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Abstract

Background: Genetic heritability and expression study have shown that different diabetes traits have common
genetic components and pathways. A computationally efficient pathway analysis of GWAS results will benefit post-
GWAS study of SNP associations and identification of common genetic pathways from diabetes GWAS can help to
improve understanding of the disease pathogenesis.

Results: We proposed a uniform-score gene-set analysis (USGSA) with implemented package to unify different
gene measures by a uniform score for identifying pathways from GWAS data, and use a pre-generated permutation
distribution table to quickly obtain multiple-testing adjusted p-value. Simulation studies of uniform score for four
gene measures (minP, 2ndP, simP and fishP) have shown that USGSA has strictly controlled family-wise error rate.
The power depends on types of gene measure. USGSA with a two-stage study strategy was applied to identify
common pathways associated with diabetes traits based on public dbGaP GWAS results. The study identified 7
gene sets that contain binding motifs at promoter region of component genes for 5 transcription factors (TFs) of
FOXO4, TCF3, NFAT, VSX1 and POU2F1, and 1 microRNA of mir-218. These gene sets include 25 common genes
that are among top 5% of the gene associations over genome for all GWAS. Previous evidences showed that nearly
all of these genes are mainly expressed in the brain.

Conclusions: USGSA is a computationally efficient approach for pathway analysis of GWAS data with promoted
interpretability and comparability. The pathway analysis suggested that different diabetes traits share common
pathways and component genes are potentially regulated by common TFs and microRNA. The result also indicated
that the central nervous system has a critical role in diabetes pathogenesis. The findings will be important in
formulating novel hypotheses for guiding follow-up studies.
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Background
Genome-wide association studies (GWAS) have been
successful in identifying risk genetic variants for various
human complex traits, and many GWAS have been
deposited into dbGaP with genome results publicly avail-
able [1]. Effective analyses of these existing GWAS
results will benefit post-GWAS study of SNP associa-
tions and improve genetic analyses of complex diseases.
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The majority of existing GWAS are based on single-
SNP association tests; however, single-SNP GWAS have
some critical limitations. A major concern is that most
identified variants are out of the gene boundary and
present only modest effect individually [2]. A large num-
ber of SNP tests require the use of stringent significance
criteria (e.g. p-value ≤ 5 × 10 −8), which will lead to mis-
identification of SNPs with weak effects. Genetic hetero-
geneity can result in the presence of different risk
variants in a gene at different GWAS, which further de-
creases study power and reduces replicability. Besides,
common diseases like diabetes are essentially due to the
effects of multiple genes, and it is difficult to extrapolate
biological processes from single-SNP findings. Gene-set
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analysis (GSA), in contrast, hypothesizes that a common
disease is influenced by polygenic factors, and GSA aims
to test for associations between curated pathways and a
phenotype through SNP associations [3]. In contrast to
single-SNP GWAS, GSA examines SNPs inside the gene
boundary and focuses on component gene associations
of a curated gene set. Pathway study alleviates GWAS
limitations and can contribute to the discovery of sys-
tematic genetic regulation underlying complex diseases.
The p-value-based GSA is a common type of pathway

analysis that does not require access to individual SNP ge-
notypes; the analysis is based only on association p-values
of SNPs over the genome, making the analysis broadly
applicable for any GWAS with few limitations. GSA typic-
ally requires measuring gene associations from all SNPs
mapped to genes. A straightforward gene measurement
approach is to use the minimum p-value of SNP associa-
tions [3-6]. The second best p-value of SNP associations is
also used as a gene measure to evade some spurious
associations [7]. However, these measures are generally
incomparable and hard to interpret. For example, the
best p-value as a gene measure may be smaller than
0.05, but it is difficult to interpret the gene association
without comparing to other genes; besides, the best
p-value is always smaller than the second best p-value,
but it does not indicate a stronger gene association
than the other.
For a curated gene set, an enrichment score is often

calculated from its component genes as a statistic to
measure pathway association. A common score is a
Kolmogorov-Smirnov-like statistic [4,8] calculated over
gene measures. Other effective measures include a count
of significant genes [6,9], the ratio of nominally signifi-
cant (P < 0.05) to non-significant SNPs [10], max mean
and re-standardization of gene measures [7]. These mea-
sures typically require a large number of permutations
to obtain an association p-value, and the high computa-
tional load may impede the GSA application. Further-
more, the enrichment score is gene-measure dependent,
and the permutation is study- and sample-specific; this
makes results difficult to compare among different stud-
ies. The Z-statistic method is a parametric measure of
pathway association [7] without requiring permutation;
however, the test requires an assumption of gene-set
independence. To supplement existing methods and
address their potential limitations, we proposed a uniform-
score GSA (USGSA) that aims to improve specificity of
pathway and promote interpretability and comparability
of pathway results with high computational efficiency.
Diabetes is a chronic metabolic disease of hypergly-

cemia resulting from defects in insulin secretion, action,
or both. Its prevalence continues to increase, and is
anticipated to rise to 366 million worldwide in 2030
[11]. Diabetes has two major types accompanied with
varied symptoms and complications. Type I diabetes
(T1D) is known as insulin-dependent diabetes and it is
believed to be caused by destruction of beta cells with
subsequently absolute lack of insulin. Type II diabetes
(T2D) is non-insulin-dependent diabetes and it is mainly
characterized by insulin resistance with subsequently
relative lack of insulin and hyperglycemia, for which beta
cells in contrast can still produce and secrete insulin. A
pathway study can help researchers understand the gen-
etic basis of diabetes pathogenesis and design effective
strategies for alleviating the public heath burden of dia-
betes. Diagnostic criteria recommended by the American
Diabetes Association include lab testing of hemoglobin
A1c (HbA1c), fasting plasma glucose (FPG), glucose
tolerance and hyperglycemia [12]. The long-term effects
of diabetes also cause different complications, including
diabetic nephropathy [12]. Identification of common
genetic pathways underlying these symptoms and com-
plications can provide clues to better understand the
etiology, pathophysiology changes and progress of diabetes.
Genetic heritability of T1D is as high as 88% [13]. The

