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Caspase-3 feedback loop enhances Bid-induced
AIF/endoG and Bak activation in Bax and
p53-independent manner

W Guo1,4, Y Zhang2,4, Z Ling3,4, X Liu1, X Zhao1, Z Yuan*,1, C Nie*,1 and Y Wei1

Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to
resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we
used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is
known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO),
HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially
attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-
induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak
activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas
an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway
mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream
caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together,
our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced
Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming
chemoresistance in cancers with dysfunctional Bax and p53.
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Mammalian cell death proceeds through a highly regulated
program called apoptosis that is highly dependent on the
mitochondria.1 Mitochondrial outer membrane (MOM)multiple
apoptotic stresses permeabilize the MOM, resulting in the
release of apoptogenic factors including cytochrome c, Smac,
AIF, and endoG.2–4 Released cytochrome c activates Apaf-1,
which assists in caspase activation. Then, activated caspases
cleave cellular proteins and contribute to the morphological
and biochemical changes associated with apoptosis.
Bcl-2 family proteins control a crucial apoptosis checkpoint
in the mitochondria.2,5–7 Multidomain proapoptotic Bax and
Bak are essential effectors responsible for the permeabiliza-
tion of the MOM, whereas anti-apoptotic Bcl-2, Bcl-xL, and
Mcl-1 preserve mitochondrial integrity and prevent cyto-
chrome c efflux triggered by apoptotic stimuli. The third Bcl-2
subfamily of proteins, BH3-only molecules (BH3s), promotes
apoptosis by either activating Bax/Bak or inactivating Bcl-2/
Bcl-xL/Mcl-1.8–12 Upon apoptosis, the ‘activator’ BH3s,
including truncated Bid (tBid), Bim, and Puma, activate Bax
and Bak to mediate cytochrome c efflux, leading to caspase
activation.8,11,12 Conversely, antiapoptotic Bcl-2, Bcl-xL, and
Mcl-1 sequester activator BH3s into inert complexes, which

prevents Bax/Bak activation.8,9 Although it has been proposed
that Bax and Bak activation occurs by default as long as all of
the anti-apoptotic Bcl-2 proteins are neutralized by BH3s,13

liposome studies clearly recapitulate the direct activation
model in which tBid or BH3 domain peptides derived from Bid
or Bim induce Bax or Bak oligomerization and membrane
permeabilization.12,14,15

Numerous studies have demonstrated a critical role for Bax
in determining tumor cell sensitivity to drug induction and in
tumor development. Bax has been reported to be mutated in
colon16,17 and prostate cancers,18,19 contributing to tumor cell
survival and promoting clonal expansion. Bax has been shown
to restrain tumorigenesis20 and is necessary for tBid-induced
cancer cell apoptosis.21 Loss of Bax has been reported to
promote tumor development in animal models.22 Bax knock-
out (KO) renders HCT116 cells resistant to a series of
apoptosis inducers.23–25 p53 has been reported to be a tumor
suppressor,26 and its mutant can cause chemoresistance in
cancer cells.27–29 Moreover, p53 is often inactivated in
solid tumors via deletions or point mutations.30,31 Thus, it is
necessary to find an efficient approach or agent to overcome
chemoresistance caused by Bax and/or p53 mutants.
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Few studies have focused on the role of Bak in tumor cell
apoptosis and cancer development. Bak mutations have only
been shown in gastric and colon cancer cells.32 Some studies
have revealed that Bak is a determinant of cancer cell
apoptosis.33,34 Some studies have even demonstrated that
Bak renders Bax KO cells sensitive to drug induction.33,35 In
this study, we are the first group to show that tBid induces Bak
activation and the release of AIF and endoG in colon cancer
cells, which causes cellular apoptosis independent of
Bax/p53. We also found that caspase-3 is activated in
apoptosis. Interestingly, downstream caspase-3 can
strengthen Bak activation and the release of AIF and endoG
during apoptosis via a feedback loop. Furthermore, we
reveal that Akt upregulates apoptosis progression. These
results will help us to better understand the function

of mitochondrial apoptotic protein members in apoptosis and
cancer therapies. Furthermore, our experiments may provide
a theoretical basis for overcoming chemoresistance in
cancer cells.

