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Simple Summary: Scoring lesions in slaughtered pigs can provide useful feedback to the swine
industry, although the systematic recording of lesions is very challenging and time consuming.
Artificial intelligence offers interesting opportunities to solve highly repetitive tasks, such as those
performed by veterinarians at postmortem inspection in high-throughput slaughterhouses and
to consistently analyze large amounts of data. The present investigation indicates that enzootic
pneumonia-like lesions can be effectively detected and quantified through artificial intelligence
methods under routine slaughter conditions.

Abstract: The slaughterhouse can act as a valid checkpoint to estimate the prevalence and the
economic impact of diseases in farm animals. At present, scoring lesions is a challenging and
time-consuming activity, which is carried out by veterinarians serving the slaughter chain. Over
recent years, artificial intelligence(AI) has gained traction in many fields of research, including
livestock production. In particular, AI-based methods appear able to solve highly repetitive tasks
and to consistently analyze large amounts of data, such as those collected by veterinarians during
postmortem inspection in high-throughput slaughterhouses. The present study aims to develop an
AI-based method capable of recognizing and quantifying enzootic pneumonia-like lesions on digital
images captured from slaughtered pigs under routine abattoir conditions. Overall, the data indicate
that the AI-based method proposed herein could properly identify and score enzootic pneumonia-like
lesions without interfering with the slaughter chain routine. According to European legislation, the
application of such a method avoids the handling of carcasses and organs, decreasing the risk of
microbial contamination, and could provide further alternatives in the field of food hygiene.

Keywords: pig; slaughterhouse; pneumonia; scoring methods; artificial intelligence; deep learning;
convolutional neural networks

1. Introduction

Respiratory syndromes are recognized worldwide as a major concern for the profitabil-
ity of livestock farming. This is particularly true in the modern swine industry, where large
groups of pigs are reared under confined and intensive conditions. Prolonged exposure to
adverse environments (e.g., inadequate ventilation systems, inhalation of large amounts of
dust and irritating chemicals, such as ammonia) overwhelms the effectiveness of respira-
tory defenses, thus facilitating the occurrence of infections. Moreover, the presence of dense
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pig populations increases the spread of pathogens and the burden of infectious diseases. As
a result, pig farms may suffer substantial economic losses, because of increased mortality
and costs for veterinary cares, reduced daily weight gain and feed conversion efficiency [1].

Suitable laboratory tools are currently available to demonstrate the presence/absence
of pathogens in pig herds, as well as to monitor the kinetics of infection along the pig
flow [2,3]. However, the occurrence and the severity of respiratory diseases result from
several interrelated factors, well beyond the spread of infectious agents in a given pig
population. Therefore, estimating the real impact of respiratory diseases can be challenging,
mainly for chronic diseases characterized by high morbidity and low mortality. In such
cases, the slaughterhouse can act as a valid and efficient checkpoint, considering that
chronic lesions are still evident at postmortem inspection and provide useful information
about the prevalence and the economic impact of diseases [2,4].

Enzootic pneumonia (EP) is caused by Mycoplasma hyopneumoniae and is still widespread
in most of major swine-raising countries, where it is regarded as a key component of the
“porcine respiratory disease complex” (PRDC). Enzootic pneumonia occurs in grower and
finishing pigs as a chronic respiratory disease, mainly characterized by persistent, nonpro-
ductive coughing, impaired growth and feed efficiency. Secondary bacterial infections are a
common event and play a substantial role in worsening clinical signs and increasing mortality
rate [5,6]. Pathological findings are typical, although not pathognomonic of EP (so-called
“EP-like” lesions), and consist of well-demarcated, bilateral pneumonic foci affecting the
cranioventral portions of the lungs. Over time, EP-like lesions evolve from reddish to grayish
areas, often surrounded and/or intermingled with emphysematous lobules [7,8]. Naturally,
pneumonia tends to heal and might appear as scars (“fissures”) at slaughter, mainly due to
the timing of infection and the market age of the pigs. Nevertheless, the evaluation of EP-like
lesions can be conveniently carried out in slaughtered pigs, thus representing a valuable tool
to estimate the prevalence and the severity of EP, as well as the efficacy of the implemented
control strategies [4,9,10].