concordance rate of type 2 diabetes (T2D) is 50–92% for
monozygotic (MZ) twins, consistently greater than the
rate for dizygotic (DZ) twins [14]. The complication of
diabetic nephropathy presented familial clustering [15].
Twin bivariate genetic study of the Atherosclerosis Risk
in Communities (ARIC) population showed that genetic
heritability is 30% for fasting glucose and 39% for fasting
insulin, and genetic correlation between them is 22% ~
39% [16]. Gene expression study evidenced that T1D
and T2D share common pathways which are likely re-
lated to hyperglycemia and beta-cell dysfunctions [17].
These evidences suggest strong genetic susceptibility to
diabetes traits and indicates shared genetic components
and pathways among diabetes traits. The current study
aims to identify common pathways associated with
diabetes traits by analyzing dbGaP GWAS data, and we
expect that the high specificity of USGSA using an inde-
pendent distribution table of pathway associations will
make the findings replicable and comparable among
studies.

Results
Simulation study of family-wise error rate and power
Dataset I, II and III of null pathway association were ex-
amined by USGSA with gene measures of minP, 2ndP,
simP and fishP. The false group positive rate (GPR) of
identifying significant pathways was calculated to esti-
mate the family-wise error rate (FWER), and results are
shown in Figure 1. The false GPR based on pathway
empirical p-value (pe) was 15.7%, 15.4% and 15.3% for
minP, 20.1%, 19.8% and 19.7% for 2ndP, 10%, 11.9% and
10.1% for simP, and 21.7%, 22.1% and 21.6% for fishP at
the three datasets. The results showed that the pe based



Figure 1 Estimate of USGSA family-wise error rate by group positive rate.
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on hypergeometric distribution function has inflated
FWER due to multiple testing. In contrast, the false GPR
based on pathway adjusted p-value (padj) was 0.3%, 0.2%
and 2.3% for minP, 1.2%, 1.2% and 1.0% for 2ndP, 0.1%,
0.1% and 0.1% for simP, and 1.9%, 2.1% and 1.9% for
fishP at the three datasets. The results showed that the
padj based on pre-generated permutation table has well-
controlled FWER. For comparison, a computationally
efficient approach, GSA-SNP with corrected p-values for
multiple testing, was also examined and the GRP is
11.8% at dataset I, 2% at dataset II, and 1.1% at dataset
III. The results demonstrate that the corrected p-values
of GSA-SNP may also have increased Type I error.
Dataset IV and V were examined to estimate specifi-

city and power of USGSA and results are presented in
Figure 2. Since only component genes of KEGG_T2D
were simulated to contain SNP associations, majority
of MSigDB gene sets had null pathway associations
at both data sets and a small GPR of MSigDB gene sets
indicated high specificity of USGSA. Pathway analysis
by USGSA showed that the GPR based on adjusted p-
value of padj is 0.3% (minP), 1.3% (2ndP), 0.1% (simP)
and 2.2% (fishP) at dataset IV, and the value is 0.2%
(minP), 1.1% (2ndP), 0.02% (simP) and 1.8% (fishP) at
dataset V. The GPR of GSA-SNP approach based on
corrected p-value is 1.5% in dataset IV and 2.2% in
dataset V. The simulation studies showed that both
USGSA and GSA-SNP have high specificity of pathway
association test.
The power of identifying KEGG_T2D in Datasets IV

and V were estimated based on the pathway Padj of
USGSA and the corrected p-values of GSA-SNP. Results
are presented in Figure 2. The power is 24% (minP),
95% (2ndP), 9% (simP) and 100% (fishP) at dataset IV,
and the value is 84% (minP), 1% (2ndP), 100% (simP)
and 58% (fishP) at dataset V. Similar to 2ndP measure of
USGSA, the GSA-SNP has power of 98% in dataset IV
and 2% in dataset V. The results demonstrate that ana-
lysis power depends on correct selection of a gene meas-
ure and the same gene measure may have contrary
conclusion due to different characteristics of gene effects
at two datasets. For example, the power of USGSA is
24% at dataset IV but 84% at dataset V for minP, and
the power is 100% at dataset IV but 58% at dataset V for
fishP. The GSA-SNP analysis uses the second best SNP
p-value as gene measure, so it presents similar power as
USGSA with 2ndP measure.

Identification of common pathways for diabetes traits
Top 500 gene sets were selected from USGSA pathway
study of GWAS at stage I and validation analysis at stage
II identified 7 common gene sets significantly associated
with all studied diabetes traits. Characteristics of the
gene sets were summarized in Table 1. Of the identifica-
tions, six gene sets share a transcription factor (TF)-
binding motif at gene promoter region of [-2 kb, 2 kb]
respectively: 1) pathway “1461” contains the motif of
AACTTT, but the binding factor is not known; 2) path-
way “2247” contains the binding motif of TTGTTT for
FOXO4, which regulates the insulin signaling pathway
through binding to insulin-response elements [18,19]; 3)
pathway “2268” contains the binding motif of TGGAAA
for NFAT, which is an activator in response to elevation
of intracellular Ca2+, regulating insulin gene transcrip-
tion by a Ca(2+)-responsive pathway [20]; 4) pathway
“2240” contains the motif of CAGGTG for TCF3, which
is up-regulated specifically in islets of T2D patients and
is associated with Wnt signaling in diabetes pathogenesis



