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Abstract: Ageing is associated with changes in body composition, such as low muscle mass (sar-
copenia), decreased grip strength or physical function (dynapenia), and accumulation of fat mass.
When the accumulation of fat mass synergistically accompanies low muscle mass or reduced grip
strength, it results in sarcopenic obesity and dynapenic obesity, respectively. These types of obesity
contribute to the increased risk of cardiovascular disease and mortality in the elderly, which could
increase the damage caused by COVID-19. In this review, we associated factors that could generate a
higher risk of COVID-19 complications in dynapenic obesity and sarcopenic obesity. For example,
skeletal muscle regulates the expression of inflammatory cytokines and supports metabolic stress in
pulmonary disease; hence, the presence of dynapenic obesity or sarcopenic obesity could be related
to a poor prognosis in COVID-19 patients.

Keywords: sarcopenic obesity; ageing; COVID-19; complications; dynapenic obesity

1. Introduction

Obesity is a very serious medical condition worldwide. It is associated with many
health complications such as cardiovascular disease, diabetes, musculoskeletal disorders,
and cancer [1]. The phenotype for sarcopenic obesity is associated with an increase in
respiratory disease and mortality [2]; its prevalence varies according to the approach used
to treat it and the studied population. It has been reported to occur in a range of 2% to
42.9% of the population [3–6]. Considering that in clinical practice, functional status is more
important than low muscle mass, here we defined dynapenic obesity (DO) as low muscle
strength and high fat mass [7], and for sarcopenic obesity (SO) in the elderly, we use the
body mass index (BMI) ≥ 30 kg/m2 with gender specificity in the tertile of grip strength.

For its part, coronavirus disease-2019 (COVID-19) is an infectious disease caused by
SARS-CoV-2 coronavirus that first broke out in Wuhan, China [8]. It can manifest as asymp-
tomatic or with severe symptoms, partly depending on age, physical activity, nutrition,
and associated comorbidities [9]. It commonly starts as a respiratory infection similar to a
cold but can have severe symptoms such as fever, dry cough, and difficulty breathing; it
can take between 2–14 days to appear after exposure [10]. Old age, obesity, hypertension,
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diabetes, and ethnic group are the main risk factors for infection and hospitalization by
COVID-19 [11]; in addition, cardiovascular diseases increase complications and the pos-
sibility of death [12]. Furthermore, the presence of SO is related to a poor prognosis in
patients with COVID-19 [13]. The aim of this review was to propose the mechanisms of
comorbidity risk of COVID-19 patients with sarcopenic obesity or dynapenic obesity.

2. Sarcopenic Obesity and Dynapenic Obesity

Obesity is a chronic disease [14] defined as the abnormal or excessive accumulation of
fat [15]. It is expressed in various phenotypes, one of which is sarcopenic obesity [1,16]. The
most widely used means of identifying obesity is to calculate the body mass index, taking
the weight in kilograms, and dividing by the height in meters squared. Adult obesity is
defined as a BMI of ≥30 Kg/m2 [5]. However, due to the endocrine and inflammatory role
of adipose tissue, it is also necessary to classify obese conditions based on the distribution
and composition of body fat. For this, some phenotypes of obesity have been described:
normal weight obese, metabolically obese normal weight, metabolically healthy obese,
metabolically unhealthy obese, and sarcopenic obese [1,17]. In older people, different
phenotypes have been reported as: nonobese nondynapenic, overweight nondynapenic,
obese nondynapenic, sarcopenic obese, overweight sarcopenic, nonobese dynapenic, and
dynapenic obese [18–20] (Figure 1).
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It is well known that sarcopenia and obesity disorders are dependent on nutritional
status [21], body composition, hormonal changes [22], strength and muscle mass [23], all of
which act synergistically to increase the risk of disability [13].