Results

Genistein induces Bax and p53-independent apoptosis in
cancer cells. We first determined the apoptotic effects of
genistein in HCT116 Bax KO and p53 KO cells. We treated the
cells with genistein at the indicated time, and apoptosis was
assessed by a DNA fragmentation ELISA. As depicted in
Figure 1a, genistein efficiently induced cell death in
HCT116 Bax KO, p53 KO, DU145 KO, and p53 KO cells.
Flow-cytometry analysis with Annexin V/PI staining also

HCT116 p53 KO
HCT116 Bax KO

D
N

A
 fr

ag
m

en
ta

tio
n

(R
el

at
iv

e 
U

ni
t)

6

4

2

0
0 12 24 48 72 (h) 0 12 24 48 72 (h)

0

DU145 p53 KO
DU145 Bax KO

C
ontrol

G
enistein

DU145 Bax KOHCT116 p53 KOHCT116 Bax KO DU145 p53 KO

Mito

Cyto
Cyt C

Cyt C

Cox IV

Actin

0 12 24 48 72

HCT116 Bax KO HCT116 p53 KO

0 12 24 48 72 (h)Genistein

P
I

Annexin V

6

4

2

**

0.6 %

1.6 % 4.3 %

2.2 %

2.7 %

2.5 %

4.2 %

3.5 %

10.4 %

25.7 %

11.0 %

24.6%

18.1 %

24.4%

21.4 %

25.1%

**
**

**

15 (KD)
10

15
10

15

40

Figure 1 Genistein induces cell apoptosis in Bax and p53-independent manner. (a) Analysis of cell apoptosis treated with genistein. Cells were treated with genistein (30 μM)
for different periods of time and then collected to examine apoptosis. Cell apoptosis was quantitatively detected by a cell death ELISA kit as described in Materials and methods.
Graphs showing results of quantitative analyses (n= 3, mean±S.D., **Po0.01). (b) Detection of cell apoptosis with flow cytometry. Cells were treated with genistein (30 μM) for
72 h, and then collected for Annexin Vand PI double staining with flow cytometry. Apoptotic cells were assessed with Annexin V positive and PI negative. (c) Cell were treated with
genistein (30 μM) for different periods of time, and subjected to subcellular fractionation. The cytosolic or mitochondrial fractions were immunoblotted for Cyt c detection. β-Actin
and Cox IV were used as a protein loading control. Representative results of three experiments with consistent results are shown
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revealed that genistein could induce apoptosis in these cell lines
(Figure 1b). Moreover, our data demonstrated that genistein
effectively induced Cyt c release from the mitochondria to the
cytosol (Figure 1c). Next, we stably transfected p53 shRNAs
into HCT116 Bax KO or DU145 Bax KO cells to make p53
knockdown cell lines (Figure 2a). Both flow-cytometry analysis
(Figure 2b) and ELISA (Figure 2c) revealed that p53 knockdown
had little effect on cell apoptosis by genistein. Meanwhile, we
transiently transfected Bax siRNA (si Bax) into HCT116 p53 KO
or DU145 p53 KO cells to make Bax knockdown cell lines
(Supplementary Figure 1A). Flow-cytometry analysis demon-
strated that Bax deficiency also had little effect on cell death in
p53 KO cells (Figure 2d). These results indicate that genistein
caused apoptosis independent of Bax and p53.

Bak activation is important for genistein-induced
apoptosis. Because Bak contributes to Bax-independent
cell death,33,36 we speculated that Bak could mediate
genistein-induced Bax/p53-independent cell death. Our
experiments revealed that genistein induced Bak oligomer-
ization and a conformational change in p53 or Bax KO cells
(Figure 3a). Meanwhile, we still detected Bak oligomerization

in Bax KD/p53 KO or Bax KO/p53 KD cells. Genistein
treatment was still sufficient to induce Bak oligomerization
in Bax KD/p53 KO or Bax KO/p53 KD cancer cells
(Supplementary Figure 1B).
To further investigate the contribution of Bak to cell

apoptosis, we transfected Bak siRNAs (si Bak) into HCT116
Bax KO or p53 KO cells to knock down Bak expression.
Western blot analysis confirmed the lack of Bak expression in
cancer cells (Figure 3b). As illustrated in Figures 3b and c, Bak
siRNAs efficiently decreased Cyt c release and caspase-3
activation. Meanwhile, Bak knockdown also decreased cell
death in cancer cells treated with genistein (Figure 3f). Further
experiments revealed that Bcl-2 overexpression obviously
inhibited Bak oligomerization and the conformational change
as well as apoptosis by genistein (Figures 3d, e, and g). These
results suggest that Bak has an important role in genistein-
induced Bax/p53-independent cell apoptosis.