Figure 2 Estimate of USGSA power by group positive rate.
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[21]; 5) pathway “2239” contains the binding motif of
TAATTA for VSX1; and 6) pathway “1551” contains the
binding motif of NNGAATATKCANNNN for POU2F1.
The 7th pathway (pid: 2076) contains the target motif of
AAGCACA for microRNA, mir-218.
At the stage I, the identified gene sets of ‘1461’

(AACTTT-motif ), ‘2247’ (FOXO4), ‘2268’ (NFAT),
‘2240’ (TCF3), ‘2076’ (MIR-218), ‘2239’ (VSX1) and
‘1551’ (POU2F1) have 11.1% ~ 13.2%, 9.7% ~ 10.8%,
9.4% ~ 11.9%, 8.8% ~ 10.0%, 13.3% ~ 18.8%, 11.1% ~ 14.2%
Table 1 Common gene sets associated with different diabete

Pid Size Motif Binding W

1461 1890 AACTTT Unknown ht

2247 2061 TTGTTT FOXO4 ht

2268 1896 TGGAAA NFAT ht

2240 2485 CAGGTG TCF3 ht

2076 398 AAGCACA MIR-218 ht

2239 810 TAATTA VSX1 ht

1551 214 NNGAATATKCANNNN POU2F1 ht
and 17.7% ~ 22.3% of component genes with uniform
score ≤ 5% respectively (Table 2). This value is signi-
ficantly higher than the assumed 5% of genes in the
genome associated with diabetes traits, which has pathway
association p-values (pe) of 3.71*10

−7 ~ 3.44*10−28 (Table 2).
The measures of gene set associations over GWAS of
stage I showed that gene sets of ‘1461’, ‘2247’, ‘2268’,
‘2240’, ‘2076’, ‘2239’ and ‘1551’ have chi2 (rank) of 1008.84
(13), 626.50 (14), 596.97 (15), 415.33 (21), 474.90 (17),
462.18 (18) and 499.03 (16) respectively.
s traits

eb

tp://www.broadinstitute.org/gsea/msigdb/cards/AACTTT_UNKNOWN

tp://www.broadinstitute.org/gsea/msigdb/cards/TTGTTT_V$FOXO4_01

tp://www.broadinstitute.org/gsea/msigdb/cards/TGGAAA_V$NFAT_Q4_01

tp://www.broadinstitute.org/gsea/msigdb/cards/CAGGTG_V$E12_Q6

tp://www.broadinstitute.org/gsea/msigdb/cards/AAGCACA,MIR-218

tp://www.broadinstitute.org/gsea/msigdb/cards/TAATTA_V$CHX10_01

tp://www.broadinstitute.org/gsea/msigdb/cards/V$OCT1_02

http://www.broadinstitute.org/gsea/msigdb/cards/AACTTT_UNKNOWN
http://www.broadinstitute.org/gsea/msigdb/cards/TTGTTT_VFOXO4_01
http://www.broadinstitute.org/gsea/msigdb/cards/TGGAAA_VNFAT_Q4_01
http://www.broadinstitute.org/gsea/msigdb/cards/CAGGTG_VE12_Q6
http://www.broadinstitute.org/gsea/msigdb/cards/AAGCACA,MIR-218
http://www.broadinstitute.org/gsea/msigdb/cards/TAATTA_VCHX10_01
http://www.broadinstitute.org/gsea/msigdb/cards/VOCT1_02


Table 2 Common gene sets associated with different diabetes traits

GWAS\PID 1461 2247 2268 2240 2076 2239 1551

Stage I: pe (sig%)

pha000417 2.89E-21 5.77E-11 3.34E-14 1.90E-12 9.98E-16 1.78E-07 2.29E-08

(12.1) (9.8) (10.8) (10.0) (18.8) (11.1) (17.7)

pha000423 2.57E-18 2.25E-12 1.06E-19 2.19E-08 9.39E-08 1.45E-07 5.07E-09

(11.5) (10.1) (11.9) (9.0) (13.7) (11.1) (18.4)

pha000427 2.82E-21 1.91E-13 1.64E-10 3.00E-09 1.52E-11 6.56E-08 2.89E-13

(11.9) (10.2) (9.7) (9.1) (16.0) (11.1) (22.2)

pha000429 1.60E-23 5.14E-11 1.81E-09 8.90E-08 2.69E-11 1.07E-10 2.08E-10

(12.4) (9.7) (9.6) (8.8) (16.0) (12.5) (19.7)

pha000433 5.38E-20 4.47E-15 3.19E-11 3.41E-08 1.35E-12 5.28E-08 4.27E-10

(12.0) (10.8) (10.2) (9.1) (17.1) (11.4) (19.6)

pha000437 1.06E-13 8.91E-13 7.21E-11 5.99E-08 2.46E-07 1.91E-09 1.15E-09

(10.5) (10.2) (10.0) (8.9) (13.3) (12.0) (19.0)

pha000447 1.08E-23 4.96E-12 9.30E-16 1.30E-08 4.90E-09 9.70E-09 6.31E-12

(12.2) (9.8) (10.9) (8.9) (14.3) (11.4) (20.9)

pha000451 1.01E-15 1.15E-14 2.67E-08 1.19E-08 6.53E-10 4.79E-11 3.01E-08

(11.1) (10.7) (9.4) (9.2) (15.4) (12.8) (17.7)

pha000453 3.44E-28 5.34E-15 1.10E-12 6.90E-09 1.18E-09 5.22E-15 4.56E-13

(13.2) (10.7) (10.4) (9.2) (15.0) (14.2) (22.3)

pha000457 3.20E-25 7.46E-15 2.61E-14 2.58E-09 3.71E-07 3.49E-11 1.93E-11

(12.9) (10.7) (10.9) (9.4) (13.3) (12.9) (20.9)

pha000461 3.68E-16 7.82E-12 1.36E-10 1.04E-8 4.46E-9 2.80E-11 7.52E-11

(11.1) (10.0) (10.0) (9.2) (14.7) (12.8) (20.3)