At present, EP-like lesions scoring is performed by veterinarians serving the slaughter
chain and it is a costly, challenging and time-consuming activity. Different methods have
been developed to score EP-like lesions [11], all of them being inspired by the same idea: the
larger the lesion is, the more severe the impact is on pig growth. In Europe, “Madec’s grid”
is the most widely used pneumonia scoring system, as it is quite fast and can be performed
in large high-throughput slaughterhouses [12]. According to Madec’s grid, each lobe is
inspected and palpated, divided into quarters and scored from 0 to 4 points regardless of its
size, thus equally contributing to the final score. To solve this issue, Madec’s grid is usually
combined with a method to account for each lobe volume, as proposed by Christensen
et al. [2]. Several studies have shown a negative correlation between the severity of EP-like
lesions at postmortem inspection and the growth performances of pigs. As an example,
Morris et al. [13] observed a mean decrease in the final weight of 1.8 kg for each 10% of
EP-like lesions.

Deep learning (DL) represents a very powerful tool to consistently analyze large
amounts of data. Overall, DL is a broad term indicating a family of machine learning
algorithms, which can extract high order features by stacking several operations in a se-
quence of individual blocks (so-called “layers”). Within DL, convolutional neural networks
(CNNs) are widely recognized as the state of the art for computer vision, which is a subset
of artificial intelligence (AI) aiming to automate the recognition of features in digital images
or videos, well-adapted to solving highly repetitive visual tasks [14,15]. In a CNN, the
convolution operation replaces large and dense layers with many low-dimensional “filters”,
bringing the following two relevant benefits: (1) reducing the number of parameters to be
trained; (2) forcing the learned features to be invariant with respect to translations in the
input. These key properties limit the chance of over-fitting the training data and provide a
faster training time, by decreasing the computational cost of the model [16].

Over recent years, AI has been applied to several aspects of modern life, gaining
traction in many fields of research, including livestock production [17]. The present
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study aims to develop a CNN capable of recognizing and quantifying EP-like lesions in
slaughtered pigs. Such a CNN would be complementary to other ones, already trained
and currently available [18], thus allowing the systematic collection and analysis of data on
the prevalence and severity of respiratory diseases in pigs.

2. Materials and Methods
2.1. Animals and Photo Collection

Investigations were carried out in three different and high-throughput abattoirs
(slaughter chain speed = 6–8 pigs/min). Two slaughterhouses were located in Italy and one
slaughterhouse was located in Spain. The Italian slaughterhouses were processing “heavy”
pigs with an approximate slaughter weight of 160 kg and an average age of 9–10 months.
The Spanish slaughterhouse was processing “light” pigs with an approximate slaughter
weight of 90 kg and 5 months of age.

Pictures were taken by veterinarians along the slaughter chain under routine slaughter
conditions, by means of smartphone cameras (Apple iPhone SE, Apple iPhone XS Max, Xi-
aomi Redmi Note 8T, Xiaomi Realme 7 pro). All veterinarians involved in the present study
had skills in porcine respiratory pathology and could palpate the lungs to confirm/rule
out pneumonia, if necessary. Each lung was photographed in such a way that its external
surface occupied most of the field of view (Figure 1a). Lungs entirely filled with blood or
severely “ripped” because of chronic pleurisy were not included in the study (Figure 1b,c).

Figure 1. Slaughtered pigs. Lungs. (a) The image clearly shows the external surface of the left lung, an EP-like lesion
affecting the middle lobe; this kind of picture was considered suitable for the present investigation. (b) The right lung has a
diffuse reddish appearance, because of the inspiration of blood after exsanguination. (c) A large portion of the left lung is
missing, as it remained attached to the chest wall because of chronic pleurisy. Both (b,c) pictures were considered unsuitable
and were not included in this study.

