASP1 upstream gene hits. The red
thermometer indicates the Log2FC of different genes. (e, f) Expression levels of CASP1, CASP4, and NLRC4 genes in patients with
different WHO grades and IDH mutation phenotypes in TCGA cohort. (g) Representative sections of matched GSDMD-N and NLRC4
immunohistochemistry from normal brain tissue and different grades of glioma samples. (h, i) Semiquantitative results of GSDMD-N
and NLRC4 staining levels in tissue microarrays. Statistics were calculated using one-way analysis of variance (ANOVA) in (f). Statistics
were calculated using two-tailed, unpaired Student’s t-test with Welch’s correction in (e, h, i). ∗∗∗∗p < 0:0001, ∗∗p < 0:01, and∗p < 0:05.
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differences were not significant (Table. 1). Time-dependent
ROC and Kaplan–Meier curves were used to assess the
prognostic ability of the four pyroptosis-associated genetic
signatures. The results showed that the high-pyroptosis-
risk group defined by the four signature genes had signif-
icantly shorter OS in TCGA training cohort and the
CGGA external validation cohort (Figures 4(c) and 4(d)).
The AUC (area under the ROC curve) was 0.85, 0.90, and
0.87 for the 1-year, 3-year, and 5-year OS in the training
cohort and 0.72, 0.80, and 0.84 in the CGGA cohort,
respectively. The ROC curves showed a similar prognostic
value of our established prognostic model and the previously
established 10-pyroptosis-gene prognostic model [22] and
golden standard WHO grading system for predicting OS at
1, 3, and 5 years in TCGA and CGGA cohorts (Figure S5).
Moreover, univariate and multifactorial Cox regression
analyses revealed that the Riskscore could be used as a valid
independent prognostic factor, as well as disease grade, age,
IDH mutation status, and 1p19q codeletion status
(Figures 4(e) and 4(f)). Nomograms based on the results of
multivariate Cox regression analysis were used for scoring to
assess the accuracy of the model. To correctly predict the 1-,
3-, and 5-year OS, we created a nomogram4 that included
the WHO grade, age, IDH mutation status, 1p19q codeletion
status, and the Riskscore (Figures 4(g) and 4(h)). The
calibration curve study revealed agreement between the

patients’ anticipated and observed 1-, 3-, and 5-year OS rates
in both TCGA and CGGA cohorts (Figures 4(i) and 4(j)).

3.3. Differential Gene, Tumor Mutational Burden, and Drug
Prediction Analysis Based on the Four-Pyroptosis-Gene
Prognostic Model. The distinct prognosis of the high- and
low-risk groups defined by the four pyroptosis genes drove
us to further explore the functional enrichment of the differ-
ential genes between the high- and low-risk groups and thus
speculate on the potential mechanisms of pyroptosis
involved in glioma disease progression. We analyzed differ-
entially expressed genes between the high- and low-risk
groups in TCGA dataset using the Limma R package. We
screened DEGs with ∣log 2‐fold change ∣ >1:5 and adjusted p
< 0:05 and obtained a total of 498 upregulated genes and
518 downregulated genes (Figures 5(a) and 5(b)). Principal
component analysis (PCA) showed that the high-risk group
distinctly clustered apart from the low-risk group, revealing
significant differences in expression profiles between the two
groups (Figure 5(c)).

The GO enrichment results showed that upregulated
DEGs were mainly involved in various immune response-
related biological processes, such as cellular immune
response, cellular defense response, and response to cyto-
kines (Figure 5(d)). The KEGG enrichment results indicated
that upregulated DEGs were mainly associated with
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Figure 4: Stable prognostic model based on NLRC4/CASP1/CASP4/GSDMD pyroptosis signaling axis genes. (a, b) Relationship between
risk score and overall survival of patients and expression levels of NLRC4, CASP1, CASP4, and GSDMD genes in TCGA training cohort
and CGGA validation cohort. (c, d) Time-dependent ROC analysis and Kaplan–Meier analysis in TCGA training cohort and CGGA
validation cohort to assess the prognostic value of the Riskscore, using the median Riskscore as a cutoff point to divide the high- and
low-risk groups. (e, f) Univariate Cox analysis and multivariate Cox analysis in TCGA training cohort and CGGA validation cohort.
Hazard ratios are presented as forest plots. (g, h) The nomogram for predicting the proportion of patients with 1-, 3-, and 5-year overall
survival in TCGA and CGGA cohorts. (i, j) The calibration curves for the prediction of 1-, 3-, and 5-year overall survival in TCGA
cohort and CGGA cohort.
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Riskscore of all patients in TCGA cohort, with the enriched terms represented by different color curves. (g) Bubble plot of GO
enrichment analysis for downregulated DEGs.