Stage I: Chi2 (Rank)

1008.84 (13) 626.50 (14) 596.97 (15) 415.33(21) 474.90 (17) 462.18 (18) 499.03 (16)

Stage II: pe (sig%) (padj)

pha002839 8.3E-35 5.78E-21 3.73E-18 4.60E-22 1.61E-11 1.73E-16 1.28E-8

(13.8) (11.5) (11.3) (11.0) (15.4) (14.1) (17.2)

(<1E-4) (<1E-4) (<1E-4) (<1E-4) (<1E-4) (<1E-4) (4E-4)

pha002862 6.70E-20 1.41E-13 1.34E-15 2.14E-12 5.85E-13 8.35E-8 3.33E-11

(11.4) (10.0) (11.3) (9.4) (16.0) (10.7) (19.2)

(<1E-4) (<1E-4) (<1E-4) (<1E-4) (<1E-4) (0.003) (<1E-4)

pha002864 2.23E-32 2.11E-21 1.43E-18 8.33E-20 2.67E-10 3.95E-11 1.10E-14

(13.3) (11.4) (11.3) (10.6) (14.6) (12.2) (22.2)

(<1E-4) (<1E-4) (<1E-4) (<1E-4) (1E-4) (<1E-4) (<1E-4)

pha003005 6.84E-29 2.64E-15 2.72E-13 2.47E-15 1.72E-9 4.51E-11 6.41E-7

(13.0) (10.5) (10.4) (10.0) (14.3) (12.3) (15.5)

(<1E-4) (<1E-4) (<1E-4) (<1E-4) (1E-4) (<1E-4) (<1E-4)

pha002901 6.45E-42 9.05E-23 4.39E-17 2.47E-20 8.43E-12 6.59E-15 2.28E-11

(14.7) (11.8) (11.2) (10.8) (15.7) (13.6) (19.7)

(<1E-4) (<1E-4) (<1E-4) (<1E-4) (<1E-4) (<1E-4) (<1E-4)

pe: Pathway empirical p-value; sig%: percentage of genes in the gene set that are at the top 5% of gene association over genome; padj: Pathway adjusted p-value;
Chi2 = ∑i − 2 x log((pe)i) is the summary of a gene set’s association over all stage I GWAS; Rank: the rank of chi2 in decreasing order.
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Figure 3 Average uniform score of significant genes for stage I and
II GWAS.
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Pathway analysis of the 7 gene sets at stage II gave
consistent results as stage I. The gene sets of ‘1461’ ,
‘2247’, ‘2268’, ‘2240’, ‘2076’, ‘2239’ and ‘1551’ have 11.4% ~
14.7%, 10.0% ~ 11.8%, 10.4% ~ 11.3%, 9.4% ~ 11.0%,
14.3% ~ 16.0%, 10.7% ~ 14.1% and 15.5% ~ 22.2% of
component genes with uniform score ≤ 5%, which
corresponds to pe value of 6.70*10−20 ~ 6.45*10−42,
1.41*10−13 ~ 9.05*10−23, 2.72*10−13 ~ 1.43*10−18, 2.14*
10−12 ~ 4.60*10−22, 1.72*10−9 ~ 5.85*10−13, 8.35*10−8 ~
1.73*10−16 and 6.41*10−7 ~ 1.10*10−14, respectively
(Table 2). These gene sets are significant over all
GWAS after controlling for multiple testing and most
of their adjusted p-value (padj) are <10

−4.
The identified pathways with pids of “1461”, “2247”,

“2268”, “1551”, “2239”, “2076”, and “2240” respectively
contained 18, 10, 8, 4, 4, 7, and 8 significant common
genes for all GWAS in stage I and II, resulting in 25
unique common genes. These genes and their corre-
sponding pathways are summarized in Table 3. Mean
uniform scores of these genes for stage I and II are pre-
sented in Figure 3. The results demonstrate that these
Table 3 Significant genes from common gene sets associated with different diabetes traits

Gene chr Start End Strand Pid

NRXN1 2 50145643 51259674 - 1461/2076/2240

LRP1B 2 140988996 142889270 - 1461/2268

CNTN4 3 2140550 3099645 + 1461/2239/2240

GRM7 3 6902802 7783218 + 2247

ROBO2 3 75955845 77699115 + 2076

CPNE4 3 131252413 131759152 - 1461

PDE4D 5 58264865 59783925 - 1461/2247/2268/1551

SYNE1 6 152442819 152958534 - 1461/2240

ELMO1 7 36892511 37488895 - 1461/2268/2239/2076/2240

MAGI2 7 77646374 79083121 - 2076

CNTNAP2 7 145813453 148118090 + 1461/2268

SGCZ 8 13947373 15095792 - 2247/2076

PTPRD 9 8314246 10612723 - 2247

CTNNA3 10 67672276 69455949 - 1461/2247

NELL1 11 20691117 21597232 + 1461

DLG2 11 83166055 85338314 - 1461/2247/2268/1551/2076/2240

NTM 11 131240371 132206716 + 1461

PCDH9 13 66876966 67804468 - 1461

GPC6 13 93879078 95060274 + 1461

NPAS3 14 33404115 34273382 + 1461/2247/1551

NRXN3 14 78636716 80334633 + 1551/2076/2240

RYR3 15 33603177 34158304 + 1461/2240

RORA 15 60780483 61521502 - 1461/2247/2268/2239

RBFOX1 16 5289469 7763342 + 1461/2247/2268/2239

ASIC2 17 31340105 32483825 - 2247/2268/2240
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genes had ranges of 0.07% ~ 2.29% at the stage I analysis
and 0.13% ~ 2.74% at the stage II analysis, indicating that
these genes are among the top 3% of the gene associa-
tions with diabetes traits over genome. Detailed uniform
scores are noted in Additional file 1: Table S2. Our
literature and gene annotation review (Additional file 2:
Table S3) showed that almost all of these genes are
mainly expressed in the brain, and most are related to
neurodevelopment and brain function, including schizo-
phrenia, autism, Alzheimer's disease, impaired learning,
and intellectual disability. The identified common path-
ways and their consistently significant genes suggest that
the pathogenesis of diabetes may be attributable to micro-
RNA and TF-mediated regulation and the central nervous
system (CNS) plays important role in the regulation.

