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Abstract

Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals
engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously
purchased flights as a function of concern for swine flu or A/H1N1 influenza using 1.7 million detailed flight records, Google
Trends, and the World Health Organization’s FluNet data. We estimate that concern over ‘‘swine flu,’’ as measured by Google
Trends, accounted for 0.34% of missed flights during the epidemic. The Google Trends data correlates strongly with media
attention, but poorly (at times negatively) with reported cases in FluNet. Passengers show no response to reported cases.
Passengers skipping their purchased trips forwent at least $50 M in travel related benefits. Responding to actual cases
would have cut this estimate in half. Thus, people appear to respond to an epidemic by voluntarily engaging in self-
protection behavior, but this behavior may not be responsive to objective measures of risk. Clearer risk communication
could substantially reduce epidemic costs. People undertaking costly risk reduction behavior, for example, forgoing
nonrefundable flights, suggests they may also make less costly behavior adjustments to avoid infection. Accounting for
defensive behaviors may be important for forecasting epidemics, but linking behavior with epidemics likely requires
consideration of risk communication.
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Introduction

There has been a rapid rise in interest in how behavioral change

in response to the risk of contracting an infectious disease

influences epidemiological dynamics and public health outcomes

[1–5]. Measuring behavioral responses is important for testing

theories and for informing public health policy. Moreover,

measuring behavioral responses is important in its own right to

evaluate public health communication strategies and measure the

cost of epidemics. One type of response that may be particularly

important is a change in the behavior of air travelers [6].

Air travelers have the potential to rapidly spread infectious

disease over long distances [7,8]. Moreover, air travel is perceived

to be a risky behavior with respect to infectious diseases such as

influenzas. There has been considerable interest in the role of air

travel, and possible air travel restrictions, on the spread of an

infectious disease such as avian or 2009 A/H1N1 influenza,

commonly called swine flu [7,9,10]. Previous studies have

concluded that the net benefits to society of air travel restrictions

are at best small [11–13], but most models rely on assumptions

that have not been confronted with data [14]. What does seem

clear is that flying increases the likelihood of air travelers

contracting an infectious disease conditional on there being on

infectious person on the airplane [15,16], and that the public links

flying with infection risk. Air travel may increase private infection

risk beyond an acceptable level, and public health interventions

related to travel and airport surveillance programs may benefit

travelers [17,18].

In this paper, we take advantage of the high cost of flying and

the high perceived risk of infection associated with flying along

with a novel dataset of flight records to investigate whether

travelers changed their travel decisions in response to a pandemic

influenza. Then we quantify a lower bound on the cost of such

adjustments. We also contrast travelers’ responsiveness to subjec-

tive measures of public concern for the epidemic with their

responsiveness to objective measures of the state of the epidemic.

Air travel is a unique activity. Tickets are often purchased weeks

in advance, are non-refundable and non-transferable, and

represent non-trivial expenditures. Economic theory suggests that

an individual values a trip at a value at least as great as the price

paid for the ticket. It follows that individuals who choose not to use

a pre-paid ticket, as a result of an ongoing infectious disease

epidemic, value the perceived reduction in infection risk at least as

much as the cost of canceling their flight. Travelers who use their

tickets may still value a reduction in health risk, but the value they

assign to this reduction must be less than the cost of forgoing a pre-

paid trip. Johansson et al. [14] assert that the value of a trip is often

much greater than the health benefits of forgoing a trip and
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assume that infection risk does not affect flying behavior. In this

paper, we test the hypothesis that indices of infection risk

influenced the number of passengers changing travel plans,

forgoing pre-paid tickets, and missing flights using data from 1.7

million flights operated by a major US air carrier.

For people to adapt their behavior to an epidemic, they must be

informed about the epidemic. Prior research focused on how the

media and information influence epidemics [19–22]. We use a

Google Trends index of the intensity of internet searches for the

phrase ‘‘swine flu’’ as a potential proxy for the public’s perceived

risk of infection. Google Trends is distinct from Google Flu

Trends. Google Trends has been shown to track public sediment

in other social areas, such as consumer confidence [23].

Furthermore, the search index we use is highly correlated with

the volume of news stories on the swine flu epidemic (R = 0.98), as

reported by Google. We compare travelers’ responses to the

Google Trends index to travelers’ responses to the number of

reported confirmed A/H1N1 cases in the World Health Organi-

zation’s FluNet database.

Our results suggest that a subset of passengers, who had already

purchased tickets, chose not to fly in response to swine flu. Equally

important, we demonstrate that this avoidance behavior did not

track the incidence curve of reported confirmed A/H1N1 cases.