2.2. Photo Annotation

A total of 7564 pictures were selected and annotated by the veterinarians (A.R.T., J.H.
and G.M.) using an open-source image segmentation tool [19], after multiple sessions of
training in order to agree on the way to annotate pictures. In particular, the following areas
of interest were annotated: LUNG, i.e., the entire silhouette of the lung surface; LESION,
i.e., pneumonic foci compatible with EP-like lesions; LOBE, i.e., the cranial lobe, which was
separately annotated when it was bent over, thus partially overlapping with the middle
and/or the diaphragmatic lobes (see Figure 2 for details). The veterinarians (A.R.T., J.H.
and G.M.) equally contributed to the dataset and the annotated pictures were randomly
assigned to the “train set” or to the “test set” (see below for details).
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Figure 2. Label me annotation tool. In this case, three areas have been annotated, i.e., the silhouette
of the left lung (“lung”, red dots and lines), the flipped cranial lobe (“lobe”, yellow dots and lines)
and an EP-like lesion (“lesion”, green dots and lines). Both lobe and lesion are fully embedded within
the “lung” borders.

2.3. Architecture of the DL-Based Model Employed

For the task at hand, we developed a DL-based model (DLBM) to accurately predict
and segment the area of lung, lesion and lobe given an input image. Specifically, we
employed a convolutional auto-encoder architecture based on U-Net [20], which has been
extensively modified to improve the overall segmentation performance.

The auto-encoder architecture consists of two main components, namely, the “encoder”
and “decoder” networks. The encoder is responsible for producing a lower-dimensional
representation of the input image, while the decoder up-scales and further processes
the input image to extract the final output. In our solution, we developed the encoder
after the convolutive section of the well-established ResNet34 model [21]. We pre-trained
the network using established classification datasets, thus providing better parameter
initialization by means of knowledge transfer to our task. The decoder network is composed
of a sequence of up-sampling convolutions, each one mirroring the corresponding encoder
layer. Notably, this allows for the use of skip connections between the two parts of the
model. Skip or residual connections facilitate the propagation of the information through
the network, reducing both the time and data required for the model to converge.

According to Zhou et al. [22], we finally enriched the representation provided by
each residual path by including several intermediate convolutive blocks, with dense skip
connections between each one. These layers further combine the features extracted by the
encoder and facilitate the semantic shift between the encoder and decoder representations.
The DLBM employed herein is graphically represented in Figure 3.

2.4. Training Process

According to Lin et al. [23] and Chen et al. [24], we employed an image pyramid
structure and supplied the model with multiple-scaled versions of the same picture. Each
input was resized through bilinear interpolation and independently pre-processed by
means of a small convolutive block. In More detail, each encoder block received (a) the
output from the previous block of the chain (if any) and (b) the appropriate pre-processed
input. This strategy allows the encoder to more efficiently recover and combine features at
different scales.
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Figure 3. Architecture of the DL-based model employed. The input is scaled to multiple resolutions and pre-processed
before being fed to the main network. The segmentation masks delivered can be conveniently depicted as an RGB image by
assigning a color to each class (red, purple, blue). The final score is computed as the ratio between the number of pixels
belonging to the class “lesion” and those belonging to the combined classes “lung + lobe” (i.e., the entire pulmonary size).

We trained the overall architecture with deep supervision [25] to produce an output at
each intermediate stage of the first residual connection, thus providing additional paths for
the gradient to flow. This strategy can further reduce the time required for the algorithm to
converge. Finally, at inference time, we only keep the output produced by the last decoder.

The model takes one RGB image as the input and produces a binary segmentation
mask for each class, each one with the same resolution as the input. This strategy makes
it possible for a pixel to belong to more than one class at the same time (e.g., lung and
lesion). We trained the network for a total of 400 epochs, where each epoch includes all
the training samples, and augments the data with random horizontal flips, random crops,
random translations and rotations and random color jitter—change in brightness, contrast,
saturation and hue—to improve generalization.

2.5. Dataset

The entire dataset was split between “train” and “test sets”. Both sets consist of
annotated pictures, which represent the ground-truth label of each pixel. The training set
includes 7154 pictures; at this stage, the veterinarians’ annotations (VAs) aim to improve
the performance of the DLBM. The test set consists of 410 images and was shown to the
network only during the inference stage, when no weight in the network could be altered.
In this case, the ground-truth is used to evaluate the performance of the model.