The release of AIF and endoG from the mitochondria to
the cytosol mediates apoptosis. Our experiments also
found that genistein induced the release of AIF and endoG in
Bax or p53 KO cancer cells (Figure 4a). AIF and endoG are
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Figure 2 The effect of p53 in Bax KO cells. (a) Cells were stably transfected with Ctrl or p53 shRNA and transfected cells were immunoblotted for p53, Bax, Bak detection.
β-Actin was used as a protein loading control. (b) Cells were treated with genistein (30 μM) for 72 h. Cell apoptosis was detected with Annexin V/PI staining. (c) Cells were treated
with genistein (30 μM) for 72 h. Cell death was detected with ELISA. Graphs showing results of quantitative analyses (n= 3, mean±S.D., **Po0.01). (d) HCT116 ad DU145 p53
KO cells were transiently transfected with Bax siRNA for 48 h, and then cells were treated with with genistein for 72 h. Cell apoptosis was detected with Annexin V/PI staining.
Representative results of three experiments with consistent results are shown
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important factors for mitochondrial apoptosis and can
mediate caspase-dependent and -independent cell
death.3,37 We then used AIF siRNAs (si AIF), endoG siRNAs
(si endoG), or both siRNAs (si AIF/endoG) to decrease AIF
and endoG expression in cancer cells (Figures 4b and c). We
found that knockdown of either AIF or endoG alone could not
efficiently decrease apoptosis in cells treated with genistein.
However, the AIF and endoG double knockdown substantially
decreased apoptosis (Figures 4d and e). These results
indicate that the release of mitochondrial AIF and endoG is
necessary for genistein-induced Bax/p53-independent cell
apoptosis.

Bid causes Bak activation and the release of AIF and
endoG during apoptosis. Our study revealed that Bak
could induce the release of Cyt c from the mitochondria to the
cytosol; thus, we detected whether Bak induced the release
of AIF and endoG during apoptosis. We knocked down the
expression of Bak with siRNAs in cancer cells. We found that
Bak knockdown had little effect on the release of AIF and
endoG (Figure 5a). Similarly, AIF and endoG knockdown had
little effect on Bak activation (Figure 5b). These results
indicate that Bak activation and the release of AIF and endoG
are likely parallel apoptotic events. Indeed, we found that a
Bak, AIF, and endoG triple knockdown almost completely

Bak Mononer

Dimer

Tetramer

IP(Ab-2)

Lysate

Actin

Genistein 0 12 24 48 72 0 12 24 48 72 (h) – –+ +

HCT116 Bax KO HCT116 p53 KO DU145DU145
Bax KO p53 KO

Bak

Cyt C
Cyto

Caspase-3

CF

Actin

– –+ + – –+ +
si Ctrl si Ctrl si Bak si Bak

HCT116 Bax KO HCT116 p53 KO

3.23% 

2.01% 

18.33% 

15.03% 

C
ounts

Active Caspase-3

si Ctrl 
Genistein

D
U

145 
B

ax
K

O
D

U
145 

p53 K
O

si Bak

– –+ + – –+ +
Ctrl Ctrl Bcl-2 Bcl-2 

Genistein

Genistein

Mononer

Dimer

Tetramer

Actin

B
ak

Active Bak

C
ounts

D
U

145 
B

ax
K

O
D

U
145 

p53 K
O

Genistein

Ctrl Bcl-2 

HCT116 Bax KO HCT116 p53 KO

51.03% 

52.21% 

2.11% 

3.01% 

Bcl-2 

25

55

100
(KD)