Sarcopenic obesity (SO) is defined as obesity with the loss of muscle mass (ASMM/h2:
<5.18 kg/m2 in women and <7.00 kg/m2 in men), while dynapenic obesity (DO) is defined
by the association of loss of leg muscle strength (<12 kg women and <21 kg men) or physical
function; both phenotypes with an accumulation of body fat mass (>40% women and >28%
men) or BMI ≥ 30 [24], particularly in those with comorbid diseases such as diabetes,
arthritis, and cardiovascular and respiratory conditions [25–27]. It is important to mention
that low muscle mass is associated with dynapenia and decreased motor capacity [28].
For the diagnosis of obesity in geriatric patients, the concept of DO is rarely considered;
thus, patients with decreased muscle mass or low handgrip strength in sarcopenia may be
included [29,30].

There are several mechanisms and factors related to the pathogenesis of SO and DO
(Figure 2), such as (1) adipose tissue dysfunction characterized by adipocyte hyperpla-
sia and hypertrophy [31,32]; (2) perilipins 5 is related to a decrease in the lipotoxicity
and insulin resistance [33]; (3) systemic chronic sterile low-grade inflammation [34–36];
(4) vitamin D deficiency associated with handgrip strength but not with muscle mass [37];
(5) vitamin D receptor gene polymorphism of Fok1 associated with sarcopenia, lower gait
speed, and lower handgrip strength [38]; (6) adipose tissue inflammation with an accumu-
lation of macrophages and lymphocytes [39,40]; (7) during inflammation of adipose tissue,
the accumulation of M1 macrophages around necrotic adipocytes produces the release of
fatty acids. This is associated with the production of a greater amount of tumor necrosis
factor-alpha (TNF-α), which releases more fatty acids from adipocytes, becoming a vicious
circle that maintains the proinflammatory environment [41].

All these factors cause an asymptomatic inflammatory condition in hypertrophied adi-
pose tissue with a high number of inflammatory cells, production of adipokines and other
inflammatory cytokines [42]. The production of inflammatory cytokines motivates the ar-
rival of immune cells, mainly macrophages, interferon gamma-producing TH1 lymphocytes
(INF-γ), and CD8+ lymphocytes capable of initiating the inflammatory response [43,44].

In the skeletal muscle, fat droplets are accumulated as intermuscular adipose tissue
and intramyocellular lipids (IMCLs) [45]. One characteristic of IMCLs is that they can
induce a lipotoxic effect on muscles, which is characterized by impaired single-fiber con-
tractility, leading to lower muscle strength and power in the elderly. This occurs because
of the autophagy of muscle cells [46]. In the pathogenesis of sarcopenia, an important
molecule identified at the neuromuscular junction is the C-terminal agrin fragment, which
causes an age-dependent increase and muscle dysfunction [47]. Furthermore, during age-
ing, the change in muscle mass and weight gain (by lean mass) reflect the decrease in
metabolic rate [48]. In addition, SO is related to elevated levels of IL-6, high-sensitivity
C-reactive protein (hs-CRP) [49], IL-1 receptor antagonist, and soluble IL-6 receptor; all
of these could contribute to apoptosis in myocytes and lead to a decrease in muscle mass
and strength [50,51]. Thus, in SO, frailty and changes in immune function with age (im-
munosenescence) [52] are associated with physical inactivity and the reduction of energy
expenditure, as well as impairment of movement and respiratory problems linked to
metabolic alterations, leading to increased risk of comorbidity.