19Oxidative Medicine and Cellular Longevity



inflammatory response signals, such as multiple bacterial
and viral infections and autoimmune diseases such as rheu-
matoid arthritis (Figure 5(e)). Gene set enrichment analysis
(GSEA) also showed the activation of various proinflamma-
tory signaling pathways in the high-risk group, including
IL2-STAT5, IL6-STAT3, and IFN-α responses (Figure 5(f
)). Pyroptosis is a proinflammatory cell death mode in which
large amounts of inflammatory substances are released dur-
ing cell death and trigger an inflammatory response, which
coincided with the activation of multiple aberrant immune
response pathways present in the high-pyroptosis-risk
group. In addition, the top ten GO terms enriched by down-
regulated DEGs all had a strong link with synapse formation,
stabilization, and signal transduction (Figure 5(g)). Clini-
cally, patients with high-grade glioma tend to develop
degenerative diseases such as memory loss and cognitive
impairment, and it has been demonstrated that impaired
cognitive function is associated with shorter survival in glio-
blastoma patients [42]. Furthermore, pyroptosis is strongly
associated with Alzheimer’s disease progression, and
GSDMD serves as an important marker for AD [19]. This
is consistent with our analysis that there is an association
between high-grade gliomas, corresponding to a high risk
of pyroptosis, and neurodegenerative diseases. Taken
together, these results indicate that a high degree of
CASP1/CASP4/NLRC4/GSDMD pyroptosis is accompanied
by the activation of proinflammatory signaling pathways in
the brain and is closely associated with impaired establish-
ment and stability of neuronal synapses.

We also explored differences in copy number variation
(CNV) and tumor mutational burden (TMB) between the
high-risk and low-risk groups. A significantly higher propor-
tion of samples in the high-risk group had CNV. We screened
for the genes that differed most significantly between the high-
risk and low-risk groups, including high-level amplified genes
and homozygous deletion genes. Interestingly, several inter-
feron alpha (IFNA) family genes in the high-risk group were
homozygously deleted (Figure S6a), and the activation of the
inflammasome was previously reported to have an
antagonistic effect on the type I interferon response in
macrophages [43]. However, a correlation of other genes with
pyroptosis could not be identified in previous studies. In
addition, the CNV in the NLRC4, CASP1, CASP4, and
GSDMD genes did not vary significantly between the high-
and low-risk groups (Figure S6b). The low-risk group had an
IDH1 mutation rate of 86.95%, and the majority of these
samples also had mutations in the ATRX and CIC genes,
which are characteristic of LGGs, such as oligodendrogliomas
[44] (Figure S6c). In contrast, more EGFR, TTN, and PTEN
mutations, which are usually characteristic of GBM [45], were
observed in the high-risk group (Figure S6d).

We also performed a preliminary drug sensitivity analysis.
The drug sensitivity data and expression profile data for gli-
oma cell lines were obtained from Genomics of Drug Sensitiv-
ity in Cancer (GDSC) and the Cancer Therapeutics Response
Portal (CTRP). Multiple drug candidates were screened by
correlation analysis of the expression levels of the four pyrop-
tosis genes of the cell lines with the IC50 of different drug
treatments in the GDSC database (Figure S7a, b) and the

drug sensitivity (1-(AUC/30)) in the CTRP database
(Figure S7c, d). However, the sensitivity to each of these
drug candidates can only be correlated with the expression
of one of the pyroptosis genes, so the combination is more
appropriate for this pyroptosis target.

