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Escape rate and diffusion of a 
Stochastically Driven particle
Antonio Piscitelli1 & Massimo Pica Ciamarra1,2

The dynamical properties of a tracer repeatedly colliding with heat bath particles can be described within 
a Langevin framework provided that the tracer is more massive than the bath particles, and that the 
collisions are frequent. Here we consider the escape of a particle from a potential well, and the diffusion 
coefficient in a periodic potential, without making these assumptions. We have thus investigated the 
dynamical properties of a Stochastically Driven particle that moves under the influence of the confining 
potential in between successive collisions with the heat bath. In the overdamped limit, both the 
escape rate and the diffusion coefficient coincide with those of a Langevin particle. Conversely, in the 
underdamped limit the two dynamics have a different temperature dependence. In particular, at low 
temperature the Stochastically Driven particle has a smaller escape rate, but a larger diffusion coefficient.

The evaluation of the rate of escape of a particle from a one dimensional potential well, and of the diffusion coeffi-
cient of a particle moving in a one dimensional periodic potential, are classical problems in statistical physics that are 
relevant to the physical, chemical, engineering and biological sciences. When the timescale of interaction of the 
particle with the heat bath is the smallest timescale of the problem1, escape and diffusion can be investigated within 
a Langevin formalism. In this context, solutions have been obtained2 in both the overdamped, τ τvis cross, and 
underdamped limits, τ τvis cross. Here τvis =  m/γ is the viscous relaxation timescale, with m mass of the particle 
and γ the viscous friction coefficient, and τcross =  1/ωb is a timescale related to the exchange between kinetic and 
potential energy during barrier crossing fixed by the shape of the potential V(x) on the top of the barrier, 
ω = ∂ ∂V x/b m b

2 1 2 2 . In a variety of different contexts including research strategies in biology3, transport in electron-
ics4, market evolution models5, supercooled liquids6–8, diffusion of atoms in optical lattices9, diffusion of molecules 
at liquid/solid interfaces10, chemical reaction rates11,12, the time scale of interaction with the heat bath is not the 
smallest one, and the Langevin approach is no longer justified. In these cases one should adopt a different formalism, 
allowing the particle to move under the influence of the potential in between successive collisions with the heat bath.

Here we report on the first investigation of escape and diffusion problems within this formalism. We consider 
a simple model in which a walker interacts with the heat bath with a constant rate tc, the interactions instantane-
ously randomizing the walker’s velocity according to the Maxwell-Boltzmann distribution at the considered tem-
perature. When not interacting with the heat bath, the walker moves according to Newton’s equation within the 
potential. This model has been investigated before to describe chemical reaction rates. In this context tc depends 
on the pressure of the gas surrounding the walker, and the walker and the surrounding ones have the same 
mass11,12. The model has also been generalized considering the general case of different masses13, in which case 
the Klein-Kramers’ equation is recovered as a limit of frequent collisions and large walker mass14, as well as con-
sidering how anomalous diffusion could be related to the distribution of the collision intertimes15. In particluar, 
despite Lévy flights in periodic potentials have attracted some attention16,17, the escape properties in the presence 
of an intertime distribution with finite moments has not yet been studied systematically.

As a model potential, we have considered a periodic x4 well, V(x), with period L and energy barrier V(± 
L/2) =  Δ U, but our results are easily generalizable. Thus in the period –L/2 ≤  x ≤  L/2, the potential is 

ω= − ωV x m x x( ) m

L
1
2 0

2 2 40
2

2 . The energy barrier is ω∆ =U L /160
2 2 , while ω ω= 2b

2
0
2. The tracer particle collides 

elastically with the bath particles, that have the same mass. This implies that in a collision the tracer and the bath 
particle exchange their velocity. Thus, the noise acts as follows: at exponentially distributed time intervals 
∆ = −∆P t e t( ( ) / )c

t
tc  the tracer undergoes a collision, meaning that its velocity is instantaneously re-sampled from 