25

25

40

25

10
15

35

25

15

40

25

55
100

40

25

40

Figure 3 Bak is required for genistein-induced apoptosis. (a) Time-dependent analysis of Bak activation in cells treated with genistein (30 μM) at the indicated time. Cells
were treated with genistein (30 μM), and then collected for detection. The oligomerization of Bak was assessed by cross-linking with Bismaleimidohexane (BMH) as described in
Materials and methods. Treated cells were lysed in lysis buffer, and Bak was detected by western blotting with anti-Bak antibody (Sigma). For the conformation of Bak detection,
treated cells were lysed in Chaps buffer and subjected to immunoprecipitation with anti-Bak Ab-2 antibody from Calbiochem. β-Actin was used as a protein loading control.
(b) Cells were transfected with Ctrl or Bak siRNA for 48 h and treated with genistein (30 μM) for 48 h. One portion of treated cells was subjected to subcellular fraction and
detection of Cyt c release. The other portion of treated cells was used to detect Bak expression and caspase-3 cleavage. (c) As described in (b), cells were permeabilized, fixed,
and stained for active caspase-3 and analyzed by flow cytometry. (d) Cells were transfected with Ctrl or Bcl-2 vector for 48 h and treated with genistein (30 μM) for 48 h. Treated
cells were collected for western blot analysis. (e) Cells were permeabilized, fixed, and stained for active Bak with Ab-2 antibody and analyzed by flow cytometry. (f) Cells were
transfected with Ctrl or Bak siRNA for 48 h and treated with genistein (30 μM) for 72 h. Cell death was detected with ELSIA. Graphs showing results of quantitative analyses
(n= 3, mean± S.D., *Po0.05). (g) Cells were transfected with Ctrl or Bcl-2 vector for 48 h and treated with genistein (30 μM) for 72 h. Cell death was detected with ELSIA.
Graphs showing results of quantitative analyses (n= 3, mean± S.D., **Po0.01). All data are representative of three independent experiments
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inhibited apoptosis in cells treated with genistein (Figure 5c).
We speculated that the other factors can cause Bak
activation as well as the release of AIF and endoG during
apoptosis.
Previous studies have demonstrated that activated Bid can

mediate Bak activation and the release of AIFand endoG.38–40

We then detected whether Bid contributes to genistein-
induced cell apoptosis. We first detected Bid expression
and activation. Our data confirmed that Bid was cleaved into
tBid (Figure 6a), which is the active truncated form of Bid,38

during the time course of genistein treatment. We also found
that tBid translocated into the mitochondria from the cytosol
(Figure 6b), which could induce the release of mitochondrial
proteins.41 We then knocked down the expression of Bid with
siRNAs. Our data revealed that Bid expression was inhibited
by siRNA treatment (Figure 6c). Moreover, Bid knockdown
affected Bak oligomerization; the release of Cyt c, AIF, and
endoG; and caspase-3 cleavage in Bax or p53 KO cells
(Figure 6c). Meanwhile, Bid knockdown also substantially
decreased apoptosis in Bax or p53 KO cells treated with
genistein (Figure 6d). We also transiently transfected
Bid siRNAs into Bax KD/p53 KO or Bax KO/p53 KD cells.
We found that Bid knockdown is sufficient to attenuate Bak
oligomerization; the release of Cyt c, AIF, and endoG; and
caspase-3 cleavage in cancer cells (Supplementary Figures
1C and D). These results demonstrated that Bid could
upregulate Bak activation; the release of AIF and endoG;
and subsequently apoptosis.

Akt inactivation mediates Bid-induced cell apoptosis.
Previous studies have revealed that Akt activation could
inhibit tBid appearance and Bid-induced apoptosis.42,43

Moreover, a previous study showed that genistein induced
apoptosis through the Akt pathway in anaplastic large-cell
lymphoma.44 Thus, we speculated that Akt is the upstream
apoptotic regulator in our experiments. We first detected
phosphorylated Akt (p-Akt) and total Akt (t-Akt) expression.
We found that p-Akt was decreased during the time course of
genistein treatment. Meanwhile, t-Akt had little change after
treatment (Figure 7a). We then further detected the effects of
Akt on apoptosis. We transfected a constitutively active
Akt1 construct into cancer cells and found that Akt1
overexpression increased t-Akt in cells (Figure 7b). Moreover,
Akt1 overexpression obviously inhibited the appearance
of tBid, Bak oligomerization, caspase-3 cleavage, and the
release of AIF and endoG (Figure 7c). Our experiments also
revealed that LY294002, a PI3K/Akt pathway inhibitor that
inactivates Akt, efficiently increased Bid activation, Bak
oligomerization, caspase-3 cleavage, and the release of
AIF and endoG (Figure 7c). These results indicate that Akt
inactivation mediates Bid-induced downstream apoptotic
events instigated by genistein.