Discussion
We proposed the USGSA method with implemented
R package of snpGeneSets to provide a convenient
and fast tool for study of pathway association from
GWAS data. The USGSA applies the uniform score
to unify four different gene measures of minP, 2ndP,
simP and fishP, and measures pathway association by
hypergeometric test. The pathway analysis by USGSA
is based on test of MSigDB gene sets. The MSigDB
annotates 10,722 genes sets with 32,364 genes, and
the number is much smaller than the number of
GWAS SNPs. Therefore, the pathway analysis will
alleviate the burden of multiple-test adjusting and
improve testing power. Application of USGSA suc-
cessfully identified 7 significant gene sets associated
with all studied diabetes traits, indicating common genetic
regulations shared among different traits.
Four gene measures of USGSA are proposed to

summarize gene effects with different characteristics:
the minP and the 2ndP measure gene effects based on a
single-SNP association; while the simP and the fishP
assess gene effects based on multiple SNP associations
with accounting for the number of GWAS SNPs in a
gene. USGSA applies a uniform score to unify these
gene measures for comparability with the same inter-
pretability. The score ranges from 0 to 1, and it is
explained as top percentage of the gene associations
over genome. The USGSA calculates empirical pe of
pathway association from gene measures based on
hypergeometric distribution, which accounts for both
the number of significant genes and the size of the
pathway. The pathway adjusted p-value (Padj) can be
calculated by permutation test to account for pathway
dependence and multiple testing, and an independent
pre-generated permutation table is directly used to
facilitate the calculation.
USGSA gene measures can better facilitate replication

studies of a gene effect that may have inconsistent SNP
associations from different GWAS due to genetic het-
erogeneity. USGSA can also help to identify a significant
pathway shared by different traits which however may be
activated through different mechanisms. For example, ex-
pression study showed that T1D and T2D likely share a
common pathway which however has different regulated
genes (e.g. MYC) [17]. For this study, the gene set of
FOXO4 (pid: ‘2247’) has total ~2,000 genes, and contained
131 ~ 149 and 167 ~ 214 genes with uniform scores ≤ 0.05
in stage I and stage II, respectively, which are about
9.7% ~ 11.8% of component genes among top 5% of the
gene associations over genome; the gene set had only 10
significant genes over all studies. These results indicate
that multiple diabetes traits may be influenced by a
common pathway activated through different genes.
The USGSA does not require access to individual-level

SNP genotypes and the analysis is based on GWAS
p-value only. For existing pathway analysis of GWAS
p-values, ALIGATOR preselects a p-value criterion to
define a list of significantly associated SNPs [9]; the
i-GSEA4GWAS [4], GeSBAP [5] and gamGWAS [6] all
select the best p-value of SNP associations to measure
gene effects; and the GSA-SNP enables selection of the
kth (k = 1, 2, 3, 4, or 5) best p-values as the gene measure
[7]. Compared to these analyses, the USGSA provides
broader measures to summarize gene effects with differ-
ent characteristics as described above. The existing path-
way analysis, e.g. ALIGATOR [9], generally requires
selection of a p-value cut-off to identify significant SNPs
and genes for pathway test. The selection may be
arbitrary and study-dependent, and the results may not
be comparable between different studies. In contrast,
USGSA selects a uniform-score cut-point (0 ≤ αG ≤ 1)
for all four gene measures, which is hypothesized as αG
proportion of genes associated with the study trait.
Significant genes identified from different GWAS data
by different USGSA gene measure will have the same
interpretation, explained as top 100*αG% of the gene as-
sociations over genome. Comparing with many existing
pathway analyses that rely on a time-consuming permu-
tation to adjust for complex genetic structures, the
USGSA implements the adjustment by corresponding
gene measures, hypergeometric test and permutation
test. In addition, benefiting from the random uniform
distribution of uniform score, the USGSA provides a
pre-generated permutation distribution table, which
facilitates a computationally efficient calculation of path-
way adjusted p-value (Padj) for different gene measures.
The USGSA calculates both empirical (pe) and adjusted

(Padj) p-values to measure pathway association. Due to
multiple testing issue, the pe can result in high FWER
(Figure 1). The Padj was shown to have well-controlled
FWER and high specificity for all four gene measures
(GPR ≤ 2.3%), especially for the simP measure (Figures 1