3.4. Increased Infiltration of BMDMs and the
Immunosuppressive Microenvironment in the High-Risk
Group. We demonstrated that the high-risk group was asso-
ciated with multiple inflammatory response signaling path-
ways (Figures 5(e)–5(g)), and we speculated that this may
be associated with the altered infiltration of immune cells
caused by the NLRC4/CASP1/CASP4/GSDMD pyroptosis
axis. The ESTIMATE R package was used to predict the stro-
mal score, immune score, and ESTIMATE score
(stromal score + immune score), and the results showed that
the high-risk group had a higher immune score and stromal
score, which represented a higher degree of immune infiltra-
tion and tumor malignancy (Figure 6(a)). CIBERSORT was
used to predict immune cell infiltration in TCGA cohort,
and the most abundant immune cells in gliomas were M2
macrophages, which were further increased in the high-risk
group. (Figure 6(b)). Previous studies have shown that mac-
rophages in gliomas, especially those with the M2 pheno-
type, play an important role in the formation of the
immunosuppressive microenvironment and tumor progres-
sion [46, 47]. Since brain macrophages can be divided into
bone marrow-derived macrophages (BMDMs) and tissue-
resident microglia and function differently, we used the
DEGs between microglia and BMDMs demonstrated by
Bowman et al. (Supplementary Table. S2) [34] as gene sets
and assessed the microglia and BMDM infiltration in each
sample by ssGSEA (single sample GSEA). BMDM infiltra-
tion differed remarkably between the high- and low-risk
groups, while microglia did not change significantly
(Figure 6(c)). Notably, the BMDM infiltration score had a sig-
nificant positive correlation with M2 macrophage infiltration
(R = 0:56, p < 0:0001) (Figure 6(d)) and the Riskscore
(R = 0:69, p < 0:0001) (Figure 6(e)), which could not be
observed in microglia. In addition, high infiltrations of M2
macrophages and BMDMs were strongly associated with poor
prognosis, whereas microglia were of opposite and limited
predictive value (p = 0:029) (Figure 6(f)). To verify the robust-
ness of the association of high BMDM infiltration with poor
prognosis and the positive correlation between BMDM infil-
tration and the Riskscore, we further used the microglia and
BMDM differentially expressed genes from the study of
Muller et al. (Supplementary Table. S3) to predict microglial
and BMDM infiltration scores [35]. The results once again
demonstrated the excellent prognostic value of BMDM infil-
tration, but not microglial infiltration (Figure S8b), and the
robust positive correlation between BMDM infiltration and
the Riskscore (R = 0:75, p < 0:0001) or M2 macrophage
infiltration (R = 0:62, p < 0:0001) (Figure S8c, d).

Dysfunctional CD8+ T cell infiltration predicted by
Tumor Immune Dysfunction and Exclusion (TIDE) was
higher in the high-risk group (Figure 6(g)). ssGSEA based
on the immune checkpoint gene set and the TGF-β response
score (TBRS) gene set associated with the anti-PD1
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treatment response identified by Sanjeev et al. (Supplemen-
tary Table. S1) [32] was used to evaluate the immunosup-
pression score (Figure 6(h)) and TBRS (Figure 6(i)) in each
sample, which were also higher in the high-risk group,
representing a hypersuppressed immune microenvironment