The renin–angiotensin system (RAS) participates in the regulation of the cardiovascular-
renal system and hydroelectrolyte balance; it also influences the heart, kidney, brain, and
other tissues [53]. RAS is composed of a series of reactions that result in the formation of
angiotensin II (Ang II) by the angiotensin-converting enzyme 2 (ACE2), whose actions are
mediated by metabotropic receptors associated with G proteins, type 1 (AT1) and type 2
(AT2) [54,55]; these participate on the regulation of various processes such as vasoconstric-
tion, water and sodium retention, and cell proliferation [56]. Several investigations indicate
that the activation of the classical RAS, represented by ACE2-Ang II-AT1, has an important
role in the deterioration of skeletal muscle because RAS signaling promotes skeletal muscle
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atrophy [57] and fibrosis [58], as well as insulin sensitivity [59]. SARS-CoV-2 uses ACE2
to enter host cells; thus, high expression of ACE2 is related to the disease severity [53,60].
Therefore, the use of ACE2 inhibitors and angiotensin receptor blockers (ARBs) could
improve muscle performance decline and reduce frailty in sarcopenic obesity [61], while
preventing and treating COVID-19 [62].

Int. J. Mol. Sci. 2022, 23, x  4 of 15 
 

 

 
Figure 2. Mechanisms and factors related to the pathogenesis of sarcopenic obesity and dynapenic 
obesity. In sarcopenic obesity and dynapenic obesity, the muscle mass and strength loss with in-
creased adipose tissue induces an inflammatory cascade and accumulation of immune cells, as well 
as leukocyte activation, adipogenesis, and adipocyte death. Added to physical inactivity, carbohy-
drate overload and lower protein intake cause a vicious circle of insulin resistance, where there is 
an increase in free fatty acids and M1 macrophages with alterations in mitochondrial metabolism 
by inactivation of regulators of energy homeostasis and inducers of regulated fatty acid oxidation, 
vitamin D deficiency, and D receptor gene polymorphism. G6PC, glucose-6-phosphatase; PKC1, 
phosphoenolpyruvate carboxykinase 1; AMPK, AMP-activated protein kinase; ACC1, acetyl-CoA 
carboxylase 1; NEFAs, nonesterified fatty acids; PLIN 5, perilipin 5; PPARꙋ, peroxisome prolifera-
tor-activated receptor gamma; GLUT4, glucose transporter type 4. 

All these factors cause an asymptomatic inflammatory condition in hypertrophied 
adipose tissue with a high number of inflammatory cells, production of adipokines and 
other inflammatory cytokines [42]. The production of inflammatory cytokines motivates 
the arrival of immune cells, mainly macrophages, interferon gamma-producing TH1 

Figure 2. Mechanisms and factors related to the pathogenesis of sarcopenic obesity and dynapenic
obesity. In sarcopenic obesity and dynapenic obesity, the muscle mass and strength loss with increased
adipose tissue induces an inflammatory cascade and accumulation of immune cells, as well as
leukocyte activation, adipogenesis, and adipocyte death. Added to physical inactivity, carbohydrate
overload and lower protein intake cause a vicious circle of insulin resistance, where there is an
increase in free fatty acids and M1 macrophages with alterations in mitochondrial metabolism by
inactivation of regulators of energy homeostasis and inducers of regulated fatty acid oxidation,
vitamin D deficiency, and D receptor gene polymorphism. G6PC, glucose-6-phosphatase; PKC1,
phosphoenolpyruvate carboxykinase 1; AMPK, AMP-activated protein kinase; ACC1, acetyl-CoA
carboxylase 1; NEFAs, nonesterified fatty acids; PLIN 5, perilipin 5; PPAR7, peroxisome proliferator-
activated receptor gamma; GLUT4, glucose transporter type 4.



Int. J. Mol. Sci. 2022, 23, 8277 5 of 13

Vitamin D deficiency has also been found to be common in obese people [63]. This
deficiency is associated with an increased risk of frailty, falls, and increased fracture risk
in DO and SO [7,64,65]. Nevertheless, there are discrepancies in different disorder studies
in which vitamin D is supplemented [36]. It should be remembered that vitamin D aids
the body to absorb calcium, one of the main nutrients necessary for strong bones; we think
that vitamin D levels and vitamin D receptor gene polymorphism should be taken into
consideration in SO and DO.

