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Allogeneic hematopoietic cell transplantation (Allo-HCT) is a curative therapy for
hematological malignancies (i.e., leukemia and lymphoma) due to the graft-versus-
leukemia (GVL) activity mediated by alloreactive T cells that can eliminate residual
malignant cells and prevent relapse. However, the same alloreactive T cells can cause
a serious side effect, known as graft-versus-host disease (GVHD). GVHD and GVL occur
in distinct organ and tissues, with GVHD occurring in target organs (e.g., the gut, liver,
lung, skin, etc.) and GVL in lympho-hematopoietic tissues where hematological cancer
cells primarily reside. Currently used immunosuppressive drugs for the treatment of GVHD
inhibit donor T cell activation and expansion, resulting in a decrease in both GVHD and
GVL activity that is associated with cancer relapse. To prevent GVHD, it is important to
allow full activation and expansion of alloreactive T cells in the lympho-hematopoietic
tissues, as well as prevent donor T cells from migrating into the GVHD target tissues, and
tolerize infiltrating T cells via protective mechanisms, such as PD-L1 interacting with PD-1,
in the target tissues. In this review, we will summarize major approaches that prevent
donor T cell migration into GVHD target tissues and approaches that augment tolerization
of the infiltrating T cells in the GVHD target tissues while preserving strong GVL activity in
the lympho-hematopoietic tissues.
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INTRODUCTION

Allogeneic hematopoietic cell transplantation (Allo-HCT)
provides curative therapy for hematological malignancies such
as lymphoma and leukemia by relying on the graft-versus-
leukemia/lymphoma (GVL) effects mediated by alloreactive T
cells (1–6). However, the same alloreactive T cells also cause a
severe side effect, graft-versus-host disease (GVHD). Prevention
of GVHD while preserving GVL activity remains a long-sought
and elusive goal.

Acute GVHD (aGVHD) is a dysregulated and exaggerated
alloimmune response whose pathogenesis has been elegantly
described in previous and recent reviews (7–11). Although
GVHD and GVL activity are mediated by the same alloreactive T
cells, they occur in different tissue compartments. GVHD target
tissues include the skin, lung, liver and intestine (12), but leukemia/
lymphoma cells reside mainly in lympho-hematopoietic tissues,
including the bone marrow, spleen and lymph nodes (13). Current
methods that suppress general alloreactive T cell activation and
expansion such as immunosuppressants (i.e., tacrolimus and
sirolimus) simultaneously reduce GVHD and GVL activity (14,
15). Blocking alloreactive T cell infiltration in GVHD target tissues
while allowing full activation and expansion of alloreactive T cells
that kill malignant cells in the lympho-hematopoietic compartment
offers a better approach toward prevention of GVHD. In addition,
cellular therapy such as infusion of Tr1 can prevent GVHD while
exerting GVL activity in pre-clinical models (16–18) and can
maintain alloreactive responses without causing GVHD in
humans (19, 20). Moreover, CD8+ Tregs can enhance GVL
activity while suppressing GVHD (21–23). In this review, we
focus on the approaches that can maintain donor T cells in
lymphohematopoietic tissue and augmentation of tissue PD-L1
mediating protection to prevent GVHD while preserving GVL
activity. We summarize preclinical studies and clinical trials that
have tested this compartmental approach for preventing GVHD
while preserving GVL activity.
INHIBITION OF TISSUE-SPECIFIC T CELL
HOMING AND CHEMOKINE RECEPTORS

T cell migration into GVHD target tissues requires specific
homing and chemokine receptor expression and release of the
corresponding of chemokines in tissues. In general, T cell that
express CXCR3, CCR9 or a4b7integrins interacting with their
ligands CXCL9, CXCL10, CXCL11, CCL25 or MAdCAM-1
migrate into gut (24). T cell that express CCR5 or
a4b1integrins interacting with its ligands CCL3, CCL4, CCL5
or VCAM-1 migrate into liver (24, 25). T cells that express
CCR3, CCR4, or CCR6 interacting with their ligands CCL11,
CCL17/CCL22 or CCL20 migrate into lung and skin (24, 26–28).