and disappointing anti-PD1 treatment response rate. Due to
the lack of open access to immune checkpoint blockade
(ICB) glioma therapy cohorts, we used TIDE to predict the
response to ICB therapy in TCGA and CGGA cohorts.
Response rates were significantly lower in the high-risk
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Figure 6: The Riskscore, defined by the pyroptosis axis, was associated with the immunosuppressive tumor microenvironment. (a) Stromal
score, immune score, and ESTIMATE score of TCGA cohort predicted based on ESTIMATE R package. (b) Immune cell infiltration in
TCGA cohort predicted by CIBERSORT. (c) ssGSEA based on macrophage and microglial DEGs to calculate the BMDM infiltration
score and microglial infiltration score for each sample. (d) Scatter plots of the correlation between the infiltration score of BMDMs or
microglia and the infiltration of M2-type macrophages. Spearman’s coefficient was used to evaluate the degree of correlation. (e) Scatter
plots of the correlation between the infiltration fraction of BMDMs or microglia and the Riskscore. Spearman’s coefficient was used to
evaluate the degree of correlation. (f) Kaplan–Meier curves for the correlation between M2 macrophage, BMDM, and microglial
infiltration and overall survival time in TCGA cohort, using the median infiltration score as a cutoff point to divide the high- and low-
infiltration groups. (g) Dysfunctional CD8+ T cell infiltration score predicted by Tumor Immune Dysfunction and Exclusion (TIDE) in
TCGA cohort. (h, i) Immunosuppression scores (h) and TGF-β response score (TBRS) (i) calculated for each sample based on ssGSEA
with different characteristic gene sets. (j) Heatmap of the expression of immune checkpoint genes in TCGA cohort, aligned by immune
checkpoint gene pairing and displaying the Log2FC (high-risk vs. low-risk) of the corresponding gene expression on the y-axis. The
results for p > 0:05 are shown in gray. (k) The ICB responses of TCGA (left) and CGGA cohorts (right) based on the TIDE prediction
results are presented in the stacked histograms. (l) Representative sections of matched GSDMD-N and PD1 immunohistochemistry from
high pyroptosis group (GSDMD-N score > 5) and low pyroptosis group (GSDMD-N score < 5). (m) Semiquantitative results of PD1
staining levels in tissue microarray. Statistics were calculated using two-tailed, unpaired Student’s t-test with Welch’s correction in (a–c)
and (g–i). Statistics were calculated using the Chi-squared test in (k). ns: not significant. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001,and∗∗∗∗p <
0:0001.
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group than in the low-risk group in both cohorts
(Figure 6(k)), consistent with previous results of a higher
TBRS in the high-risk group. In addition, the landscape
analysis of immune checkpoint receptor and ligand genes
demonstrated a positive correlation between gene expression
and the Riskscore for the majority of immune checkpoints
(Figure 6(j)).

In addition, we divided the samples into the positive pyr-
optosis group (GSDMD-N score > 5) and the negative pyr-
optosis group (GSDMD-N score < 5) based on the staining
results of GSDMD-N of tissue microarray and compared
the PD1 immunohistochemical staining levels in the two
groups. The results showed that the PD1 level in the positive
pyroptosis group was significantly higher than that in the
negative pyroptosis group (Figures 6(l) and 6(m)), indicating
that pyroptosis in the microenvironment of glioma was
accompanied by deepening immunosuppression. Therefore,
it is hypothesized that inhibition of pyroptosis in glioma
may facilitate the alleviation of the immunosuppressive
microenvironment.

Although the Riskscore was previously demonstrated to
be associated with proinflammatory signals (Figure 5), it is
not contradictory to mediating the establishment of a sup-
pressive immune microenvironment. Pyroptosis is a type
of proinflammatory cell death, and prolonged infiltration
of IL1β, IL2, and IL6 in the inflammatory environment
induces Tregs [48] and promotes the invasion and prolifera-
tion of glioma stem cells (GSCs) [49]. Our study showed that
the activation of the NLRC4/CASP1/CASP4/GSDMD pyr-
optosis axis was significantly and positively correlated with
M2-type BMDM infiltration, suggesting that blocking pyr-
optosis in glioma may be a potential approach to reduce
macrophage infiltration. Pyroptosis inhibitors have potential
as adjuvant therapeutic agents in high-grade glioma, such as
dimethyl fumarate, which has been approved by the FDA to
reduce macrophage infiltration by inhibiting pyroptosis to
achieve efficacy in the treatment of multiple sclerosis [20]
and has been demonstrated to cross the blood–brain bar-
rier [50].

3.5. The Activation of the NLRC4/CASP1/CASP4/GSDMD
Signaling Axis Is Mainly Present in Peripheral BMDMs. To
elucidate the potential link between macrophage infiltration
and the NLRC4/CASP1/CASP4/GSDMD pyroptosis signal-
ing axis, we further explored the source cells of pyroptosis
in gliomas at single-cell resolution. The scRNA-seq expres-
sion profiles and cell annotation files of Neftel et al. [26]
were obtained from the Single Cell Portal database, contain-
ing a total of 7930 cells from 28 patients (Figure 7(a)). After
data cleaning and cell type clustering, cells were classified
into malignant cells, macrophages, T cells, oligodendrocytes,
and astrocytes (Figures 7(b) and 7(c)). ssGSEA predicted the
BMDM score and microglia score in the same way as pre-
sented previously and was used to differentiate between
peripheral-derived BMDMs and tissue-resident microglia
(Figure S9).