Caspase-3 enhances Bid-induced Bak activation and the
release of AIF and endoG. Previous reports have revealed
that downstream apoptotic factors, such as Smac and
caspase-9, could mediate upstream apoptotic events
through positive feedback.2,5,45 Thus, we detected whether
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caspase-3 could enhance Bak activation. We first knocked
down caspase-3 with siRNAs (si Cas-3). We found that
caspase-3 expression was inhibited by siRNAs in cancer
cells (Figure 8a). Our data indeed revealed that caspase-3
knockdown decreased Cyt c release and Bak oligomerization

(Figure 8b). However, interestingly, caspase-3 knockdown
also obviously decreased the release of AIF and endoG
(Figure 8b). Moreover, caspase-3 knockdown had little effect
on Bid activation (Figure 8c). These results suggest that
downstream caspase-3 could enhance Bid-induced subse-
quent apoptotic events, but did not affect Bid activation.
To further examine the effect of caspase-3 during apoptosis,

we transfected an XIAP construct into cancer cells to
antagonize caspase-3 activation. The cleavage of caspase-3
could be blocked by XIAP overexpression. XIAP overexpres-
sion could also decrease apoptosis.46 Our data revealed that
the XIAP construct increased XIAP overexpression and
decreased apoptosis in cells treated with genistein
(Figure 8d). XIAP overexpression inhibited caspase-3
cleavage, Bak oligomerization, and the release of Cyt c. XIAP
overexpression also decreased the release of AIF and endoG
from the mitochondria (Figure 8e). These results further
revealed that downstream caspase-3 could enhance Bid-
induced apoptosis.

Discussion

Genistein, a naturally occurring isoflavone and prominent
isoflavonoid found in soy products, is of interest because
of its potent chemotherapeutic activities, including its ability to
inhibit cell growth and induce apoptosis in a wide variety
of cultured cancer cells.44,47–51 Moreover, genistein has
chemopreventive effects in several human malignancies,
including cancers of the breast, colon, and prostate.49,52

Previous studies have revealed that genistein induces
apoptosis in breast cancer cells by upregulating pro-
apoptotic Bcl-2 proteins, such as Bax or Bak, and down-
regulating anti-apoptotic factors, such as Bcl-xL or Bcl-2.48,53

Some studies have also revealed that genistein involves the
Akt signaling pathway in apoptosis.44,47 However, the exact
function of genistein on cancer chemoresistance is still
unknown.
In the present study, we first demonstrated that genistein

can induce apoptosis independent of Bax and p53. Previous
studies have demonstrated that genistein induced apoptosis
independent of p53.53 We focused on genistein and found out
that genistein can induce cell death in the absence of Bax and
p53. We found that Bak compensates for the loss of Bax in
cancer cell apoptosis. However, Bak knockdown only partially
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Treated cells were used to detect Bak, AIF, and endoG expression. (b) Cells were
transfected with Ctrl or double AIF or endoG siRNA for 48 h and treated with genistein
(30 μM) for 48 h. Treated cells were used to detect Bak, AIF, and endoG expression.
β-Actin was used as a protein loading control. (c) Cells were treated with single AIF,
endoG, Bak, Ctrl siRNA, double AIF/endoG, or triple AIF/endoG/Bak siRNA for 48 h,
and then treated with genistein for 72 h. Cell apoptosis was quantitatively detected by
a cell death ELISA kit as described in Materials and methods. Graphs showing results
of quantitative analyses (n= 3, mean± S.D., *Po0.05)
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Figure 6 Bid activation mediates AIF, endoG release, and Bak activation. (a) Cell
were treated with genistein at indicated time and collected with western blot analysis.
β-Actin was used as a protein loading control. (b) Cells were treated with genistein for 72 h
and subjected to subcellular fractionation. The cytosolic (C) or mitochondrial (M) fractions
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cells was collected to detect Bak and caspase activation. β-Actin was used as a protein
loading control. (d) Cells were transfected with si Ctrl or si Bid for 48 h and treated with
genistein (30 μM) for 72 h. Cell death was detected with ELSIA. Graphs showing results
of quantitative analyses (n= 3, mean±S.D., **Po0.01). Representative results of three
experiments with consistent results are shown