Figure 4 Implementation of USGSA for pathway association test.
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and 2). GSA-SNP analysis implements a computationally
efficient measure of pathway association from GWAS
SNP p-values by Z statistic. However, the measure
assumes independence of gene sets and the test may
result in inflated FWER which is evidenced in simula-
tion study of dataset I (GRP = 11.8%). By comparison,
the power is 0.1% ~ 1.9% for 4 gene measures of USGSA
with Padj as significance indicator (Figure 1). Therefore,
the permutation-based Padj not only adjusts for multiple
testing but also alleviates potential issues due to com-
plex genetic structure.
The power of USGSA based on Padj depends on se-

lected gene measures, and an inappropriate measure can
result in a contrary conclusion. For dataset IV, compo-
nent genes of KEGG_T2D pathway are simulated to
have multiple SNP associations each, and the gene mea-
sures of 2ndP and fishP have extremely high power of
98% and 100%, whereas the gene measures of minP and
simP have low power of 24% and 9% respectively. For
dataset V, 11 component genes of KEGG_T2D pathway
are simulated to have an extremely strong SNP associ-
ation each, and the gene measures of minP and simP
presented high power of 84% and 100%, whereas 2ndP
and fishP showed low power of 1% and 58% respectively.
Therefore, different gene measures have their adaptive
tests of pathway associations: 2ndP and fishP are more
fitting for a gene containing multiple SNP effects, while
minP and simP are more suitable for a gene having
extreme SNP effects. The results also indicate that the
fishP is tolerant to gene effects characterized with differ-
ent types of SNP associations.
USGSA was successfully applied to identify common

pathways associated with different diabetes traits. GWAS
SNP associations of diabetes traits were identified from
the dbGaP and classified using 11 FHS GWAS in stage I
and 5 non-FHS GWAS in stage II. GWAS analyses of
the FHS samples are dependent, leading to the possi-
bility that SNP associations are potentially correlated
among different GWAS and the identified pathways in
stage I may be false-positive. Therefore, we analyzed the
non-FHS GWAS, based on independent samples, to
validate the candidate gene sets through stage II. Although
the FHS and non-FHS GWAS are respectively based on
lower- and higher-resolution genotyping from different
platforms, SNP-Gene mapping of USGSA (Figure 4)
applies the recent genome build and makes a consistent
map of SNPs and genes to perform comparable pathway
studies across heterogeneous GWAS.
USGSA with the fishP measure successfully identified

7 common gene sets associated with diabetes traits.
Component genes of these gene sets have significantly
higher probability of association with diabetes traits
among the top 5% of genes than a random gene. These
component genes have common binding motifs in their
promoter regions of [-2kb, 2kb] around transcription
start sites. The motifs include targets for 5 TFs of FOXO4,
NFAT, TCF3, VSX1 and POU2F1, 1 microRNA of MIR-
218 and one unknown binding factor. There are 25
common component genes with uniform score ≤ 0.05
over all GWAS (Table 3). These genes and their binding
factors suggest potential regulatory genetic mechanisms
underlying diabetes pathogenesis. For example, CNTN4
belongs to the gene sets of VSX1 (pid: ‘2239’) and TCF3
(pid: ‘2240’). Association tests and mouse experiments
have indicated that CNTN4 is an obesity–insulin tar-
geted gene [22]. However, the gene function related to
diabetes pathogenesis remains unclear. TCF3 is highly
expressed in islets of T2D patients and is associated
with Wnt signaling in diabetes pathogenesis [21]; and
VSX1, expressed in ocular tissues, is associated with eye
diseases [23]. Therefore, our findings and existing pub-
lished evidences can lead to the hypothesis that muta-
tions in the CNTN4 gene modify its binding with TCF3
in the pancreas and VSX1 in the brain and activate
related genetic regulations for diabetes and its compli-
cations. NPAS3 is the consistent significant gene of all
GWAS with target motifs for TFs of FOXO4 (pid: ‘2247’)
and POU2F1 (pid: ‘1551’). FOXO4 [19] and POU2F1
[24] have been shown to regulate insulin signaling and
glucocorticoid expression, respectively. Therefore, the
component gene of NPAS3 and TFs of FOXO4 and
POU2F1 can form another hypothesis of potential gen-
etic pathways related to diabetes pathogenesis.
Our literature and gene annotation review showed that

nearly all of the 25 common genes are highly expressed



Mei et al. BMC Genomics  (2015) 16:336 Page 9 of 12
in the brain, and most of them are known as susceptibility
genes for neural development and neurological disorders
(Additional file 2: Table S3). These findings suggest that
the CNS may have a critical role in diabetes pathogen-
esis. This conclusion is supported by previous studies of
NPAS3, where gene mutations are related to the aero-
biology of psychiatric illness [25,26] and the gene can
induce susceptibility to diabetes for psychiatric patients
[27]. Therefore, although pathway analysis at this study
cannot provide direct evidences of regulatory mecha-
nisms, the findings can help to form new hypotheses
and initiate follow-up studies to ascertain pathogenetic
changes of diabetes progress.
SNP associations for the analysis were retrieved from

public GWAS results stored in the dbGaP. However, the
number of available GWAS for diabetes traits is limited
and the genotyping has low resolution (≤500K SNPs),
especially for the FHS GWAS, which may cause missed
identifications of some important gene and pathway
associations. Therefore, more GWAS of diabetes traits
are required to improve the power and replicate the
findings in future studies. In addition, the gene set
analysis depends on the selection of uniform-score cut-
point αG, which is 5% for this study. The MSigDB data-
base includes 32,364 genes from 10,722 genes sets and
this selection assumes ~1,620 genes of them associated
with every diabetes trait. Pathway analysis of diabetes
traits showed that these genes are significantly enriched
in the seven identified gene sets. A smaller/larger αG will
cause a decreased/increased number of target genes for
enrichment test, which consequently affects identifica-
tion of significant pathways.
The current study aims to identify common path-

ways significantly associated with different diabetes
traits. The findings will help to discover shared genes
and genetic pathways related to different diabetes
symptoms and complications. A significant common
gene set is observed only if it has Padj ≤ 0.05 over all
GWAS in stage II, and the probability of making type
I error is far less than 0.05. The 7 significant identifi-
cations by USGSA account for 0.07% of total MSigDB
gene sets. These gene sets contain 25 common genes,
which are among the top 5% of gene association over
genome for all GWAS and account for <1.5% of total
hypothesized susceptibility genes in enrichment test.
However, it may not be accurate for the hypothesis
that 5% of genes in the genome (~1,620 susceptibility
genes) are associated with diabetes traits, and 1%
deviation of the hypothesis will result in changes
of ~320 susceptibility genes for diabetes traits. There-
fore, although there are strongly significant evidences
that component genes from the 7 gene sets are asso-
ciated with diabetes traits, these 25 common genes
are only susceptibility candidate genes for diabetes
pathogenesis, which requires further replications and
experiment validations in the future study.