The coexpression of CASP and GSDMD is required for
the occurrence of pyroptosis, while CASP4, GSDMD and
NLRC4, CASP1, and GSDMD colocalization signals were

located in the macrophage/microglia population
(Figure 7(d)) and were significantly concentrated in the
BMDM cluster (Figure 7(e)). The gene expression levels of
NLRC4, CASP1, CASP4, and GSDMD were all higher in
BMDMs than in microglia (Figure 7(f)), suggesting that
BMDMs are more sensitive to pyroptosis or more prone to
pyroptosis than other cells. The BMDM cluster was further
divided into five subpopulations from cluster_0 to cluster_
4, while CASP4+ GSDMD+ and NLRC4+ CASP1+
GSDMD+ cells were clearly concentrated in the cluster_0
cell cluster (Figure 7(g)). With Log2FC > 1:5 and adjusted p
< 0:05, 118 signature genes of the cluster_0 BMDM subpop-
ulation were screened, including various chemokine genes,
such as CCL3, CCL4, and CXCL12, and the proinflamma-
tory cytokine gene IL1B (Figure 7(h)). There is no doubt that
GO enrichment analysis hits BP terms of multiple cell che-
motaxis and migration-related pathways (Figure 7(i)).
Therefore, the positive cycle that accompanies the release
of inflammatory molecules such as DAMPs and multiple
chemokines during macrophage pyroptosis leads to more
infiltration of peripheral monocytes and macrophages,
which may trigger a worse prognosis. To use big data and
survival information to aid in scRNA-seq data analysis, we
used the Scissor R package to assess the relevance of single
cells to patient overall survival. Briefly, using TCGA-
LGGGBM dataset and the Cyril Neftel scRNA-seq dataset,
Scissor was applied to distinguish cells with high expression
of survival-related genes, where scissor-positive (Scissor+)
cells were those associated with poor survival and scissor-
negative (Scissor-) cells were those associated with good
prognosis. As expected, the macrophage population was
filled with a large number of cells associated with poor sur-
vival, and the NLRC4+ CASP1+ CASP4+ GSDMD+ BMDM
concentrated cluster had a very high proportion of cells
associated with a poor prognosis (71.33%) (Figure 7(j)).

Other glioma scRNA-seq datasets were used to validate
our above findings. First, we obtained the dataset from the
CGGA database from Yu et al., including 6148 cells from
13 patients [27]. The cells were classified into 6 cell types,
including BMDMs and microglia, by downscaling analysis
and cell-type identification (Figures 8(a) and 8(b)). BMDMs
had significantly higher expression levels of GSDMD,
CASP1, CASP4, and NLRC4 than microglia (Figure 8(c)).
In addition, we calculated the PyropScore for each cell using
ssGSEA based on the expression levels of the four genes. The
PyropScore of BMDMs was significantly higher than that of
microglia (Figure 8(d)). The NLRC4+ CASP1+ GSDMD+
and CASP4+ GSDMD+ cell populations were also signifi-
cantly enriched in the BMDM cell cluster (Figure 8(e)). Con-
sistent results were obtained based on the analysis of another
independent dataset, GSE89567, which contained 6341 cells
from 10 patients [28] (Figures 8(f)–8(j)).

3.6. The Activation of Pathways of Response to LPS/Bacteria
and Oxidative Stress in Pyroptotic BMDMs. To further
explore the differences between tumor-infiltrating BMDMs
and microglia and the potential triggers of BMDM pyropto-
sis, the expression profiles of all BMDMs and microglia were
extracted from the above 3 datasets, and the Harmony R
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package was used for batch effect correction. A total of 1423
BMDMs and 1441 microglia from 36 patients were finally
integrated (Figure 9(a)). Notably, BMDM infiltration gradu-
ally replaced most microglia as disease grade progressed
(Figure 9(b)), and BMDMs from high-grade gliomas had sig-
nificantly higher expression of CASP1, CASP4, GSDMD,
and NLRC4 genes than low-grade gliomas, whereas microglia
did not have this conserved relationship (Figure 9(c)). This
result is consistent with the previous results of a positive corre-
lation between the Riskscore and BMDM infiltration obtained
based on bulk RNA-seq analysis (Figure 6(e)). We defined
CASP1+GSDMD+ andCASP4+GSDMD+ cells as pyroptotic
cells and observed a significantly higher proportion of pyrop-
totic cells in BMDMs than in microglia (Figure 9(d)). To
explore the characteristic changes during BMDM develop-
ment toward the pyroptosis cell fate, we explored the BMDM
differentiation trajectory using the Monocle R package
(Figure 9(e)). Notably, pseudotime analysis revealed two cell
fates of the BMDM developmental trajectory in gliomas, one
of which had a significantly higher proportion of pyroptotic
cells (Figure 9(f)). By integrating pathway enrichment and tra-
jectory information, we found that BMDM development