Although the affectations in SO and DO vary from one individual to another, there is
a consensus on the higher risk of mortality in older adults in both cases [2]. Berens et al.
evaluated the possible association between mortality and obesity in people, both with and
without sarcopenia, and found that 75-year-old women with SO have a greater risk of dying
at 10 years, compared to those without sarcopenia or obesity, while for 87-year-old obese
men without sarcopenia, it was associated with a survival limit of up to four years. [66].

3. Dynapenic and Sarcopenic Obesity and Their Association with Cardiovascular
Disease Risk

Cardiovascular diseases are the main cause of death in the world, according to re-
ports of the World Health Organization, more than 17.9 million deaths are estimated per
year [67]. Cardiovascular diseases (CVDs) include disorders related to problems of the
heart, blood vessels, and cardiac degeneration, among others. CVDs are associated with
increased oxidative and inflammatory stress, as well as increased cell death [68]. Ageing is
represented as the greatest risk factor for cardiovascular diseases, with approximately 40%
of deaths reported in the elderly [69].

During ageing, there is a decrease in the activity of the physiological processes that
allow the correct maintenance of the organism, which mainly affects cardiovascular tissues
and increases the possibility of suffering from CVDs [69]. Alterations in the heart and vas-
culature due to ageing compromise the maintenance and proper function of the heart and
arterial system, leading to structural changes in the heart, such as hypertrophy, decreased
heart rate, increased arrythmias, apoptotic/necrotic cells, fibrosis, ischemic tissue, infiltrat-
ing of smooth-muscle cells, atherosclerotic plaque, ischemic tissue, and increased arterial
stiffness [70]. This induces molecular changes, increase of reactive oxygen species, p53,
p21, p16, β-galactosidase activity, 8-oxoguanine, and phosphorylation of γ-H2Ax; in turn,
that decreases endothelial nitric oxide synthetase and nitric oxide, among others [71,72],
related to hypertension, atherosclerosis, stroke arterial fibrillation, ischemia, and metabolic
disease [70,71].

Other changes in ageing are a decrease in physical activity and an inadequate diet,
such as a high carbohydrate intake with low protein intake, favoring a state of sarcopenic
obesity that predisposes people to the development of CVDs [73,74].

Increased cardiovascular risk has been observed in DO and SO, particularly in sar-
copenic obesity, when compared to obesity or sarcopenia [75,76]. Serum concentrations
of hs-CRP, low-density lipoprotein cholesterol (LDL-C), soluble intercellular adhesion
molecule type 1 (sICAM-1), and triglyceride are higher in SO and DO patients than in
nonsarcopenic nonobese or nondynapenic nonobese patients [77]. hs-CRP is a systemic
inflammation marker that predicts future cardiac events [78]. The risk of myocardial infarc-
tion is increased in lean sarcopenic patients and sarcopenic overweight, or obese patients
compared to lean nonsarcopenic patients [19]. Furthermore, SO patients were associated
with a fivefold-increased risk of developing atrial fibrillation [19].

SO is also associated with coronary artery calcification, independent of known risk
factors for coronary artery disease, such as age, sex, hypertension, diabetes, dyslipidemia,
and creatinine [79]. The combination of obesity and sarcopenia may be associated with
an increased risk of coronary atherosclerosis, which can eventually lead to cardiovascu-
lar events.

Pathogenetic mechanisms related to SO and CVDs could lead to a reduction in muscle
mass and an accumulation of fat in muscle tissue that promotes a proinflammatory cascade
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and oxidative stress, as consequence stimulating mitochondrial dysfunction, muscle atro-
phy and insulin resistance [29]. Insulin resistance differentially affects the phosphatidyli-
nositol 3-kinase and mitogen-activated protein kinase signaling pathways [80] and activates
inflammatory pathways including IκB/nuclear factor κB (NF-κB), and c-Jun N-terminal
kinase, which contributes to the development of atherosclerotic cardiovascular disease [81].
The simultaneous presence of sarcopenia and obesity is associated with both oxidative
stress and a proinflammatory state (as indicated by high levels of TNF-α, IL-1b, IL-6, IL-8,
IL-12, and hs-CRP), is also associated with an increased risk of CVD [82,83]; this excess
of cytokines decreases muscle anabolism by facilitating muscle atrophy, modifying the
function and proliferation of immune cells [84], which may explain the elevated levels of
IL-6 and Th17 cells in SO patients with COVID-19.