2.6. Metrics

Based on the presence/absence of EP-like lesions, input pictures were classified as
diseased or healthy lungs. The performances of the DLBM were computed in terms of
sensitivity (i.e., the ability to correctly identify diseased lungs) and specificity (i.e., the
ability to correctly identify healthy lungs), with respect to the VAs (i.e., the gold standard).

The distance between the pluck and the camera affects the apparent size of pneumonia,
as quantified by counting the number of pixels of the class “lesion”. Therefore, the size of
EP-like lesions was expressed as a percentage, by computing the following ratio (1):

r =
#{lesion}

#{lung}+ #{lobe} (1)

where #{lung}, #{lesion} and #{lobe} represent the number of pixels of each respective class.
The quantification of EP-like lesions is directly linked to the segmentation performance

of the model, as the incomplete or improper prediction of each class (“lung, lobe, lesion”)
can affect the predicted ratio (r). Therefore, the Intersection over Union (IoU) for each
class was additionally computed, averaging the results across the test set (see Figure 4
for details).
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Figure 4. A graphical representation of the Intersection over Union (IoU). IoU can range between 0
and 1and it is recognized as a good metric for measuring overlap between two “masks”. The IoU
value 1 is when the prediction is completely correct (i.e., when the prediction of the DLBM fully
overlaps with the annotation of the veterinarian). Conversely, the lower the IoU is, the worse the
prediction of the DLBM is (the IoU value is 0 when the two masks do not overlap at all).

Formally, given a ground-truth mask yc and a predicted mask ŷc, the IoU (yc,ŷc) is
defined as in the following Equation (2):

IoU(yc, ŷc) =

∣∣yc ∩ ŷc
∣∣∣∣yc ∪ ŷc
∣∣ . (2)

Finally, the correlation between VAs and DLBM predictions was calculated (Pearson’s
coefficient).

3. Results
3.1. Training Set—Data Provided by the Veterinarians

The entire training set consisted of 7154 annotated pictures. The veterinarians identi-
fied 3283 lungs as healthy (45.89%), while EP-like lesions were detected in the remaining
3871 pictures (54.10%). The cranial lobe was annotated in 15.35% of the healthy lungs
(504 pictures) and in 20.82% of the diseased lungs (806 pictures).

In the diseased lungs, the size of the lesions ranged between 0.12 and 80.19% (mean
value ± SD = 9.71 ± 9.16%; median = 6.9%). The main features of the training set are
graphically summarized in Figure 5.

3.2. Test Set—Data Provided by the Veterinarians

The whole test set consisted of 410 pictures. According to the VAs, 159 pictures proved
to be healthy (38.78%), while the cranial lobe was annotated in 25 cases (15.72% of the healthy
lungs). The veterinarians identified EP-like lesions in the remaining 251 images (61.21%), the
cranial lobe being annotated in 74 cases (29.48% of diseased lungs). In the diseased lungs,
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the size of the lesions ranged between 0.07 and 63.02% (mean value ± SD = 10.47 ± 9.55%;
median = 7.52). Figure 6 provides more detailed information about the size of the EP-like
lesions in the diseased lungs.

Figure 5. Main features of the training set. Overall,3283 lungs were recognized as healthy (a), while
EP-like lesions were detected in the remaining 3871 pictures (b + c + d + e). The size of the lesion
was <2% of the entire lung surface in 541 cases (b), between 2 and 5% in 958 cases (c), between 5 and
10% in 1001 cases (d) and >10% in 1371 pictures (e).

Figure 6. Test set. Comparison between the veterinarians’ annotations and the predictions of the DL-based method.
Graphics clearly show that the DLBM predictions are very similar to the gold standard provided by the veterinarians, both
for healthy and diseased lungs, regardless of the size of the EP-like lesions. Legend: (a) healthy lungs; (b) lesion size <2% of
the entire lung surface; (c) lesion size between 2 and 5%; (d) lesion size between 5 and 10%; (e) lesion size >10%.