toward the pyroptosis cell fate was accompanied by the activa-
tion of the response pathway to lipopolysaccharide (LPS), bac-
teria and oxidative stress (Gene Cluster 1) (Figure 9(g)). LPS
and bacterial infection (e.g., Salmonella typhimurium) are
classic inducers of pyroptosis in macrophages [51], while oxi-
dative stress has also been recently reported to lead to
caspase1-GSDMD-mediated pyroptosis [52, 53]. Although
the presence of LPS and bacterial infection in gliomas is less
likely, aberrant activation of this response pathway and reac-
tive oxygen species in the tumor microenvironment may lead
to macrophage pyroptosis. In addition, we evaluated the acti-
vation of the LPS/bacteria response pathway and the oxidative
stress response pathway in TCGA cohort using ssGSEA based
on the corresponding genes in Gene Cluster 1. The results
showed that the high-risk group had significantly higher
LPS/bacteria response and oxidative stress response pathway
scores (Figure 9(h)) and that high LPS/bacteria response
pathway scores and oxidative stress pathway scores were
associated with shorter overall survival (Figure 9(i)). The
above results suggest that the activation of LPS/bacteria or oxi-
dative stress pathways is associated with poor prognosis, sug-
gesting that they may be triggers of BMDM pyroptosis,
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Figure 7: Single-cell transcriptomics revealed that the NLRC4/CASP1/CASP4/GSDMD pyroptosis axis was colocalized in peripheral-
derived BMDMs. (a) t-distributed stochastic neighbor embedding (tSNE) plot of all single cells. (b) tSNE plot of all cells with cell-type
annotations. (c) The signature gene expression matrix for cell cluster identification. (d) tSNE plot of CASP4+ GSDMD+ and NLRC4+
CASP1+ GSDMD+ cells in all cells. Red circles highlight the colocation cluster. (e) tSNE plots of microglia and peripheral-derived
macrophages (BMDMs) (top) and distribution of CASP4+ GSDMD+ and NLRC4+ CASP1+ GSDMD+ cells in microglia and BMDMs
(bottom). (f) Comparison of NLRC4, CASP1, CASP4, and GSDMD gene expression in BMDMs and microglia. (g) tSNE plots of the
distribution of subpopulations of BMDMs (top) and distribution of CASP4+ GSDMD+ and NLRC4+ CASP1+ GSDMD+ cells in BMDM
subpopulations (bottom). (h) Heatmap of DEG expression used to distinguish macrophage clusters_0~clusters_4 and highlight genes of
interest on the right. (i) GO enrichment analysis of DEGs of BMDM cluster_0. (j) tSNE plots with scissors prediction results of all cells
(top) and BMDM (bottom). The percentage of scissor-positive cells in each subpopulation of BMDMs is shown on the right.
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Figure 8: Continued.
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thereby affecting the tumor microenvironment and leading to
tumor progression.

4. Discussion

Gliomas are the most common primary tumors of the cen-
tral nervous system (CNS) and remain incurable, and a dee-
per understanding of their pathobiology is urgently needed
[54]. The glioma tumor microenvironment has a large num-
ber of chemokines, cytokines, and growth factors. Despite
the recruitment of a high abundance of infiltrating immune
cells, such as microglia, peripheral macrophages, CD8+ T
cells, CD4+ T cells, and Tregs, the chronic inflammatory
environment leads to the establishment of a tumor immuno-
suppressive microenvironment, which ultimately promotes
tumor development [55, 56].