Travelers appear to have responded to the incidence of media

attention to swine flu, which was generally weakly, and at times

negatively, correlated with objective measures of risk. We use data

on flight prices to estimate a lower bound of the value of

eliminating infection risk to air passengers, and a lower bound on

the value of communications strategies that more accurately track

cases. Our analysis has two broad implications. First, some people

make costly changes in behavior to avoid infection, even without

government mandated policies for social distancing [24–28]. It

follows that people may also make less costly adjustments without

government mandates, and these behavioral adjustments may

influence disease dynamics. Such behavioral changes would make

current approaches to estimating transmission parameters biased

and inconsistent [29]. Second, media attention to epidemics is a

poor measure of actual cases, and can lead to mal-adaptive

behavior. This finding suggests that there is value in developing

easily accessible sources of spatially delineated information on the

localized risk of contracting infectious diseases (e.g. websites or

apps reporting infection rates by city).

Methods

The data
U.S. Airways Corporation provided access to proprietary data

on individual coach (economy) class flights covering all flights from

April 1, 2008 to March 31, 2010. Equivalent data are available

from IATA, www.iata.org. U.S. Airways was the fifth largest

commercial carrier in the United States during this period and had

a 7.22% market share (U.S. Department of Transportation,

Research and Innovation Technology Administration, http://

www.transtats.bts.gov). U.S. Airways offers extensive connections

within the United States as well as international connections to

Mexico, the Caribbean, Latin and South America, Europe, Israel,

and Canada. The U.S. Airways customer base consists almost

entirely of U.S. residents. For each flight, we observe the number

of passengers booked as of 24 hours prior to departure, the

number of passengers flown, the number of passengers with

connecting flights, aircraft seating capacity, the mean and median

prices paid by coach passengers on each flight, the flight’s origin,

and its destination. Table 1 presents summary statistics for the

dataset used in our analysis.

The original data provided by U.S. Airways came from gate

agent records, and these records are not always entered correctly

when aircrafts change and passengers are rebooked by the airline

at the last minute. As a result there were some obvious coding

errors. Such records were removed prior to beginning analysis

(removed records are not included in the statistics in Table 1); e.g.,

negative passengers flown or zero capacity, a median ticket price

per flight of zero, or where more than 40% of the booked

passengers missed the flight. A large share of passengers missing a

flight could occur when a large number of passengers rebook on a

flight to the same destination when the originally booked flight was

substantially delayed. The 40% threshold was chosen by visually

inspecting the distribution of the proportion of passengers missing

flights and substantial support dissipates around 40% (Figure 1).

40% was 3.6 standard deviations above the mean. Overall our

measure of missed flights corresponds to a lower bound on the

number of passengers missing flights. We focused our research on

flights with at least one available seat to avoid data truncation

issues.

U.S. Airways flies 20 different aircraft types that can be

classified into groups of aircraft that are used for qualitatively

similar types of flights. Aircraft types can be recovered from the

aircraft seating capacity reported in each flight record (http://

www.usairways.com/en-US/aboutus/pressroom/fleet.html). We

grouped all aircrafts into seven categories: small express (#50

seats); large express (50–87 seats); small mainline (88 seats);

standard mainline (89–138 seats); large mainline (139–176 seats);

small international (177–188 seats); and large international (.188

seats). We classified flight destinations into eight regions: the

continental US, Hawaii, Alaska, Mexico, Canada, Latin and

South America, the Caribbean, and Europe and Israel.

We investigated two measure of the A/H1N1 epidemic. First,

the Google Trends index of browser search intensity for the phrase

‘‘swine flu’’ (Fig 2). In prior work, Google Flu Trends, an index

created by Google to track flu, has been shown to follow closely

influenza epidemics in the United States [30,31] and, after an

adjustment, the A/H1N1 epidemic [32]. Our purpose is slightly

different. We wish to measure public knowledge about the

epidemic, and an index of searches for information should be a

good proxy measure of concern. It is important to note that

concern does not have to correlate with actual cases. ‘‘Swine flu’’

was the most searched news story on Google in the spring quarter

of 2009 (http://www.google.com/intl/en_us/press/

zeitgeist2009/overview.html), and ‘‘swine flu’’ was the third top

trending search on Microsoft Bing in 2009, behind only ‘‘Michael

Jackson’’ and ‘‘Twitter’’. Our second measure is reported A/

H1N1 cases in the World Health Organization’s FluNet database,

http://gamapserver.who.int/GlobalAtlas/home.asp (Fig 2).

Google and FluNet data are only available at the weekly time

step so the data had to be smoothed to apply measurements to

flights on specific days. Also, we are unsure of the time frame

during which passengers would have chosen to abandon their

original flight plans. We consider different approaches to matching

the weekly Google Trends and FluNet data to the daily flight data;

only applying the index value for the given day applied from its

week, a two-week (Fig 2), and three-week moving average.