a Gaussian distribution with variance equal to the temperature π




=




−P v e T m( ) / 2 /
mv

T
2

2 . The simulation proce-
dure is detailed in the Methods section.
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We have determined the escape rate and the diffusion coefficient in both the overdamped, τtc cross, and the 
underdamped limits, τtc cross, validating our theoretical results against numerical simulations and highlighting 
qualitative and quantitative differences with respect to the Langevin dynamics. In Fig. 1 we illustrate typical trajec-
tories of the Stochastically Driven and of the Langevin dynamics, in the overdamped and the underdamped limits. 
In both cases the trajectories of the two dynamics appear qualitatively similar. However, we will show that only in 
the overdamped limit the two dynamics quantitatively agree. Indeed, in the underdamped limit the two dynamics 
differ, the Langevin one having an higher escape rate but, surprisingly, a smaller diffusion coefficient. This clarifies 
that the Brownian model is not appropriate in the underdamped limit to describe a physical system where the 
interaction with the heat bath occurs via successive collisions rather than via a continuous interaction.

Results
Escape rate. The escape rate is conventionally defined as the rate with which a particle “irreversibly” escapes 
from a well in a given direction. In a one dimensional periodic potential, the notion of irreversibility is easily clar-
ified. A barrier crossing event is irreversible if it is not correlated to the subsequent one. Thus, an irreversible barrier 
crossing event is followed with probability 1/2 by a barrier crossing that brings the particle back to its original well, 
and with probability 1/2 by a barrier crossing event that brings the particle to the following well. To estimate the 
escape rate, we consider that the physical process leading to an irreversible escape comprises different steps. First, 
starting from thermal equilibrium, a particle performs a barrier crossing jump entering the arrival well. We indi-
cate with ∩P  its probabily. Then, the particle performs different jumps remaining localized close to the top of the 
barrier, possibly crossing the top of the barrier a number of times. We indicate with p the probability that the par-
ticles crosses the barrier an even number of times, so that it remains in the arrival well. Finally, the particles moves 
away from the top of the barrier decorrelating in the arrival well, without the occurrence of any further recrossing. 
We call Pd this probability. The escape rate is then given by Γ = ∩P pP t/(2 )cSD d . Since the probability that a particle 
recrosses a barrier an even number of times is = ∑ − = −=

∞ −p P P P(1 ) (2 )n
n

0 d d
2

d
1, one finally gets

Γ =
−

.∩t
P t P t
t P t

( )
( ) ( )

2 (2 ( )) (1)SD c
c c

c c

d

d

To estimate the escape rate, we thus need to estimate the barrier crossing probability ∩P t( )c , and the decorre-
lating probability Pd. ∩P  is obtained from an equilibrium average over the jumps. Indeed, each jump is character-
ized by three variables, the coordinate of the starting point, xs, the initial velocity vs, and the time of flight t. xs and 
vs have a Boltzmann and Maxwellian equilibrium distribution, respectively, while t is exponentially distributed 
with time constant tc. Alternatively, each jump can be characterized by xs, by the coordinate of the final point, xe, 
and by the total energy E. Assuming with no loss of generality |xs| <  L/2, ∩P  is the probability that |xe| >  L/2, which 
is found to be ∫ ∫ ∫=∩ −

∞ ∞P dx dx dEf x x E2 ( , , )
L

L
s L e s e/2

/2

/2 0
, where

π
= .

− −→
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T v x E v x E

e
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Here f (xs, xe, E) is the probability that the walker interacts with the heat bath when in position xs, that through this 
interaction it acquires a total energy E, and that its flight time equals the time needed to travel from xs to xe with 
total energy E, which is given by ∫→ =t x x( )E s e x

x dz
v z E( , )s

e . ∫= −
−Z e du

L

L

/2

/2 V u
T
( )

 is a temperature dependent nor-
malization constant. The predicted dependence of ∩P  on tc illustrated in Fig. 2a (full line) correctly describes the 
numerical results. The high and small tc limits can be rationalized. In the tc →  0 limit, the above triple integral can 
be carried out, and one finds ω π= −∆∩

−P t U Texp( / )c0
1 . In the tc →  ∞  limit all jumps with enough energy 

cross the barrier and ∩P  approaches a constant, whose weak temperature dependence is neglected in the 
following.