Although there are fewer studies specific of dynapenic obesity, dynapenic abdominal
obese individuals have a higher prevalence of metabolic syndrome and lipid disorders,
such as low levels of HDL-cholesterol, hypertriglyceridemia, hyperglycemia and high
levels of glycosylated hemoglobin [85].

Likewise, a high BMI is associated with higher CVD mortality, although it is known
that BMI is inversely correlated with the mortality rate in patients with coronary artery
disease, the so-called “obesity paradox” has been also observed. In older adults or patients
with several chronic diseases it is associated with an apparent decrease in cardiovascular
adverse events; however, the “obesity paradox” could be a misclassification bias caused by
use of BMI, or a way of selection named collider stratification bias [86,87]. Therefore, to
assess visceral obesity, waist circumference (WC), the ratio of waist-to-hip circumferences or
waist-to-hip ratio (WHR), or visceral adiposity index [88] measures are recommended since
these correlate better with cardiovascular risk than BMI; that is because BMI represents
fat mass and lean mass [89]. WC is related to an excess of abdominal fat, even in subjects
with a normal BMI, it is associated with cardiometabolic diseases and is predictive of
mortality [90].

According to studies of obesity phenotypes, metabolically healthy normal weight
(MHNW) people who have sarcopenia are at high risk of cardiovascular disease. The
presence of sarcopenia in other subtypes of obesity also increases the risk of CVD [91].
Sarcopenia when assessed by total skeletal muscle (total SM) cross-sectional area and index
(divided by height squared) of the chest, a computed tomography scan, age, diabetes
mellitus, and hypertension are independent predictors of mortality, in-hospital in COVID-
19 patients [92]. Similarly, the metabolic consequences of obesity increase the risk of
ischemic stroke [93], which in COVID-19 patients is associated with more severe infectious
disease [94].

A stroke is defined as an ischemic or hemorrhagic cerebral infarction. It has been
seen that in patients who have suffered from a stroke, a muscle-mass and muscle-strength
reduction can occur, in addition to a fat deposition, which induces sarcopenia at a rate
of 14 to 54% [95]. Although sarcopenia is commonly observed to be induced by stroke,
pre-stroke sarcopenia is an independent predictor of stroke severity and is associated with
poor functional outcomes and risks of malnutrition [96].

On the other hand, there is a paradox in incident stroke patients associated with
obesity or overweight. In these patients, the prognosis is more favorable for major adverse
cardiovascular events, such as coronary heart disease, recurrent stroke, peripheral vascular
disease, heart failure, and cardiovascular-related mortality [97]. In the treatment of these
patients with obesity and CVDs, semaglutide has been evaluated by the Semaglutide Effects
on Cardiovascular Outcomes in People with Overweight or Obesity (SELECT) study [98].
Similarly, semaglutide and other antidiabetic drugs, as well as omega-3 fatty acids, are
being evaluated for sarcopenia [99,100].