Estimating the effect of the epidemic
The number of passengers missing a flight was measured as the

difference between the number of passengers booked on a flight

and the number of passengers who actually flew. This measure of

missed flights is derived from passenger counts and ranges from 0

to 107 in our data. Missed flights can be affected by many factors

aside from concern for infection. Therefore, we statistically
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controlled for several potential confounders, including day of the

week, month, ticket price, numbers of passengers booked and

connecting passengers, aircraft class, and airport weather data. We

also included airport specific fixed effects to help control for

unobserved features of weather that may be correlated with the

season or geography.

A natural approach to modeling the count of passengers missing

a flight is to assume a Poisson distribution and use a generalized

linear model; however data are often over-dispersed in practice.

The negative binomial regression generalizes the Poisson regres-

sion to allow for over-dispersion [33,34]. Despite this generaliza-

tion, heteroskedasticity in the error terms can still persist, and we

expect that errors may be correlated within origination airport.

This was addressed by using cluster-robust standard errors that

allow unknown forms of heteroskedasticity as well as unknown

forms of correlation among the error terms associated with each

origination airport ([33] pp. 569–579). Negative binomial models

were fit by maximum (pseudo) likelihood using Stata 12.

Pseudolikelihoods were used to accommodate the cluster robust

standard errors because standard maximum likelihood underesti-

mates the true variance with over-dispersion [35 p.683], when

robust estimators are used for the variance-covariance matrix ([33]

p. 574), and pseudolikelihoods are commonly required for

generalized linear models ([35] p. 149–150). Using a negative

binomial link function ([34] pp. 114–116, [35] p. 675) the linear

component of the model consists of, b0+Wb1+Pb2+Rb3+Db4

+Mb5+Tb6+Lb7+Fd+cI where b0 is an intercept, bi i M{1,2…7}

are vectors of parameters associated with a vector of airport

weather fixed effects (dummy variables), W; a vector of airplane

type fixed effects, P; a vector of destination regions fixed effects, R;

a vector of day fixed effects D; a vector of month fixed effects M;

and vectors of fixed effects for the origination, T, and destination

airports L. Flight specific variables are captured in vector F, and d
is an associated vector of coefficients. The subjective (objective)

measure of the intensity of the epidemic, Google Trends (FluNet),

is represented by I, and c is a parameter measuring the effect of

the epidemic.

To investigate the sensitivity of results to modeling assumptions,

several versions of the model were estimated. For example,

separate models were run in which price was defined as either the

mean or median pre-paid ticket price for passengers sitting in

coach. We also consider models with interaction terms between

destination region and influenza index and interaction terms

between destination city and influenza index. A total of 36

specifications of the model were considered. The variations

included all permutations of the definition for the risk variable

(Google Trends or FluNet data); the time step over which the risk

variable is aggregated (a one-week, two-week or three-week

moving average); the summary measure of ticket price on a given

flight (mean or median); and the interactions included in the

model (none, flu index by destination region, or flu index by

destination city interaction terms).

Calculating willingness to pay to avoid infection
U.S. Airways provided data to us at the aggregate flight level.

We cannot track individual passengers. Based on the aggregate

flight level data we compute a lower bound for the willingness to

pay to avoid infection for the flying population. The lower bound

for aggregate willingness to pay to avoid infection was computed

by calculating the estimated number of missed flights attributed to

concern about swine flu. This was done by taking the observed

number of missed flights and subtracting the predicted number of

missed flights in a counterfactual scenario where the A/H1N1

outbreak did not occur. To compute the counterfactual scenario,

we forecasted flights missed with the influenza index set to zero for

each flight in our data set. To arrive at a willingness to pay to

avoid infection per flight, the number of passengers missing each

flight in the data set, attributed to the epidemic, was then

Table 1. Summary statistics main variables of interest.

Variable Observations Mean Standard Deviation Min Max

booked passengers per flight 1,659,974 71 44.97 1 296

passengers flown per flight 1,659,974 66 42.51 1 262

mean price ($) 1,659,974 172 63.63 7 5722

median price ($) 1,659,974 150 63.86 4 1190

passengers connecting from other flights 1,659,974 25.76 33.89 0 258

number of passengers missing flights 1,659,974 4.64 5.39 0 107

Google Trends swine flu index 106 8.67 30.19 0 294

Google Trends swine flu index 2 week moving average 730 8.65 22.86 0 183

FluNet cases 106 1,030 1,885.26 0 9,735

FluNet cases 2 week moving average 730 1,028 1,852.10 0 9,181

doi:10.1371/journal.pone.0058249.t001

Figure 1. Distribution of the proportion of booked passengers
missing flights for flights with excess capacity.
doi:10.1371/journal.pone.0058249.g001
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multiplied by the median price paid for that flight. The aggregate