Caspase-3 enhances Bid-dependent cell death
W Guo et al

7

Cell Death and Disease



inhibited apoptosis in cells treated with genistein. These
results suggest that Bak may not be the sole decisive factor for
genistein-induced apoptosis.
Mitochondria respond to multiple death stimuli including

those involving pro-apoptotic Bcl-2 family proteins, such as
Bax and Bak, which induce mitochondrial membrane
permeabilization and cause the release of apoptotic
molecules.2,6,33,38 Therefore, we speculated that Bak could
mediate the release of some mitochondrial apoptotic factors,
such as Cyt c, AIF, and endoG. Indeed, our data revealed that
the release of AIF and endoG from that mitochondria was an
important part of genistein-induced cell death. It has been
reported that AIF and endoG translocate to the nucleus to
trigger caspase-independent cell death.37 Our data also
revealed that Bak mediated the release of Cyt c. Bak
knockdown efficiently inhibited the release of Cyt c. However,
interestingly, Bak knockdown had little effect on the release of
AIF and endoG. Conversely, an AIF and endoG double
knockdown did not affect Bak activation. These results lead
us to believe that another upstream factor mediates genistein-
induced apoptosis.
Previous studies have also revealed that the Akt signaling

pathway contributes to genistein-induced apoptosis44,47 Our
data further demonstrated that the Akt-Bid signaling pathway
upregulates Bak activation and the release of AIF and
endoG. Further experiments revealed that downstream
caspase-3 could enhance Bak activation and the release of
AIF and endoG. Arnoult et al.3 revealed that mitocho-

ndrial `release of AIF and endoG required caspase
activation. Our study also confirmed this conclusion. More-
over, we also proved that Bak did not contribute to the release
of AIF and endoG. Arnoult et al. also found that tBid could
induce the release of Cyt c, but not AIF and endoG. However,
our research revealed that tBid could induce the release of Cyt
c, AIF, and endoG, as described previously.39,54 Furthermore,
we also found that caspase-3 inhibition decreased the release
of mitochondrial apoptotic factors, whereas previous studies
have shown that caspase inhibitors prevent the mitochondrial
release of AIF and endoG, but not Cyt c. This result further
suggests that we have found a different mechanism underlying
the regulation of Bak activation and the release of AIF
and endoG.
In conclusion, we explored, for the first time, the detailed

molecular mechanisms of Bid-induced apoptosis after genis-
tein treatment and demonstrate that caspase-3 could enhance
genistein-induced apoptosis. Our findings explain how genis-
tein induces apoptosis in Bax- and p53-deficient cancer cells.
The Akt-Bid pathway initiates Bak activation and downstream
caspase processing. Meanwhile, the Akt-Bid pathway also
causes the release of AIFand endoG, which induces caspase-
independent cell death. Downstream caspase-3 reinforces
Bak activation and the release of AIF and endoG through
positive amplification loops (Figure 9). These positive reg-
ulatory feedback loops sensitize cancer cells to treatment with
genistein. Genistein seems to have broader implications, even
in a clinical perspective.
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Materials and Methods
Materials. Genistein, LY294002, Annexin V, and PI were obtained from Sigma
(St. Louis, MO, USA). Bak (B5897) and actin (clone AC-74, A5316) antibodies were
also from Sigma. Bismaleimidohexane (BMH) was obtained from Pierce (Rockford,
IL, USA). Prestained marker (SM0671) was from Fermentas (Vilnius, Lithuania).
Bak (Ab-2) was purchased from Calbiochem (San Diego, CA, USA). p53 (clone
7F5, #2527), phospho-Akt (Ser 473) (clone 587F11, #4051), Akt (#9272), caspase-
3 (clone 8G10, #9665), Bid (#2002), XIAP (#2042), AIF (#4642), and Cox IV
(#4844) were purchased from Cell Signaling (Beverly, MA, USA). EndoG (ab9647)
antibody was from Abcam (Cambridge, UK). Cyt c (sc-13156), Bcl-2 (sc-7382), and
Bax N-20 (sc-493) antibodies were from Santa Cruz (Santa Cruz, CA, USA).