Figure 1. Typical trajectories of the Stochastically Driven particle (left) and of the Brownian particle 
(right), for ω0tc and (γ/ω0)−1 equal to 10−1, 100, 101 at T/ΔU = 0.21. 
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The decorrelation probability Pd is estimated considering that, if a particle reaches a position which is at a far 
enough distance lT from the top of the barrier, then it decorrelates as its dynamics becomes dominated by the 
potential. We assume lT to be the distance at which the potential significantly affects the velocity 

= −v x E m E V x( , ) (2/ )( ( ))  of a particle crossing the barrier with energy E, and estimate ωl T m/T b
2 

through a Taylor expansion of v(x, E) around the top of an energy barrier. In the overdamped limit ω t 1b c , Pd 
is given by the probability that a barrier crossing event is followed by a sequence of jumps (of typical size ∝  T ) 
able to drive the particle at distance ∝l TT  from the top, before a recrossing occurs. It is easy to show in a mean 
first passage time formalism18 that in this regime ωP t t( ) 2c b cd . In the underdamped limit, ω t 1b c , jumps are 
long and barrier crossing events can be considered irreversible, so that Pd =  1. The numerical measure of Pd(tc) 
confirms our predictions for the overdamped and underdamped limits of Pd, as illustrated in Fig. 2b. We approx-
imate in the following Pd with a simple functional form able to capture the crossover between the ω t 1b c  and 
the ω t 1b c  limits, = ω

ω+
P t( )c

t
k td

2
2

c

c

0

0
. We fix k =  ω0/ωb exploiting an analogy with the Langevin dynamics in the 

overdamped low temperature limit, we will detail below.
Having determined ∩P t( )c  and Pd(tc), we can compute the escape rate Γ t( )SD c  at all tc through Eq. 1. The over-

damped and the underdamped limits result ω π ωΓ = − −∆t e(1/2) ( )SD b c
U T1

0
/  and Γ ∝ − −∆t eSD c

U T1 / , respectively. 
Figure 3 shows that our theoretical prediction (full line) well compares with numerical simulations of the model 
(open squares), at all tc. In the figure, we also illustrate numerical results (full circles) for the escape rate of the 
Langevin dynamics, ΓL. We remind that in the medium/high damping regime, and in the low temperature limit, 

ΓL is the celebrated Kramers’ escape rate19, Γ =



 + −
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1
, and that finite temperature cor-

rections have been determined by Lifson–Jackson20. In the overdamped limit, Kramer’s result coincides with our 
prediction for ΓSD provided that k =  ω0/ωb in our functional form for Pd. In the underdamped limit, ΓL is known 
to scale as τΓ ∝ ∆ − −∆eL

U
T

U T
vis

1 / 2. This result clarifies that, as concern the escape rate, the two dynamics markedly 
differ in the underdamped limit. The Langevin dynamics has a much higher escape rate, being Γ Γ ∝ ∆U T/ /L SD .

Diffusivity. The key idea that allows to obtain analytical results for the diffusivity of a stochasitcally driven 
particle in a confining potential is the introduction of the coarse-grained trajectory illustrated in Fig. 4. Indeed, 
each trajectory can be conveniently described as a sequence of barrier crossing jumps, with displacement ∆ ∩xi , 
followed by effective intra-well jumps, with displacement ∆ ∪xi . The effective displacement ∆ ∪xi  is the total dis-
placement of the intra–well jumps connecting the final position of jump ∆ ∩xi , and the initial position of jump 

Figure 2. (a) Probability ∩P  that a jump crosses an energy barrier, normalized with the Arrhenius factor. The 
full line is our theoretical prediction, the dashed line the asymptotic value for Δ T/U =  0.21. (b) Fraction of 
uncorrelated barrier crossing jumps, Pd. The full line is an empirical fitting formula based on the predicted 
behavior in the tc →  0, ∞  limits (see text).
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∆ ∩
+xi 1. Since the fraction of barrier-crossing jumps is ∩P , after N t t/ c  jumps the overall displacement is 
= ∑ ∆ + ∆∩ ∪∩R x x( )N i

NP
i i , and the diffusion coefficient is

∑ ∑=
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the cross product term vanishing for symmetry reasons. Since only a fraction Pd of the terms appearing in the 
above sums are uncorrelated, the diffusion coefficient can also be expressed as

= ∆ + ∆ = +∩
∩ ∪ ∩ ∪D

t
P P x x D D1

2
[ ( ) ( ) ] ,

(4)c
d

2 2

where 〈 ·〉  indicates averages over uncorrelated jumps. Thus, we are left with the problem of estimating the mean 
square jump length of uncorrelated barrier crossing jumps, ∆ ∩x( )2 , and of uncorrelated effective intra-well 
jumps, ∆ ∪x( )2 .