lower bound willingness to pay was then scaled up to represent the

national airline market. The resulting measure is best interpreted

as a lower bound for three reasons. First, passengers who bought

tickets must have done so because they valued the flight at the

purchase price or higher. Thus, abandoning the planned flight

costs the passenger the purchase price, plus any surplus that the

passenger would have received from taking the flight. Second,

passengers who did not miss flights may have been willing to pay

to reduce the probability of catching swine flu, but were only

willing to pay less than the cost of skipping the flight. Finally,

missing a flight is a relatively large consumer decision. If

consumers make such extreme behavioral decisions, then it follows

that they may also make additional, less costly, adjustments to

daily routines influencing their social contacts which, in turn, may

locally affect pathogen transmission dynamics.

Results

Google swine flu estimation results
The negative binomial count data model fit the data well for all

specification at all standard confidence levels. For models that only

included main effects, i.e., no interaction terms, the two-week

moving average Google Trends index of internet search intensity

for ‘‘swine flu’’ with median ticket prices had the greatest log

pseudolikelhood (Table 2). This model is treated as the base

specification, with results presented in Tables 3 and 4. Baseline

results were found to be robust to most modeling decisions. Results

for other specifications are discussed only when they differ from

the base specification. Complete results from all specifications will

be provided upon request.

Correlations between observed and predicted values are the

appropriate way to assess goodness of fit for count-data models

[33]. The predicted missed flights showed a 0.32 correlation with

observed missed flights, and a Spearman’s rank correlation of 0.59.

For both correlations the p-value,0.0001 (null hypothesis of no

correlation), and correlations results were not meaningfully altered

by alternative specifications. Tests for over-dispersion suggest that

the over-dispersion parameter was significantly different from zero

(Table 4).

The parameters for statistical controls were generally signifi-

cantly different from zero and had the expected signs (Tables 3

and 4). For all of the specifications that we tested, passengers

booked, and poor weather in airports CLT, PHI, JFK, and ORD

had statistically significant positive effects on the number of missed

flights. Weather in LAS and PHX did not have significant effects.

This can be explained by the fact that poor weather is relatively

rare in LAS and PHX, tends to occur later in the day, and has less

scope to reverberate through the airline’s network due to the 3-

hour time difference with the east coast. Ticket price and number

of inbound connecting passengers had significant negative effects,

suggesting that passengers who paid more for flights were more

likely to show up and that, all else equal, passengers in the system

were less likely to miss a connecting flight. Passengers were

significantly less likely to miss flights on aircrafts serving

international routes or large domestic aircraft used on longer

routes. Furthermore, passengers were more likely to miss flights on

small aircrafts serving mainline flights. These commuter flights are

dominated by business travelers. There are typically multiple

connections a day for these routes; it is reasonable to expect that

this class of service would have a greater rate of missed flights. Day

of the week and month had intuitive effects. Relative to passengers

flying on Sunday, passengers were more likely to miss flights on

Monday and Friday and less likely to miss flights on other days.

Mondays and Fridays are generally busier travel days and

associated with more business travelers who may not personally

incur the cost of missing a flight and are more prone to changing

their travel plans. Taking the base month as January, passengers

were more likely to miss flights in December, which is associated

with heavy holiday travel and poor local weather, which may not

be controlled fully with our weather dummies. This is particularly

true for 2008–2009 and 2009–2010. These years experienced

highly disruptive late December snow storms. Passengers were less

likely to miss flights in other months. There are 230 airports

included in the data set, and a number of these origins and

destinations had significant fixed effects. Only the Caribbean,

Figure 2. The proportion of passengers missing flights (grey bars), the two-week moving average of FluNet reported cases (blue
solid line), and the two-week moving average of Google Trends swine flu index (black dotted line) and H1N1 index (red dashed
line). Google Trends indices are scaled by 235 for easy comparison with the FluNet data. A graph with the total of passengers missing flights as
opposed to proportion of passengers looks qualitatively similar. Online version in color.
doi:10.1371/journal.pone.0058249.g002
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Canadian, and Alaskan destinations had significant regional effects

relative to the continental US destinations, and these effects were

negative.

Google data on flu-related internet searches were only available

in weekly blocks. Different smoothing approaches were used to

assign values to specific days and flights. The Google Trends

search index for the key word ‘‘swine flu’’ generally had a positive

effect on the number of missed flights and was statistically

significant at the 90% confidence level, p-value = 0.072 (Table

3and 4). The result was unchanged by using mean ticket price

(Table 2, rows 3–4). Only if the data were not smoothed did this

pattern fail, in which case the effect of the swine flu index was not

significantly different from zero (Table 2, rows 1–2).