Various studies have tested the effects of targeting chemokine
and chemokine receptors in experimental murine GVHD
models. For example, a decrease in skin, liver and gut GVHD
can be achieved through elimination of CXCR3+ T cells, or by
neutralization of its ligands CXCL9-11 (29–31). Based on these
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results, several patent applications for CXCR3 antagonists have
been filed, but no such antagonist has been approved for
prevention of GVHD or treatment of other diseases in humans
(32). Another novel approach involves the use of CXCR3-
transfected regulatory T cells (Tregs) that migrate and
accumulate in the liver, lung and gut, resulting in decreased
GVHD severity (33). CCR5 is an important receptor that allows
lymphocytes to migrate to the skin and causes the production of
TNF-a, IL-2, and IFN-g, leading to development of aGVHD in
patients (34). A 32-nucleotide deletion of CCR5 (CCR5D32) in
recipients significantly decreased the risk of GVHD (35).
Moreover, in both recipient and donor cells, the CCR5D32
genotype exhibited the greatest protection (35). This protection
may depend on the conditioning regimen (36). Maraviroc, which
is an inhibitor of CCR5, has been approved for treatment of HIV
infection. An initial report about Maraviroc for prevention of
GVHD in human showed encouraging results (37), but a follow-
up study did not (38).

CCR9 plays a critical role in the homing of lymphocytes into
inflamed intestines, thereby contributing to the pathogenesis of
colitis and Crohn’s disease (39). An orally bioactive inhibitor of
CCR9, CCX282, has been developed and was well tolerated with
encouraging results in clinical trials for Crohn’s disease (40), but
no studies in treatment of GVHD has been reported so far.
Surprisingly, in a murine GVHDmodel, lack of CCR9 expression
by donor T cells did not ameliorate GVHD since CCR9
deficiency on donor T cells did not impact on inflammatory
cytokine production and T cells accumulation in liver and
intestine (41). These results suggested CCR9 seems to have a
subordinate role for donor T cell homing in vivo during aGVHD.

The integrin a4b7 has a critical role in mediating aGVHD.
Upregulation of a4b7 integrin expression by T cell subsets
correlates with the development of gut aGVHD in humans (42,
43). In murine models, the severity of GVHD was lower with
a4b7 deficient donor T cells than with wild-type (WT) T cells
(41, 44). The a4b7 deficient donor T cells also showed intact
graft-versus-tumor (GVT) activity or even enhanced activity
(44). Similarly, MAdCAM-1 deficiency on recipients reduced
GVHD in mice (41), moreover, administration of anti-
MAdCAM-1 antibody reduced GVHD without impairing GVL
effects in both nonirradiated recipients and in recipients treated
with myeloablative conditioning (45). Recent study found
intestinal stem cells were the primary target of alloreactive
donor T cells (46). Furthermore, it was shown that this process
relies on b7 integrin and MAdCAM-1 interactions, since the
anti-MAdCAM-1 antibody reduced donor T cell invasion into
the lower crypt regions of the mucosa resulting in less damage to
the GI tract (46). Vedolizumab, a monoclonal antibody that
binds to a4b7, has been approved for treatment of ulcerative
colitis and Crohn’s disease and, more recently, has been
examined as a treatment for steroid refractory gut GVHD with
variable results (47–51), however there is no information about
the use of Vedolizumab to prevent GVHD.