Gene silencing with small interfering rnas and plasmids. Small
interfering RNA (siRNA) oligonucleotides were purchased from Dharmacon
(Lafayette, CO, USA) with sequences targeting Bax (5′-AACUGAUCAGAACCA
UCAUGG-3′), Bak (5′-AACCGACGCUAUGACUCAGAG-3′), Bid (5′-AAGAAGACA

UCAUCCGGAAUA-3′) AIF (5′-GGCUACGUCCAGGAGCGCACC-3′), endoG
(5′-AAGAGCCGCGAGUCGUACGUG-3′), caspase-3 (5′-UGAGGUAGCUUCAUAG
UGGTT-3′), and p53 (5′-CGGCAUGAACCGGAGGCCCAU-3′). For p53 shRNA
construction, the siRNA was cloned into the pSilencer 2.1-U6 hygro plasmid.
The constitutively active Akt1 construct HA-PKB-T308D/S473D was obtained as
previously described.5,55

Cell culture and transfection. DU145 and HCT116 cells were obtained
from the American Type Culture Collection. DU145 and HCT116 cells were
incubated in DMEM supplemented with 10% FBS and penicillin-streptomycin.
HCT116 Bax KO6 cells were the gift from Quan Chen (Chinese Academy of
Sciences, Beijing, China). DU145 Bax KO, DU 145 p53 KO, and HCT116 p53 KO
were obtained from Dean G. Tang (the University of Texas MD Anderson Cancer
Center, Science Park-Research Division, Smithville, TX, USA).

For siRNA or shRNA transfection, cells were seeded on 6-well plates and then
transfected with the appropriate plasmid DNA or siRNA using the manufacturers’
protocols. Typically, cells were seeded on coverslips in the 6-well plates, and then
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1 μg of plasmid DNA or 100 nM siRNA and 4 μl of DMRIE-C reagent (Invitrogen,
Carlsbad, CA, USA) were used per coverslip. The cells were incubated for 4 h in the
transfection mixture, which was then replaced with fresh culture medium. For stable
transfection, cells were transfected with the constructs as previously described.2,6

Positive clones were selected with 600 μg/ml hygromycin (Invitrogen) for
several weeks.

Apoptosis assays. Three methods were used to assess PL-induced apoptotic
cell death: detection of DNA fragmentation with the Cell Death Detection ELISA kit
(Roche Diagnostics, Castle Hill, NSW, Australia), Western blot analysis of caspase-
3 cleavage, Cyt c, AIF, or endoG release and measurement of apoptotic cells by
flow cytometry (Annexin/PI, Bak activation, or activated caspase-3). The Cell Death
Detection ELISA quantified the apoptotic cells by detecting the histone-associated
DNA fragments (mono- and oligo-nucleosomes) generated by the apoptotic cells.5

Cell fractionation and western blot analysis. Mitochondria and
cytoplasm from cells were fractionated by differential centrifugation as previously
described.5 Cytosol, mitochondria, total lysates, and immunoprecipitates were
analyzed by western blot with antibody dilutions as follows: actin at 1:20 000; AIF,
caspase-3, endoG, p53, Akt, p-Akt, Bid, XIAP, CoxIV at 1:2000; and Bax, Bak, Cyt c
at 1:1000.

Bak oligomerization and bak conformational change. Cells were
treated with agents and incubated with 1 mM BMH in 10% DMSO or DMSO alone
for 30 min at 25 °C. After centrifugation at 5000 × g for 25 min at 4 °C, the reaction
was split into supernatant and pellet fractions. The pelleted material (10 mg total
protein) was separated by SDS-PAGE and immunoblotted with anti-Bak antibody
to detect Bak oligomerization.56 Bak conformational change was performed as
described.57 Briefly, cells were lysed in 1% CHAPS buffer, and 250 μg of protein
was immunoprecipitated using anti-Bak (Ab-2), which only recognizes Bak that has
undergone a conformation change. Immunoprecipitated protein was then subjected
to immunoblot analysis by using anti-Bak as primary antibodies.

Statistical analysis. Statistical analysis of the differences between the groups
was performed using the Student's t-test with Po0.05 considered as statistically
significant.
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