We computed the difference between the predicted number of

missed trips and the predicted number of missed trips with the

coefficient associated with the Google Trends swine flu index

equal to zero. This suggested that 26,393 missed trips are

attributable to a behavioral response to swine flu. If U.S. Airways

passengers are as likely to miss a trip because of swine flu as

passengers on other airlines, then 365,717 passengers missed

flights because of concern for swine flu infection or, perhaps,

because they were too sick to travel – also an important behavioral

consideration. This represents 0.34%, 3 to 4 in 1,000, of both the

actual and predicted missed flights.

All models included destination region (Table 3 and 4) and

destination city fixed effects as main effects. We repeated the

estimation with two sets of interaction terms. First, we considered

an interaction between destination region and the Google Trends

swine flu index (Table 5). Including interaction terms had little

effect on the overall model fit or the estimated coefficients

presented in Table 3, and interaction terms did not qualitatively

affect the estimated coefficients. However, with the exception of

the interactions relating to Canada and Latin & South America all

interaction terms were significantly different from zero at all

common significance levels (Table 5). Moreover, the interactions

terms related to Mexico, Caribbean, and Alaska were positive, and

the interaction term associated with Mexico was an order of

magnitude greater than the other significant interaction terms.

This suggests that passengers may have been selectively avoiding

these areas at times of heightened epidemic concern. This is

especially true for Mexico, the epicenter of the 2009 A/H1N1

pandemic.

We repeated the analysis to estimate interaction effects between

the Google Trends swine flu index and specific destination cities.

This modification had little qualitative effect on the parameter

estimates, with the exception of the effect of the Google Trends

swine flu index, which increased to 7.2261024. The cluster robust

standard error also increased to 4.8610-5 (Z-score = 1.51, p-

value = 0.132). The interaction terms with Mexican destinations

were all strongly significant, and of the 12 Mexican cities served by

US Airways, 9 had positive effects on the number of passengers

missing flights. Of the three cities with negative interaction terms,

Cozumel is an island and not part of the mainland, and Guaymas

and Hermosillo are the closest cities to the US border to which US

Airways flys (about 400 km driving distance from the US border),

while the next closest city, Mazatlan, is approximately 1,200 km

from the US border.

Overall, the results suggest that some passengers skipped flights

as a result of concern about a novel influenza virus called swine flu,

and this behavioral adaptation was especially targeted towards

Mexico.

Table 2. Model specification robustness results for Google Trend ‘‘swine flu’’ models.

Length of
moving average Price index

Regional interaction
with flu index

City interactions
with flu index

Log pseudo-
likelihood

Estimate of flu
index coefficient p-value for coefficient

1 median no no 24022253 23.9161026 0.890

1 mean no no 24022438 21.3761026 0.964

2 mean no no 24022386 4.1461024 0.067

2 median no no 24022202 4.0761024 0.072

3 mean no no 24022412 3.6361024 0.114

3 median no no 24022228 3.5361024 0.131

1 median yes no 24022188 22.9 61025 0.296

1 mean yes no 24022373 22.761025 0.355

2 mean yes no 24022303 3.9761024 0.069

2 median yes no 24022119 3.9261024 0.073

3 mean yes no 24022325 3.5661024 0.102

3 median yes no 24022140 3.4761024 0.115

1 mean no yes 24022125 7.661025 0.289

1 median no yes 24021937 7.4361025 0.33

2 mean no yes 24021977 7.2861024 0.123

2 median no yes 24021790 7.2261024 0.132

3 mean no yes 24021967 7.4661024 0.229

3 median no yes 24021780 7.3861024 0.238

When days are assigned their epidemic index value from weekly data, the length of moving average is listed as 1. Price index lists whether median or mean prices were
used, the interactions columns state whether interactions were included. Coefficients for models that include interaction effects should be read with care, because some
effect of the epidemic index is inputted through the interaction terms, which are not shown.
doi:10.1371/journal.pone.0058249.t002
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FluNet estimation results
The analyses were repeated using FluNet weekly A/H1N1

counts as an objective measure of the intensity of the epidemic.

This is also only an index measure as underreporting is common.