T cell tissue tropism and expression of chemokine receptors is
imprinted by tissue CCR7+ dendric cells (DCs) in the draining
lymph nodes (52–56). Consistently, anti-CD3-preconditioning
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effectively depletes CCR7+ DCs in mesenteric lymph nodes by
inhibiting CCR7+ DC migration from gut tissue into MLN and
inducing CCR7+ DC apoptosis in the MLN. Consequently, the
expression of gut homing molecules a4b7 and CCR9, as well as
skin homing molecules E-Lig, P-Lig, CCR4 and CCR10, is
reduced in donor T cel l s . Addit ional ly , ant i -CD3
preconditioning reduced the expression of CCL17, CCL22,
CCL27, and CCL28 in skin tissues. Anti-CD3 preconditioning
also reduced gut, skin, and liver tissue expression of CCL3-5 and
CXCL9-11, which decreased alloreactive donor T cell tissue
tropism towards skin, liver, and gut. Therefore, anti-CD3
preconditioning allows fully activated donor T cells to be
retained and mediate GVL activity in lympho-hematopoietic
tissues where hematological cancer cells reside without causing
GVHD (57, 58). Due to lack of depleting anti-human CD3 mAb,
this approach has not yet been tested in humans.

Sequestering lymphocytes within secondary lymphoid organs
offers an alternative to preventing GVHD by blocking migration
of alloreactive donor lymphocytes to target tissues in the
recipient. Exit of T cells from lymphoid tissues require their
expression of sphingosine 1-phosphate receptors (S1PRs). The
S1PRs agonist FTY720 retains alloreactive T cells in lymphoid
tissues and prevents T cell infiltration of GVHD target tissues,
thereby preventing GVHD while preserving GVL effects in both
MHC mismatched and MHC-haploidentical murine GVHD
models (59–62). On the other hand, FTY720 also reduced the
numbers of host DCs in the recipient spleen before
transplantation and slightly impaired GVL activity (63, 64).
Fingolimod (FTY720), a first-in-class, orally bioavailable S1PR
agonist has been approved in 2010 for treatment of relapsing
forms of multiple sclerosis (MS). Published clinical testing for
GVHD in humans, however, is limited to a single a 66-year-old
patient with severe CNS GVHD who was treated successfully
with fingolimod (65). Overall, few studies have evaluated
pharmacological targeting of chemokines and chemokine
receptors in clinical settings. This approach might be valid for
treatment, but not for prevention of GVHD, if the inhibitor is
given prior to the infusion of donor cells. In addition, the
difficulty in controlling donor T cell migration may be
promoted by pre-existing tissue resident T cells in the human
GVHD target tissues (66).
REDUCTION OF TARGET TISSUE
INFLAMMATION

Tissue inflammation caused by pretransplant conditioning
regimens triggers migration of alloreactive T cell into GVHD
target tissues (67). Delayed lymphocyte infusion (DLI) of donor
T cells after tissue inflammation has subsided reduced GVHD
while augmenting GVL effect in murine models and humans
(68–75). The DLI mediated GVL effect has been confirmed for
chronic myeloid leukemia (CML) in numerous studies
worldwide (76, 77), with up to 70–80% cytogenetic complete
remissions (78). For patients with acute myeloid leukemia
(AML) or myelodysplastic syndrome (MDS), the response rate
Frontiers in Immunology | www.frontiersin.org 3
to DLI is much lower (20–40%) and is lower still in those with
acute lymphoid leukemia (ALL) (10–13%) (79).