Recently, an inflammatory cell death known as pyroptosis
has emerged as an important mediator of the inflammatory
response, and as research progresses, pyroptosis is being

proven to be closely associated with an increasing number of
types of inflammatory diseases and tumors [10, 57, 58].
Although several recent studies have expanded on the involve-
ment of gasdermin family genes in pyroptosis pathways
[59–61], the GSDMD-mediated pyroptosis signaling pathway
triggered by inflammasomes has been shown to be the path-
way most associated with the formation of an immunosup-
pressive microenvironment in a variety of tumors [62]. For
example, in pancreatic ductal adenocarcinoma (PDA) and
head and neck squamous cell carcinoma (HNSCC), inflam-
masomes of tumor-associated macrophages activate caspase-
1 and mediate the cleavage of GSDMD and the release of
mature IL1β, resulting in the suppression of CD8+ T cells
[13, 14]. Although inflammasome-mediated pyroptosis in gli-
oma has not been reported, IL1β has been shown to be a
serum marker in glioblastoma [16, 17], which prompted us
to explore potential pyroptosis pathways in glioma.

In this study, we conducted a comprehensive exploration
of pyroptosis in glioma. We screened for prognosis-related
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Figure 8: Analysis of other datasets confirmed the high expression of pyroptosis genes in BMDMs. (a–e) Visualization and analysis of the
GSE117891 dataset. (a) t-distributed stochastic neighbor embedding (tSNE) plot of all single cells with cell type annotations. (b) The
signature gene expression matrix for cell cluster identification. (c) Comparison of CASP1, CASP4, GSDMD, and NLRC4 expression in
BMDMs and microglia. (d) Comparison of the PyropScore between BMDMs and microglia, which was calculated using ssGSEA based
on the expression levels of the four genes. (e) The tSNE plots reveal NLRC4+ CASP1+ GSDMD+ cells and CASP4+ GSDMD+ cells in
all cells. Red circles highlight the positive cell cluster. (f–j) Visualization and analysis of the GSE89567 dataset. All analysis and
visualization methods are the same as those in (a–e). Statistics were calculated using two-tailed, unpaired Student’s t-test with Welch’s
correction in (d, i). ns: not significant. ∗∗p < 0:01, ∗∗∗p < 0:001, and∗∗∗∗p < 0:0001.
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genes at each key regulatory site of the pyroptosis pathway,
obtained the NLRC4/CASP1/CASP4/GSDMD gene cluster,
and developed a robust prognostic model based on this clus-
ter. The differentially expressed genes that were upregulated
in the high-risk group, defined by the expression of the four
genes, were associated with the activation of multiple inflam-
matory response pathways and increased immune cell infil-
tration, which are typical results of pyroptosis. In addition,

we demonstrated an immunosuppressive microenvironment
in the high-risk group using multiple methods, including
TIDE, ssGSEA, and landscape analysis of immune check-
point expression profiles. Moreover, the differentially
expressed genes that were in the high-risk group were
strongly associated with synaptic establishment and synaptic
signaling, suggesting that pyroptosis can lead to synaptic
impairment and neurodegenerative diseases and may
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Figure 9: Activation of oxidative stress pathways in pyroptotic BMDMs was associated with poor prognosis. (a) BMDM and microglia
identified in the GSE131928, GSE117891 and GSE117891 datasets were extracted and integrated using the harmony R package. (b) tSNE
plots show the distribution of BMDMs and microglia in glioma samples of different disease grades after correction for batch effects. The
pie charts show the percentage of BMDMs and microglia in each WHO grade of sample. (c) Comparison of CASP1, CASP4, GSDMD,
and NLRC4 expression in BMDMs (left) and microglia (right) from samples of different WHO grades. (d) CASP1+ GSDMD+ and
CASP4+ GSDMD+ cells were defined as pyroptotic cells, and the pyroptosis type of the cells was projected in the tSNE plot. The pie
charts show the percentage of BMDMs and microglia in each WHO grade of sample. The pie chart shows the percentage of pyroptotic
cells in BMDMs and microglia. (e, f) Trajectory of all BMDMs along pseudotime. The colors from blue to red represent the forward
order of pseudotime. The pyroptosis type of the cells is projected on the trajectory. (g) Heatmap revealing the dynamic changes in gene
expression during the differentiation process. From the middle to the left and to the right represent the process of changes in gene
expression toward differentiation to the two cell fates. Differences in enriched pathways by GO between different phases (right panel).
Genes were grouped into four clusters according to their expression patterns, and the results of GO enrichment analysis for each gene
cluster are presented in different colors and shown below. (h, i) ssGSEA in TCGA cohort based on the LPS/bacterial response pathway
and oxidative stress response pathway genes in Gene Cluster 1, comparing their differences between the high- and low-risk groups and
their impact on overall survival. Statistics were calculated using the Wilcoxon test in (c). Statistics were calculated using two-tailed,
unpaired Student’s t-test with Welch’s correction in (h). ns: not significant. ∗∗p < 0:01, ∗∗∗p < 0:001, and∗∗∗∗p < 0:0001.
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explain to some extent the clinical phenomenon of cognitive
dysfunction associated with poor prognosis in glioblastoma
patients [42]. Notably, the Riskscore was significantly posi-
tively correlated with BMDM infiltration, while the single-
cell transcriptomics further demonstrated that NLRC4+
CASP1+ GSDMD+ and CASP4+ GSDMD+ cells were con-
centrated in a specific peripheral-derived BMDM cluster.
Gene characteristics of this cell cluster were found to be
associated with monocyte/leukocyte chemotaxis and the
expression of IL1β, an important cytokine involved in the
establishment of the immunosuppressive microenviron-
ment, in several previous studies. More importantly, our
analysis based on bulk RNA-seq datasets showed a signifi-
cant positive correlation between pyroptosis gene expression
and BMDM infiltration, and independent validation in mul-
tiple single-cell RNA-seq datasets further provided conclu-
sive evidence that the four pyroptosis genes were highly
expressed only in BMDMs and that pyroptosis gene expres-
sion levels were even higher in BMDMs from high-grade gli-
oma samples. Finally, we revealed the activation of LPS/
bacteria and oxidative stress response pathways during
BMDM development toward the pyroptosis cell fate by
pseudotime analysis, suggesting potential BMDM pyroptosis
initiators. This is the first demonstration of a strong associ-
ation between the pyroptosis signaling pathway and BMDM
in glioma, providing novel insights into the pathological
mechanisms of glioma.