The estimates for all parameters from the negative binomial count

model using FluNet data in the place of Google Trends data were

qualitatively identical, and point estimates and standard errors

were often quite close to the model using Google Trends data

(Table 3 and 4) with two important exceptions. First, the estimate

of the constant changed substantially, for example using the two-

week moving average of the FluNet data with median price the

constant term was substantially lower at 57.37 (standard error

25.63, Z-score 2.24, p-value 0.025). Second, the estimated effect of

the epidemic on missed flights was nearly zero. Using the two-

week moving average of the FluNet data with median price, the

coefficient on FluNet case reports was 21.361025 (Table 6). The

standard error was also small, 2.061026, yielding a Z-score 6.69

and a p-value<0. The model suggests that the epidemic reduced

missed flights. There is no reason that a direct response to the

epidemic should cause people to miss fewer flights. We offer three

possible explanations. First, people delayed travel and did not

purchase tickets early in the epidemic, but then traveled later in

the epidemic, which coincided with greater prevalence. Second,

though unlikely, a substantial number of travelers attempted to

escape the epidemic [36]. Third, and most likely, public concern is

better measured by Google Trends than by the FluNet reported

incidence. Therefore, the model using FluNet had to compensate

for the ‘‘extra’’ missed flights early in the epidemic (Fig 2) by fitting

a negative coefficient. Focusing on data after April 1, 2009 the

correlation coefficient between the 2 week moving averages of the

FluNet and Google Trends swine flu data is 0.15 (p-

value,0.0001), and focusing on data from the first wave, when

the Google Trends index was greatest (4/1 to 8/1 of 2009), the

correlation coefficient between the two epidemic indices was

negative (R = 20.21, p-value,0.0001). This pattern holds regard-

less of the smoothing process.

Generalizing the model beyond main effects to include a set of

FluNet cases-by-destination region and case-by-city interaction

terms had no qualitative effect on parameter estimates, with one

important exception: for some specifications the FluNet case

Table 3. Parameter estimates based on a negative binomial regression using median price and a two-week moving average of the
Google Trends swine flu index (first part).

Variable Estimate
Cluster robust
Standard Error Z-score p-value

Constant 125.83950 21.28549 5.91 0

Google Trends swine flu index
2 week moving avg

0.00041 0.00023 1.8 0.072

Flight specific variables

booked passengers 0.01406 0.00098 14.35 0

median price 20.00066 0.00023 22.91 0.004

inbound connections 20.00360 0.00125 22.89 0.004

Weather variables

weather Phoenix (PHX) 20.00791 0.01029 20.77 0.442

weather Philadelphia (PHI) 0.08189 0.01891 4.33 0

weather Chicago (ORD) 0.01280 0.00209 6.12 0

weather Las Vegas (LAS) 0.00384 0.00691 0.56 0.578

weather New York (JFK) 0.08015 0.01601 5.01 0

weather Charlotte (CLT) 0.05706 0.01927 2.96 0.003

Aircraft type

large express 0.02164 0.02416 0.9 0.371

small mainline 0.16461 0.02743 6 0

standard mainline 0.00489 0.03413 0.14 0.886

large mainline 20.32912 0.05060 26.5 0

small international 20.48461 0.06032 28.03 0

large international 20.83046 0.06323 213.13 0

Destination region

Mexico 20.11871 0.15826 20.75 0.453

Latin & South America 20.15440 0.16639 20.93 0.353

Hawaii 20.23949 0.16782 21.43 0.154

Europe & Israel 0.21284 0.15120 1.41 0.159

Caribbean 20.58451 0.22634 22.58 0.01

Canada 20.24884 0.06394 23.89 0

Alaska 22.14877 0.16360 213.13 0

doi:10.1371/journal.pone.0058249.t003
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coefficient was significant and had a positive sign, but in these

cases the coefficient remained relatively small in magnitude

(Table 6). Taken together, these models suggest that passengers

did not skip flights in response to reported A/H1N1 cases.

Furthermore, evidence that people responded to Google Trends,

but not to an index of actual cases, suggests that those missing

flights in response to the Google Trends swine flu index engaged in

avoidance behavior and were not missing their flights because they

were sick.

Willingness to pay to avoid infection
A lower bound on the per flight cost of skipped trips is defined

by the median price paid for that flight multiplied by the number

of passengers expected to miss that flight out of concern for swine

flu. For U.S. Airways passengers this implied a willingness to pay

ranging between $2.67 million when city level interaction terms

are included and $3.61 million for the base model. If the base

model prices are representative, then the willingness to pay to

eliminate infection risk during travel was at least $50.1 million

nationally. These calculations represent a lower bound on what

passengers would have been willing to pay to eliminate the chance

Table 4. Parameter estimates based on a negative binomial regression using median price and a two-week moving average of the
Google Trends swine flu index (second part).