4. Sarcopenic Obesity, Dynapenic Obesity, and COVID-19

SO could increase the risk of severe complications and adverse outcomes in COVID-19
(Figure 3) [13,101]. Among the most notable findings of the COVID-19 patient are the
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effects of myalgia arthralgia, back pain, fatigue, and loss of grip strength [102], in addi-
tion to the fact that the SARS-CoV-2 infection mainly affects the epithelium of the lungs.
Furthermore, other systems have also been involved, such as the immune [103], integu-
mentary [104], neurological [105], digestive [106], genitourinary [107], cardiovascular [108],
hematological [109], reproductive, and hormonal systems [110,111], causing very varied
symptomatology. In the most severe cases, COVID-19 causes pneumonia, heart and kid-
ney failure, and liver injury, thrombosis, shock, and even death. Twenty-five per cent of
these patients develop severe lung disease that progresses to adult respiratory distress
syndrome [112,113].
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Figure 3. Complications in COVID-19 due to sarcopenic obesity and dynapenic obesity. Alter-
ations in the metabolism, respiratory system, cardiovascular system, and immune system of the SO
and/or DO patient with a propensity for complications during COVID-19. SO, sarcopenic obesity;
DO, dynapenic obesity; ROS, reactive oxygen species; hs-CRP, high-sensitivity C-reactive protein;
ACE2, angiotensin-converting enzyme 2; NETs, neutrophil extracellular traps; GM-CSF, granulo-
cyte macrophage colony-stimulating factor; IFN-γ, gamma interferon; HIF-1a, hypoxia-inducible
factor-1α; IRF5, interferon regulatory factor 5; VLDL, very low-density lipoprotein; ADEM, acute dis-
seminated encephalomyelitis; GBS, Guillain–Barré syndrome; RAAS, renin–angiotensin–aldosterone
system; DIC, disseminated intravascular coagulation; MINOCA, myocardial infarction with nonob-
structive coronaries.

Adipose tissue could function as a deposit for a wider viral spread with increased im-
mune activation and cytokine amplification in patients associated with abnormal cytokine
profiles [114]. SARS-CoV-2 infection depends on its binding to target cells facilitated by
ACE2, which is expressed in various human tissue [115], particularly in the lungs, bowels,
kidneys, and blood vessels [116].

SO patients manifest a higher prevalence of type 2 diabetes and hypertension than
those without sarcopenic [117,118], associating them with a higher risk of respiratory
disease and mortality [2]. In addition to this, a Chinese study found that people aged
65 years or older with type 2 diabetes are more susceptible to COVID-19 [119,120].

In COVID-19 patients, an association has been observed between decreased skeletal
muscle area, low skeletal muscle radiodensity, and increased complications during their stay
in the intensive care unit [121]. Likewise, low muscle quality and ectopic fat accumulation
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lead to invasive mechanical ventilation complications or even death, while increased muscle
density is a protective factor [122].

COVID-19 affects immune cells and the expression of inflammatory molecules that
increases with disease severity [123]. Lung infections by SARS-CoV-2 could lead to ele-
vated blood sugar levels by adipose dysfunction in adiponectin and adiponectin/leptin
ratios [124,125], making it difficult to control infections and metabolic diseases with sarcope-
nia or obesity [126]. Wilkinson et al. found that SO patients are approximately 2.6 times
more likely to have severe COVID-19 infection than obese patients; however, sarcopenia
alone did not increase the risk of severe COVID-19 [127].

Immunosenescence affects both the innate and adaptive immune response [128], leads
to increased susceptibility to infections, reduces vaccination responses in frail elderly peo-
ple, and increases the risk of chronic inflammatory diseases [52,129]. In COVID-19, not only
do factors such as smoking, hypertension, diabetes mellitus, chronic obstructive pulmonary
disease, physical frailty, and C-reactive protein impact the severity/mortality of COVID-19,
but also the components of DO, such as loss of grip strength and sarcopenia [130].

5. Conclusions

The presence of dynapenia or sarcopenia aggravates multisystemic disease in SARS-
CoV-2 infection; likewise, the combination of obesity with loss of grip strength or muscle
mass due to ageing increases the risk of complications during hospitalization for COVID-
19; which can affect mortality in the elderly as a result of alterations mainly in glucose
metabolism and the respiratory, cardiovascular, and immune systems.
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