Disulfiram (DSF), a recently demonstrated pyroptosis
inhibitor [63], has been well validated in preclinical studies
for the treatment of glioblastoma and has advanced to the
clinical study phase as a novel adjuvant [64, 65]. In these
studies, DSF was considered only as an acetaldehyde dehy-
drogenase (ALDH) inhibitor based on its classic function
of treating alcohol addiction, but given its new status, the
drug’s function as an inhibitor of pyroptosis in glioma needs
to be re-examined to guide the screening of suitable patients.
In addition, our bulk RNA-seq-based analysis showed a sig-
nificant positive correlation between the Riskscore and
BMDM infiltration, and we further provided conclusive evi-
dence in multiple independent single-cell RNA-seq datasets
that four pyroptosis genes are highly expressed only in
BMDMs. Several previous studies have provided solid evi-
dence that the infiltration of BMDMs leads to tumor pro-
gression and the establishment of an immunosuppressive
microenvironment [34, 66]. Thus, the model we developed
can be used to predict the pyroptosis and BMDM infiltration
levels in a patient’s tumor microenvironment, thus assisting
in the selection of candidate antipyroptosis drugs and anti-
macrophage drugs for the treatment of glioma. Therefore,
this retrospective study is of great value, as it provides an
in-depth exploration of glioma pathogenesis and its results
suggest possibilities for drug development and repurposing
based on the pyroptosis signaling pathway.

However, there are still some limitations: (1) the study
was conducted based on retrospective data; thus, selection
bias might be unavoidable, and (2) although we provided
evidence based on bulk transcriptome, single-cell tran-
scriptome and tissue microarray immunohistochemistry
data demonstrating a strong relationship between glioma

progression and pyroptosis, complex in vivo experiments,
such as testing the rate of glioma tumorigenesis and immu-
nosuppression of the tumor microenvironment in GSDMD-
deficient mice, can provide more conclusive evidence for the
value of pyroptosis as a drug target, which is a promising
direction for subsequent studies.

5. Conclusions

Our study revealed a critical role of pyroptosis in maintaining
immunosuppression in the tumor microenvironment and
established a robust pyroptosis score as a prognostic bio-
marker. We further identified the pyroptosis BMDM cluster
at single-cell resolution and preliminarily explored the trigger
of BMDM pyroptosis, aberrant activation of pathways in
response to LPS/bacteria and oxidative stress, providing
potential targets for novel therapies against glioma, such as
pyroptosis inhibitors and antimacrophage drugs.
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