Variable Estimate Cluster robust Standard Error Z-score p-value

Year 20.06266 0.01058 25.92 0

Day of the week

Monday 0.03281 0.00800 4.1 0

Tuesday 20.01412 0.00485 22.91 0.004

Wednesday 20.04894 0.00491 29.96 0

Thursday 20.02388 0.00709 23.37 0.001

Friday 0.02187 0.00881 2.48 0.013

Saturday 20.06876 0.00842 28.17 0

Month

February 20.02185 0.02021 21.08 0.28

March 20.05164 0.01547 23.34 0.001

April 20.07759 0.02262 23.43 0.001

May 20.12067 0.02927 24.12 0

June 20.06483 0.02259 22.87 0.004

July 20.07066 0.02115 23.34 0.001

August 20.02590 0.02292 21.13 0.259

September 20.17408 0.03113 25.59 0

October 20.21746 0.02348 29.26 0

November 20.25200 0.02300 210.96 0

December 0.04681 0.01530 3.06 0.002

Over-dispersion parameter 0.53694 0.01942

doi:10.1371/journal.pone.0058249.t004

Table 5. Region interactions with the Google Trends swine flu index.

Variable Estimate Cluster robust Standard Error Z-score p-value

Google Trends swine flu index
2 week moving average

3.961024 2.261024 1.79 0.073

Google Trends swine flu 6

Mexico 3.461023 6.661024 5.12 0

Latin & South America 6.561024 4.961024 1.35 0.177

Hawaii 23.461023 1.461024 224.33 0

Europe & Israel 21.661023 1.561024 210.6 0

Caribbean 7.161024 1.561024 4.83 0

Canada 22.161024 2.961024 20.72 0.47

Alaska 6.661024 2.561024 2.63 0.009

Other coefficient estimates are similar to those presented in Table 3.
doi:10.1371/journal.pone.0058249.t005
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of contracting A/H1N1 swine flu while flying. These calculations

do not represent total losses to the airline industry or losses to

society at large from people choosing not to purchase a ticket as a

result of H1N1 swine flu. It is likely that people simply postponed

travel decisions, like other consumption decisions, until the

epidemic waned [37].

Our results suggest that travelers responded to concern about

the epidemic, but not in a way that matched the actual incidence

of infection. It is unlikely that epidemics such as the 2009 A/H1N1

outbreak can be completely avoided, but it is possible to better

communicate risks. Fig 2 suggests that early in the epidemic public

concern was disproportionate to the number of cases. Indeed, the

public may have been panicked by vice president Biden’s advice to

skip trips (http://abcnews.go.com/Politics/

story?id = 7470281&page = 1#.UAn0EaNdC1c). To bound the

cost of this ‘‘adaptive’’ panic we rescaled the Google Trends swine

flu index by 235 (as in Fig 2) and adjust the associated parameter

in the models that use the Google Trends data. These adjustments

are unit conversions. The rescaling is necessary because the units

of the Google Trends are arbitrary. The number 235 was chosen

to align the Google Trends data and the FluNet data during the

second wave of the epidemic. We then forecast the number of

missed trips and a lower bound on the cost of these missed trips

relative to a counterfactual scenario where public concern tracked

the actual number of cases. Our base model suggested that US

Airways passengers missed 13,507 excess trips as a result of

concern in excess of that merited by case reports alone, resulting in

at least $1.7 M in forgone travel benefits. Scaling to the United

States air traveling population implies 187,078 missed flights in

excess of what would have been missed had public concern tracked

actual cases and $24.1 M in forgone travel benefits – nearly half

the lower bound value of completely eliminating the epidemic.

The model with a destination city interaction suggested that an

additional 160,387 trips would have been taken had public

concern matched cases resulting in $18.5 M in forgone travel

benefits.

Discussion

Behavioral changes can potentially have a large effect on

epidemic dynamics [2,3,28,38]. There is scarce evidence on the

economic tradeoffs individuals make to preserve their health

during an epidemic [39]. Most research in this area, particularly

with respect to behavioral change and air travel, has relied on

survey data using hypothetical scenarios ([e.g., [40,41,42]) and not

revealed behavior. Choosing to miss a flight is a costly decision.

The median cost of a round trip flight in our data set is

approximately $300. Nevertheless, we find some individuals

change their behavior in response to a population level measure

of concern about a novel pathogen. This is not all together

surprising; vice-president Biden recommended that people avoid

airplanes and subways during an interview on NBC’s Today show.

Mao [28] suggests that self-imposed behavioral changes during

an epidemic may be a low cost way to control disease. However,

Mao assumes that the perceived risk maps to actual risks. Early in

the A/H1N1 epidemic the expected costs from contracting that

pathogen may have been high and declined as it was learned that

the pathogen was less severe. Due to underreporting and potential

misreporting, reported cases are likely an inexact measure of risk,

but may map to objective measures of risk. The data suggest that

the public did not respond to the cases, but perhaps to media

attention to the epidemic. If cases are a good measure of objective

risk, then nearly half the costs to air passengers could have been

avoided through clearer communication about health risks.

Table 6. Model specification robustness results for FluNet models.