In the overdamped tc →  0 limit all jumps are short, and barrier crossing jumps start and end close to the top of 
a barrier, where the potential is flat. Accordingly, ∆ ∩

→
x Tt m( ) 12 /t c

2
0

2
c

21, and given our results for Pd and ∩P ,

∝ ∆ .∩
∩→

− −∆
D Tt P P TL t Ue6 (5)t c c

U T
0 d

2 3 /
c

To estimate ∆ ∪
→

x( ) t
2

0c
 we consider that, since barrier crossing jumps are short, two subsequent barrier 

crossing jumps are connected by a sequence of jumps whose total displacement is either zero, if the particle 
recrosses the same barrier, or roughly equal to the period of the potential, if the particle traverses a well and 
crosses a subsequent barrier. For uncorrelated barrier crossing jumps these two possibilities are equally likely, 
which implies ∆ ∪

→
x L( ) /2t

2
0

2
c

. This allows to estimate

Figure 3. Numerical results and theoretical predictions for dependence of the jump rate on τ = tc = τvis, for 
the Stochastically Driven dynamics and the Langevin dynamics. The temperature is T/Δ U =  0.21. The full 
line is our theoretical prediction for ΓSD. The dashed line is an empirical expression that interpolates between 
the overdamped and underdamped limits of ΓL (Eq. 6.4 of ref. 2).

Figure 4. Schematic representation of the definitions of the internal and external jumps in the 
Stochastically Driven particle. The height of the barrier Δ U, the period L and the curvature in the minimum 
ω0

2 are indicated.
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In the underdamped tc →  ∞  limit a particle that has enough energy to cross an energy barrier will traverse 
∆ ∩

x t E L t t( , )/ / w E,  wells, where t is the jump duration, and tw,E the time the particle needs to cross a single energy 
well. Thus ∆ ∩

x t E L t t( ( , )) / w E
2 2 2

,
2  is evaluated averaging over the waiting time distribution =t t( 2 )c

2 2  

and over the energy of the particle. This leads to ∫ ∫∆ =∩
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 for small E −  Δ U. We thus estimate
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→∞D Ut U Texp( / ) (8)t cc

To determine ∆ ∪
→∞

x( ) t
2

c
, we indicate with pk the probability that a walker interacts k times with the heat 

bath in a well, before escaping. If xe is the original position inside the well, and xs the final one, then 
∫∆ = ∑ −∪

→∞
x p P x P x x x x dx dx( ) ( ) ( )( )t k k e

k
s e e s e s

2
e s

( ) 2
c

. Here ∝P x v x( ) 1/ ( )e  is the probability that a barrier 
crossing jump ends in xe, one could evaluate from the equilibrium distributions over the barrier-crossing jumps, 
and P x x( )k

s es
( )  is the probability that the jump through which the particle escapes from the well starts in xs, being 

the particle arrived in xe. To a good approximationa particle exits from the well after performing a single collision, 
so that xe −  xs =  0, or after thermalizing within the well, so that xe and xs becomes uncorrelated. Accordingly, 

λ∆ = ⋅ + −∪
→∞

x p p( ) 0 (1 )t
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with P x T( , )th
ss  the probability that a barrier crossing jumps of a thermalized state starts from position xs. The 

evaluation of both p1, Pe(xe, T) and P x T( , )th
ss  leads to ∆ ∝∪
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x L( ) t
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. Summarizing, in the tc →  ∞  limit
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We finally note that, in both Eqs 8 and 10, the proportionality constants have a weak temperature dependence 
we neglect, that is fixed by the shape of the potential.