Conclusions
In summary, we proposed the USGSA method with
implemented R package of snpGeneSets to facilitate
computationally efficient analysis of pathway association
based on only association p-values of GWAS SNPs.
USGSA applies a uniform score that unify 4 gene mea-
sures for summarizing different types of gene effects and
uses a pre-generated distribution to directly obtain a
pathway adjusted p-value. Simulation studies showed
that USGSA has strictly controlled FWER and high spe-
cificity for all gene measures, but the power depends on
the selected type of gene measure. USGSA makes path-
way identification from different gene measures compar-
able and improves interpretability and replicability.
The pathway analysis of public dbGaP GWAS results

identified 7 common gene sets significantly associated
with all studied diabetes traits. Component genes of
these gene sets are significantly enriched in the top 5%
of gene associations with diabetes traits compared to
random genes. The component genes have common
promoter motifs for target TFs and microRNA, and 25
significant common genes were identified with high
expression in the brain. The findings will help to dis-
cover pleiotropic genetic effects and formulate novel
hypotheses of common genetic regulations underlying
different diabetes symptoms and complications, which
are important in guiding the follow-up studies.

Methods
The USGSA method and implementation
The USGSA method for pathway analysis takes five
consecutive steps to test associations of curated gene
sets with a phenotype based on association p-values of
GWAS SNPs (Figure 4). This GSA method is imple-
mented in an R package, snpGeneSets, and can be freely
accessed at http://www.umc.edu/biostats_software/. Step
1 is the SNP-Gene mapping. The gene boundary is
defined from the upstream region of the transcription
start site (TSS) to the downstream region of the tran-
scription end site (TES) in order to include a potential
promoter region. Positions of GWAS SNPs and genes
are identified based on NCBI dbSNP [28] and Gene [29]
databases, respectively, of reference genome build 37.
The mapping process assigns a SNP to a gene if the SNP
falls inside the defined gene boundary.
The second step is ‘Gene measures’ for summarizing

gene effect from SNP associations. There are four gene
measures of the best p-value (minP), the second best
p-value (2ndP), the Simes’ p-value (simP) and the
Fisher’s p-value (fishP). For K SNPs mapped to a gene
with GWAS p-values (p1, p2,…pk), the ordered p-value

http://www.umc.edu/biostats_software/
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is defined as p(1) ≤ p(2) ≤… ≤ p(k), where p(1) = min{p1,
p2,…pk} and p(k) = max{p1, p2,…pk}. The four measures
are calculated as:

minP ¼ p 1ð Þ;
2ndP ¼ p 2ð Þ;

simP ¼ mini Kp ið Þ=i
n o

;

fishP ¼ Pr X≥x ¼ −2
XK

i¼1
log pið Þ

� �
¼ Ψ xð Þ

where Ψ is the chi-square distribution function with
df = 2K. All measures take values between 0 and 1 and a
smaller value indicates a stronger gene association.
Every type of gene measure is converted to a uni-

form score in Step 3. The uniform score of the i-th
gene is calculated as, Ui = (∑jI(Mj <Mi) + 0.5 · ∑jI(Mj =
Mi))/L, where Mi is gene measure of the i-th gene
and L is the total number of genes. The Ui estimates
the percentage of genes with stronger associations
than the i-th gene in the genome. The cumulative
distribution of uniform score approximately converges
to Pr(U ≤ u) ≈ u for a large N. When all genes are
randomly associated with a phenotype, their uniform
scores will have an approximately random uniform
distribution, i.e. U ϵ (0,1).
Curated gene sets are obtained from the MSigDB [30]

database, which integrates heterogeneous annotations
from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [31], the Reactome [32], the Gene Ontology
[33] and the Biocarta [34]. Based on the sources and
characteristics, USGSA classifies all gene sets into 20
types (Additional file 3: Table S1) and assigns a unique
pathway id (pid) for every gene set. Pathway associations
are measured by hypergeometric test for every curated
gene set during Step 4. A pathway empirical p-value (pe)
of a gene set Ω is obtained from hypergeometric distri-
bution and calculated as:

pe ¼ 1−
XK

i¼0

S
i

� �
L−S
l−i

� �
=

L
l

� �
;

where L is the number of GWAS SNP-mapped genes

(Gi: 1 ≤ i ≤ L); l ¼
XL

i¼1
I Ui≤αGð Þ defines the number of

significant genes with uniform score ≤ αG; S ¼
XL

i¼1
I

Gi∈ Ωð Þ and K ¼
XL

i¼1
I Gi∈ Ωð ÞI Ui≤αGð Þ. The test de-

pends on the selection of parameter αG, which is the hy-
pothesized percentage of GWAS SNP-mapped genes
associated with the phenotype over genome.
Because different gene sets can have overlapping

genes, the pathways for testing may not be mutually
independent, and pathway pe will not follow uniform
distribution. A permutation test is therefore required to
generate a distribution of pe and identify a pathway
adjusted p-value Padj with control for multiple testing
and pathway dependence. Since the calculation of path-
way pe is dependent only on a uniform score of a gene, a
sample- and study-independent permutation distribution
table of pe is therefore generated based on 10,000 ran-
domly simulated datasets of uniform scores for all
GWAS-SNP mapped genes in a uniform distribution.
For a particular gene set, its pathway Padj is therefore
calculated as

Padj ¼
X10;000

i¼1
min pij

n o
≤pe

� �
=10000;

where pij is the permuted pathway pe for the j-th cu-
rated get set at i-th permutation data.