Length of
moving
average Price index

Regional interaction
with flu index

City interactions
with flu index

Log pseudo-
likelihood

Estimate of flu
index coefficient p-value for coefficient

1 median no no 24022174 27.4661026 0.000

1 mean no no 24022365 27.1561026 0.000

2 median no no 24022024 21.361025 0.000

2 mean no no 24022220 21.361025 0.000

3 median no no 24021695 22.261025 0.000

3 mean no no 24021897 22.261025 0.000

1 median yes no 24022142 27.2061026 0.000

1 mean yes no 24022334 26.9161026 0.000

2 median yes no 24021993 1.9161026 0.000

2 mean yes no 24022190 21.361025 0.000

3 median yes no 24021666 22.261025 0.000

3 mean yes no 24021867 22.161025 0.000

1 median no yes 24021583 1.0261025 0.026

1 mean no yes 24021781 1.0461025 0.021

2 median no yes 24021432 7.0161026 0.084

2 mean no yes 24021635 7.2561026 0.069

3 median no yes 24021103 24.1661027 0.946

3 mean no yes 24021311 21.8561027 0.976

When days are assigned there epidemic index value from weekly data, the length of moving average is listed as 1. Price index lists whether median or mean prices were
used, the interactions columns state whether interactions were included.
doi:10.1371/journal.pone.0058249.t006
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It is not clear that the early response was irrational. The

observation that the two flu indices primarily diverge early in the

epidemic suggests that most behavioral changes happened in the

early days of the epidemic. Fenichel and Wang [22] suggest that

epidemiological forecasts based on reproductive number theory

(e.g., R0) may lead to excessive risk reducing behavior if the

estimators do not account for how behavioral responses affect the

epidemic. Reproductive number theory is the standard in modern

epidemiology, and there were many attempts to forecast the A/

H1N1 epidemic using reproductive number theory early in the

epidemic ([e.g., [43,44,45]). Developing the next generation of

epidemiological forecasting tools requires integrating estimation of

human responses to disease risk with estimation of the basic

epidemiological parameters [2]. The current paper advances that

goal by providing a quantitative analysis of human behavioral

responses to a rapidly disseminating disease.

An important policy question is where to invest scarce resources

to reduce the economic damages of an epidemic. It is important

that public health measures are less costly than the epidemic itself

[37,46]. We do not know the cost of improving risk communi-

cation, but our calculations suggest that better communication of

actual risk can provide substantial cost savings. For example, the

U.S. Environmental Protection Agency has developed AirNow.

gov, an online site and mobile app that provides real time spatially

explicit air quality data to help people make decisions about

outdoor activities that may interact with air quality to affect health.

Others are developing similar applications for infectious disease.

Finally, air travel has been targeted as a venue for non-

pharmaceutical interventions [9]. We estimate the willingness to

pay by the air traveling public to eliminate the risk of contracting

swine flu while traveling to be on the order of at least $50 M over

the two year period bracketing the swine flu outbreak. In

comparison, Epstein et al. [10] estimate the cost of a complete

US air travel shut down in terms of lost consumer surplus to

prevent flu to be $93-$100B/yr. Our estimate does not consider

the willingness to pay of non-travelers to reduce the probability

that air travelers will spread the disease more quickly. However,

[11–13] argue that air travel restrictions at best are likely to have

modest effects on the spread of infectious disease. Airport

screening programs represent a non-pharmaceutical intervention.

Bitar et al. [18] review the literature on the use of infrared

detection systems in airports to detect travelers with fever, and find

these systems to be ineffective. Dell’Omodarme and Prati [47]

suggest that from a statistical standpoint such surveillance is

unlikely to be effective. If such scanners could be improved to fully

prevent passengers from catching flu, then given our lower bound

estimates and the current price of $2,500 per scanner [48], one

could purchase just over 20,000 scanners to serve the United

States’ approximately 430 commercial airports, approximately 50

per airport not including labor costs or the costs of passenger

delays. This number would be approximately cut in half if

communication strategies were improved first. This suggests that

technological innovation in flu scanning could, in principle, be cost

effective, but clear risk communication and accounting for the

public response to this information may be more cost effective,

especially in the short to medium run.

Our findings suggest that people do respond to epidemiological

risks with behavioral change. The effect of these behavioral

responses on epidemic spread is an area of ongoing research.

Furthermore, the nature of the feedback from disease spread to

human behavior appears to be tightly connected to information

about the epidemic, and that information may only be loosely

connected to facts on the ground. This ‘‘noise’’ complicates

developing forecasting models that account for behavioral-

epidemiological feedbacks, which remains an important area for

continued research. Nevertheless, the results suggest a clear need

to enhance risk communication strategies related to infectious

diseases. Infectious diseases are scary, but clear communication

appears to have substantial potential to lessen the hardships caused

by an epidemic.
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