3.3. Test Set—Data Predicted by the DL-Based Method

The data are graphically summarized in Figure 6. As additionally shown in Table 1,
the DLBM employed herein showed high sensitivity and specificity values.
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Table 1. Sensitivity and specificity of the DL-based method on the test set.

Number of Pictures, as
Interpreted and Annotated

by the Veterinarians
(Gold Standard)

Number of Pictures
Correctly Predicted using

the DL-Based Method
Sensitivity (%) Specificity (%)

Lesion size <2% of the
entire lung surface 16 13 81.25 //

Lesion size between 2
and 5% of the entire

lung surface
62 62 100 //

Lesion size between 5
and 10% of the entire

lung surface
81 81 100 //

Lesions >10% of the
entire lung surface 92 92 100 //

Healthy lungs 159 158 // 99.38

In more detail, the DLBM gave only one false positive prediction, due to the presence
of a small lesion on the opposite lung. The DLBM overlooked three small lesions (<2% of
the lung surface), always located on the apex of the middle lobe, while it correctly predicted
all the lungs affected by larger EP-like lesions (Figures 7–9).

Figure 7. Test set. False negative prediction provided using the DL-based method. Pictures
(a,b) represent the original picture and the annotation of the veterinarian, respectively. In detail, the
veterinarian-annotated lung (purple), lobe (blue) and lesion (red). As shown in picture ((c); DLBM
prediction), the DLBM overlooked the very small lesion on the tip of the middle lobe.

In the lungs considered as diseased after the veterinarians’ evaluation, the predicted
size of the lesions ranged between 0% (i.e., false negative) and 61.05% (mean value ± SD =
10.52 ± 9.50%; median = 7.99).

In terms of IoU, the performances of the DLBM are reported in Table 2. Overall, the
average IoU was around 0.80 for the “lobe” and “lesion” classes, while a much higher
value was reached for the class lung (0.97).
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Figure 8. Test set. Healthy lung. Pictures (a,b) represent the original picture and the annotation of
the veterinarian, respectively. In this case, the veterinarian annotated only the lung (purple).The
prediction of the DLBM (c) perfectly matches the annotation of the veterinarian (b). The examination
of the original picture (a) confirms that the lung is healthy, no lesion being detectable.

Figure 9. Test set. Diseased lung. Pictures (a,b) represent the original picture and the annotation of
the veterinarian, respectively. In detail, the veterinarian-annotated lung (purple) and lesion (red).
The prediction of the DLBM (c) largely, although not perfectly, fits with the VAs (b). As shown by the
original pictures (a), the shape of the EP-like lesion is irregular, due to the presence of fissures and
intermingling emphysematous lobules. Notably, the DLBM also well-predicted a long cut (artifact)
in the diaphragmatic lobe.

The correlation rate between the veterinarians’ and DLBM scores was very high
(Pearson’s coefficient = 0.96).

A demo version of the DLBM is provided as Supplementary Materials (File S1).
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Table 2. Test set. Intersection over Union. Performances of the DL-based method with respect to the
veterinarians’ annotations.

Class Average Values of IoU

Lung 0.97

Lobe 0.81

Lesion 0.80

Lesion size <2% of the entire lung surface 0.83

Lesion size between 2 and 5% of the entire lung surface 0.81

Lesion size between 5 and 10% of the entire lung surface 0.81

Lesions >10% of the entire lung surface 0.78

4. Discussion

A growing body of evidence indicates that abattoir inspections are very useful to
monitor the health status and the welfare of farm animals. Data collected at the slaugh-
terhouse can offer reliable information to the entire swine industry, thus allowing for a
more effective and efficient management of health and welfare issues [10,26–29]. Several
Northern European countries have adopted specific schemes to record inspection data
from slaughtered pigs at a national level [30–35]. Likewise, abattoir inspections have been
included in a new information system (namely, ClassyFarm) in Italy, implemented by the
Ministry of Health to categorize farms according to risk [36].

During the last few decades, mainly since the advent of DL, the application of AI
in medicine has dramatically expanded [37]. In our opinion, AI-based methods can be
successfully applied to solve highly repetitive tasks, such those performed by veterinarians
to score pluck lesions in high-throughput slaughterhouses.