While we have estimated ∩→Dt 0c
 and ∩→∞Dtc

 in the low temperature regime, it is also possible to estimate ∩D t( )c  
at all tc. To this end we assume the barrier crossing jumps to be always uncorrelated, which is reasonable as the 
jumps are uncorrelated both in the overdamped limit, as jumps are short and particles on the top of the barrier 
move as free particles, and in the underdamped limit. With this assumption we estimate ∆∩

∩P x( )2  from equi-
librium average over the jumps, ∫ ∫ ∫∆ = −∩

∩
−

∞ ∞P x dx dx dEf x x E x x( ) 2 ( , , )( )
L

L
s L e s e e s

2
/2

/2

/2 0
2, with f given in 

Eq. 2, and thus get = ∆∩
∩ ∩D t P P x( ) ( )c t

1
2 d

2
c

. Beside being valid at all tc in the low temperature regime, this 
prediction is also valid at all temperatures in the underdamped regime, where Pd =  1. Figure 5 illustrates that this 
theoretical prediction (dashed line) correctly describes the numerical data (full circles), and scales as tc

3 and as tc 
in the overdamped and in the underdamped limit, as predicted in Eqs 5 and 8, respectively. In the figure, we also 
illustrate numerical results for the contribution to the diffusion coefficient of the intra-well jumps (full dia-
monds), that behaves as predicted in Eqs 6 and 10 in two limits. Thus, the overall diffusion coefficient exhibits a 
crossover between two linear regimes, as ∪

D D  in the overdamped limit, and ∩
D D  in the underdamped one.

We finally compare the diffusion coefficient of the Stochastically Driven and of the Langevin dynamics, iden-
tifying their characteristic timescales, τ =  tc =  τvis. For both dynamics = ΓD L2 in the overdamped limit. In this 
limit, the full van Hove distributions actually coincide at all times. In the underdamped low temperature limit, the 
diffusivity of the Langevin dynamics is τ∝ −∆D T eL

U T/ 22, while that of the Stochastically Driven particle is given 
by Eq. 8, τ∝ ∆ −∆D U e U T/ . Accordingly, in this limit the Stochastically Driven dynamics is faster than the 
Langevin one, as illustrated in Fig. 6a. Figure 6b compares the diffusivities of the two dynamics as concern their 
temperature dependence, in the underdamped regime. The numerical results for the temperature dependence of 
the Stochastically Driven particle diffusivity are correctly described by our theoretical prediction for ∩D  valid at 
all temperatures (full line), while those of the Langevin dynamics have been predicted in ref. 22. At high temper-
ature, T >  Δ U, the effect of the potential is negligible and the two diffusivities coincide, and scale as τTe−ΔU/T. In 
the low temperature regime, the Langevin diffusivity does not change temperature dependence, while the diffu-
sivity of the Stochastically Driven particle model only depends on temperature through the Arrhenius factor. The 
difference in the diffusivities in the underdamped low temperature regime is rationalized considering that the two 
dynamics are mapped on free hopping dynamics with a different jump rate Γ, and a different mean square jump 
length, λ2. Indeed, on the one side we have already seen that Γ Γ ∝ ∆U T/ /L SD . On the other side, in the under-
damped limit the mean square size of the jumps of the Langevin dynamics22 scales as λ τ∝ ∆T U/L

2 2
vis
2 , while 

that of the Stochastically Driven dynamics scales as λ ∝ ∆UtSD c
2 2, as in Eq. 7, so that λ λ ∝ ∆T U/ ( / )L SD

2 2 2. 
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Thus, despite making more frequent irreversible barrier crossing jumps, the Langevin dynamics has a smaller 
diffusivity as its jumps are much shorter.

Discussion
We put forward an analytical treatment of the escape rate from a well and of the diffusion coefficient in a periodic 
potential of a Stochastically Driven particle, considering both the overdamped and the underdamped limits. 
The particle behaves as a Langevin particle in the overdamped limit. In the underdamped low temperature limit, 
conversely, with respect to a Langevin particle a Stochastically Driven one has a smaller escape rate, but a larger 
diffusion coefficient.