Simulation study
We simulated three and two datasets respectively to
evaluate the type I error and the power of USGSA for
different gene measures. To mimic a real pathway analysis
of GWAS SNP associations, we extracted SNPs from
the T2D GWAS [35] for the simulation (n = 306,417).
The gene boundary for the analysis was defined to include
20 kb regions both upstream and downstream of the tran-
scription zone.
Dataset I was generated by simulating random SNP

p-values in a uniform distribution between 0 and 1,
i.e. ~U(0,1). The SNP p-value in Dataset II was simu-
lated to follow a beta distribution with shape α1 = α2 =
0.5, i.e., ~beta(0.5,0.5). The SNP p-value in Dataset III
was randomly generated by permuting T2D-GWAS
p-values [35]. Datasets I, II and III were analyzed to
evaluate the Type I error of USGSA.
To evaluate power, we simulated a pathway association

of gene set, KEGG_T2D [36], which consists of 47 genes.
For Dataset IV, all SNPs mapped to KEGG_T2D genes
had GWAS p-values in a beta distribution beta(1,3) with
a mean SNP p-value of 0.25, and all other SNPs had
GWAS p-values in a uniform distribution U(0,1) with a
mean SNP p-value of 0.50. For Dataset V, two steps were
taken to simulate 11 genes of KEGG_T2D associated with
phenotype. For Step 1, SNP p-values were randomly simu-
lated in a uniform distribution ~U(0,1). For Step 2, 11
genes were randomly selected from KEGG_T2D, and the
minimum SNP p-value of every gene was randomly
switched with the 11 minimum p-values of all GWAS
SNPs. The number of 11 was determined through
the inverse hypergeometric distribution function for
pathway empirical pe that corresponds to the pathway
adjusted Padj = 0.05 from the pre-generated permutation
table.
Every dataset consisted of 100 GWAS, and the USGSA

was applied to test pathway associations of all MSigDB
gene sets at every GWAS. GSA-SNP analysis was also
applied and results were compared with USGSA. The



Table 4 dbGaP GWAS of diabetes traits for common pathway study

Study name Study ID Analysis ID Phenotype N_SNPs PMID

Stage I

FHS phs000007 pha000417 Diabetes incidence 112923 17903298

FHS phs000007 pha000423 Age-sex adjusted Fasting Plasma Glucose 112923 17903298

FHS phs000008 pha000427 Age-sex adjusted Fasting Insulin 112923 17903298

FHS phs000009 pha000429 Age-sex adjusted Insulin Sensitivity 112923 17903298

FHS phs000010 pha000433 Age-sex adjusted HbA1c 112923 17903298

FHS phs000011 pha000437 Age-sex adjusted HOMA-IR 112923 17903298

FHS phs000012 pha000447 Multivariable adjusted Fasting Plasma Glucose 112923 17903298

FHS phs000013 pha000451 Multivariable adjusted Fasting Insulin 112923 17903298

FHS phs000014 pha000453 Multivariable adjusted Insulin Sensitivity 112923 17903298

FHS phs000015 pha000457 Multivariable adjusted HbA1c 112923 17903298

FHS phs000016 pha000461 Multivariable adjusted HOMA-IR 112923 17903298

Stage II

FUSION phs000100 pha002839 Type 2 Diabetes 306417 17463248

T1DGC phs000180 pha002862 Type 1 Diabetes 503180 19430480

GoKinD phs000018 pha002864 Diabetic Nephropathy 358475 21277817

SardiNIA phs000338 pha003005 serum insulin 347043

NFBC66 phs000276 pha002901 serum insulin 318890 19060910
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group positive rate (GPR) was estimated as the proportion
of MSigDB gene sets with Padj ≤ 0.05, and power was esti-
mated as the probability of KEGG_T2D with Padj ≤ 0.05.

Pathway analysis of diabetes traits
USGSA was applied to identify common pathways asso-
ciated with different diabetes traits, which took fishP as
gene measure and assumed 5% of genes over genome
associated with diabetes traits (i.e. αG = 0.05). GWAS
results of diabetes traits were obtained from dbGaP
[1]; GWAS study and analysis IDs are summarized in
Table 4. The pathway study was designed in two stages.
The stage I contains 11 Framingham Heart Study (FHS)
GWAS [37], and FHS traits include diabetes incidence,
fasting plasma glucose (FPG), fasting Insulin (FI), insulin
sensitivity, HbA1c and HOMA-IR. At stage I, pathway
empirical p-value (pe) was calculated for every MSigDB
gene set and summary of gene set’s association was com-
puted as Chi2 = ∑i − 2 ∗ log((pe)i) over all GWAS. Gene
sets were ranked in decreasing order of Chi2 and top
500 gene sets (~5%) were selected for validation in the
stage II of 5 independent GWAS (Table 4).
Compared to low-resolution genotyping of FHS GWAS

in stage I, GWAS of stage II contained approximately
300,000-500,000 SNPs with association p-values for
pathway analysis, and the traits include T2D, T1D,
diabetic nephropathy and serum insulin. Pathway ad-
justed p-value (padj) was calculated for every validated
gene set and a significant common pathway is defined
as having Padj ≤ 0.05 over all GWAS. Component genes
of significant gene sets were examined and a significant
common gene is identified if it has uniform score ≤ 0.05
over all GWAS.
Additional files

Additional file 1: Table S2. Uniform scores of significant genes from
identified common gene sets over all GWAS.

Additional file 2: Table S3. Function characteristics of significant genes
from identified common gene sets.

Additional file 3: Table S1. MSigDB gene-set types.
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