To date, few DLBMs have been developed to monitor abattoir lesions in pigs [18,38,39].
The DLBM employed herein demonstrated that it was able to suitably recognize lungs
as healthy or diseased, showing sensitivity and specificity close to 100% when compared
with the VAs. In addition, the size of the lesions in terms of mean ± SD and median, as
annotated by the veterinarians or predicted by the DLBM, was demonstrated to be almost
identical. Considering the IoU, the DLBM performances proved outstanding for the class
“lung” and lower, although satisfactory for the classes “lobe” and “lesion”. Such differences
are likely due to the following several factors: (a) the training set for the class “lung” is
larger, as “lesion” and “lobe” are not present in all the pictures; (b) outlining the borders
of “lobe” can be challenging and somewhat subjective; (c) the shape of the lesions can be
irregular, due to the presence of fissures and/or emphysematous lobules.

Sibila et al. [40] and Garcia-Morante et al. [11] developed scoring systems to assess
Actinobacillus pleuropneumoniae and Mycoplasma hyopneumoniae lesions on digital images,
under experimental conditions. In more detail, these authors quantified the lesions as a
percentage of the total pulmonary surface, after manually outlining each area of interest.

Such image analyses seem to correlate with other scoring systems, although lesions of
the accessory lobe are not accounted for and partially affect the Pearson’s coefficient [11].As
a matter of fact, the DLBM employed herein pursues a similar approach. In fact, we
did not evaluate the accessory lobe, which remains hidden from the camera. Garcia-
Morante et al. [11] calculated the formulae of equivalence to compare the different scoring
methods. Likewise, we consider that the ad hoc formulae of equivalence could suitably
solve this issue also using DLBMs. Interestingly, simplified slaughter check procedures
have been proposed, based on the examination of a single lung; in this case, the final score
is computed by multiplying by the correcting factors [2]. The combination of DLBMs with
such simplified procedures should be tested, to make the collection of pictures easier and
to further improve the efficiency of the method.

In our experience, severe artifacts due to the slaughter technique (i.e., inspiration
of a large amount of blood, tearing of lungs after chronic pleurisy) are not so common
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as to compromise the evaluation of the entire batch. Likewise, different environments
(e.g., brightness, distance between pluck and operator) and mild artifacts (e.g., pleural
petechiae, small amounts of blood or foam on the lungs) do not impair the performances
of the DLBM. In this respect, we highlight that a great effort was made to train the DLBM
under scenarios as varied and diverse as possible, through extensive data augmentation
activity. Nevertheless, some technical issues should be solved to apply the DLBM on a
large scale. First, image capture should be automated. In this respect, preliminary tests
with robot cameras have given promising results, in order to simultaneously automate
several activities along the slaughter chain (e.g., traceability of animals through reading
codes tattooed on the thigh). The standardization of the distance between the pluck and
the camera could allow the scoring of pneumonia even in most ripped lungs, by counting
the number of pixels of the class “lesion”. In addition, the training of the staff, along with
few structural adjustments (e.g., hooks to avoid the flipping of the cranial lobe), could
further improve the performance of the DLBM.

5. Conclusions

CNNs can successfully recognize the most economically relevant disease conditions
in slaughtered pigs [18,39] and could provide large-scale data analysis, without interfering
with the slaughter chain routine. The present investigation further widens the field of ap-
plication of DLBMs, which now includes another major component of the PRDC. Moreover,
we consider that DLBMs could offer interesting, effective and cost-efficient alternatives in
the field of food safety. As a matter of fact, the European Regulation 2019/627 [41] pro-
vides the visual postmortem inspection, at least in the first instance, to avoid the handling
of carcasses and to decrease the risk of microbial contamination [42].Some data already
suggest that the “new technologies” allow the remote inspection at slaughter [43]. In the
next future, AI-based methods could suitably meet this need, allowing a further leap in
quality in the field of food inspection, supporting official veterinarians and optimizing the
management of human resources, especially in high-throughput slaughterhouses.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/ani11113290/s1, File S1: demo of the CNNs developed herein to score pneumonia in
slaughtered pigs.
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