Figure 5. Open symbols illustrate the dependence of the normalized diffusion coefficient on the typical 
time of collision with the heat bath at low temperatures. Full symbols indicate the contribution due to ∪D  
(diamonds) and ∩D  (circles). Full lines are predictions for ∪D  in the overdamped and in the underdamped 
limits, while the dashed line is the analytical prediction of ∩D , at all tc. All predictions are for T/Δ U =  0.21.

Figure 6. Diffusivities of the Stochastically Driven particle and of the Langevin dynamics, assuming 
τ = τvis = tc. Panel (a) illustrates the τ dependence of the diffusivities, for different temperatures, while panel (b) 
illustrates the dependence of the diffusivity on the temperature, in the underdamped regime (τω0 =  102). The 
full line represents Eq. 8 for the Stochastically Driven dynamics and the dashed line represents Eq. 3.9 of ref. 22 
for the Langevin dynamics.
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Our observations are relevant to describe the dynamics of systems that undergo infrequent collisions with 
bath particles. Thus, our results could describe chemical reactions occurring at very low pressure, as in this case 
gas particles seldom collide with the system of interest. Similarly, our results could be relevant to discuss diffusion 
in amorphous materials at low temperature, when the system can be seen as hopping through different minima 
of its energy landscape. In this case, the heat bath is provided by the scattering of phonons, whose collision fre-
quency is small at low temperatures23.

An interesting feature of this model, which is also observed in a variety of soft-matter and biological sys-
tems9,24,25, is the long coexistence of a van Hove distribution with non gaussian tails, and of a mean square dis-
placement linear in time. An important open question ahead concerns the temporal evolution of the van Hove 
distribution in the underdamped limit, to rationalize how normal diffusion is recovered.

Methods
Simulation details. In the Stochastically Driven dynamics, a particle in position xs =  x(ts) that collides with 
the heat bath acquires a velocity vs =  v(ts) and an energy = +E V x mv( ) /2s s

2 . This energy is conserved up to the 
time te =  ts +  Δ t of the next collision of the particle with the heat bath. At time te, the particle will be in position 
xe, the end-point of the jump. In the overdamped and intermediate regime we determine xe by numerically inte-
grating the equation of motion during a jump, i.e. from the time of the collision ts to the time te, using a simple 
explicit Euler scheme. In the underdamped regime, it is computationally convenient to follow a different 
approach. Suppose, for instance, that after a collision a particle has enough energy to overcome an energy barrier. 
In this case the particle will actually traverse many wells, as the jump duration Δ t is large. Let Δ ttop the time the 
particle needs to reach the top of the barrier, and Δ tcross the time it needs to traverse a well. Starting, without loss 
of generality, from the first well with positive velocity, the arrival point is conveniently estimated as 
= + − + + ∆x x L x Ln x( /2 )e s s , where n is the interger part of ∆ − ∆ ∆t t t( )/top cross, and Δ x is the distance 

the particle moves from the top in a time ∆ − ∆ − ∆t t n ttop cross. This expression for xe is convenient as the vari-
ous quantities can be analytically computed, for our model potential. However, their evaluation requires the 
evaluation of an elliptic integral, which is time consuming. Thus, this approach is actually convenient only in the 
underdamped regime. A similar approach can be used when the particle has not enough energy to cross an 
energy barrier, in which case the particle will perform many oscillations within a well, in the underdamped 
regime.

The simulation of the Langevin dynamics is more time-consuming that that of the Stochastically Driven 
dynamics. We have carried it out fixing the integration timestep at 10−2 ω0tc.

Measurement of ∩P  and Pd. ∩P , the probability that a jump crosses a barrier, is easily determined in sim-
ulations as the long time limit of the ratio between the number of barrier crossing jumps, M(t), and the total 
number of jumps, N(t): =∩ →∞P M t N tlim ( )/ ( )t . This is the quantity represented by the data points of Fig. 2a. Pd 
is the fraction of barrier crossing jumps that are irreversible, i.e. which are followed with equal probability by a 
forward or by a backward jump. Operatively, this quantity is measured in the simulation by recording the number 
of forward jumps f(t), which are the jumps having the same direction of their predecessor, and the number of 
backwards jumps, b(t). Thus, the total number of barrier crossing jumps is M(t) =  f(t) +  b(t), and 
= →∞P f t M tlim 2 ( )/ ( )td .
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