According to most studies, conditioning regimens initiate
aGVHD by triggering the production of cytokines (such as TNF-
a, IFN-g, IL-1, and IL-2) which, in turn, up-regulate the
chemokine receptors and their ligands that drive the migration
of T cells to GVHD target tissues (53, 55, 80, 81). Certain
cytokines promote GVHD while also providing survival signals
to leukemia cells. These include granulocyte-macrophage
colony-stimulating factor (GM-CSF) (82, 83) and macrophage
colony-stimulating factor 1 (CSF-1) (84) in AML, and
Interleukin-6 (IL-6) in ALL (85) and multiple myeloma (MM)
(86). Among these, the role of IL-6 has been demonstrated in the
pathogenesis of GVHD in several murine GVHD models (87,
88). Expression of IL-6 and IL-6R is enhanced after allo-HCT,
DCs are the principal source of IL-6 dysregulation after allo-
HCT, and blockade of IL-6 signaling by in vivo administration of
anti-IL-6R mAb attenuates GVHD with significant expansion of
Tregs and reduction of inflammatory Th1 and Th17 cells (87,
88). Inhibition of classical signaling of IL-6R on donor T cells
decreased the severity of Th17 and Th22-dependent GVHD
without inhibiting GVL response against a primary blast crisis
chronic myeloid leukemia cell line BCR-ABL/NUP98-HOXA9
(88). Similarly, tumor necrosis factor-alpha (TNF-a) blockade
ameliorated GVHD mediated by both CD4+ and CD8+ T cells
without blocking GVL activity (89). Another study, however,
showed that recipients given TNF-a receptor deficient T cells
had a significant impairment in donor GVL activity after HCT
compared to recipients of WT T cells, indicating that TNF-a has
an important role in GVL mediated by donor T cells (90).
Neutralization of a single cytokine such as IL-6 and TNF has
shown variable and conflicting results (89, 91, 92). A recent
study, however, showed beneficial effects from dual blockade of
both IL-6 and TNF in prevention of GVHD in both MHC-
mismatched and minor antigen-mismatched aGVHD murine
models and in sclerodermatous cGVHD murine models (93),
while preserving GVL activity against A20 (B-cell lymphoma)
and C1498 (acute myeloid leukemia) (93). In clinical trials,
however, tocilizumab (TCZ), a monoclonal antibody against
the interleukin-6 receptor, did not significantly reduce the
incidence of grade 2-4 aGVHD, and did not improve long-
term survival (94). Similarly, the clinical results of testing TNF
blockade for prevention of GVHD have been disappointing
(95, 96).
INFUSION OF MESENCHYMAL STEM
CELLS (MSCS)

MSCs are highly heterogeneous population of stem and
progenitor cells that can be isolated and expanded from many
tissues, such as bone marrow, placenta, umbilical cord (UC),
adipose tissue (AT), and dental pulp (97–102). It has been
demonstrated that MSC heterogeneity occurs within the same
species, the same tissue preparations, and even on the same
donor isolations (103–106). In general, MSCs inhibit the
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generation of cytotoxic T cells by secreting a soluble factor, but
they do not interfere with CTL and NK cell lytic activity (107).
Other studies have suggested that tolerance induction by MSCs
may occur through inhibition of dendritic cell maturation and
function (108–110), induction of myeloid-derived suppressor
cells (MDSCs) (111), and suppression of B cells (112).
Although it has been difficult to recover MSCs from BM of
transplant recipients, MSCs can migrate to lymphoid organs and
engraft at areas of tissue damage or tumor progression (113–
115). These results indicate that MSCs are recruited mainly to
tissues other than bone marrow for immune suppression in
GVHD. The ability of MSCs to suppress infiltration of activated
T cells into GVHD target tissues but not into the bone marrow
contributes to the separation of GVL from GVHD. In addition,
MSCs ameliorate GVHD through expansion of Tregs, especially
the CD8+ Tregs (116–118). Unlike CD4+ Tregs, CD8+ Tregs
suppress GVHDwhile preserving GVL activity (21–23). In clinic,
third party, ex-vivo expanded, MSCs co-injection in a high risk,
mismatched, unrelated-donor HCT reduced the severity of
GVHD (119). Co-injection of MSCs and HSCs in HCT with
HLA-identical sibling donors reduced the severity of aGVHD,
but the incidence of relapse was significantly increased (120), and
a comprehensive meta-analysis showed that co-administration of
MSCs with allo-HCT has no demonstrable benefit regarding
engraftment or prevention of aGVHD or cGVHD (121).

Exosomes are naturally occurring extracellular vesicles (EVs)
that are released from many cell types and can be enriched from
virtually all body fluids, including blood plasma, urine and saliva
(122). Depending on their origin, some exosomes exert immune
stimulatory or immune suppressive functions (122, 123). Since
MSC exosomes represent a therapeutically active product of
MSCs, it was suggested that EVs could have similar tissue
repair capabilities as MSCs, making them a promising
noncellular approach for GVHD prevention or treatment
(124). In murine models bone marrow MSC derived EVs
enhanced survival and reduced the severity of aGVHD (125),
but MSC-EVs have not been tested for prevention of GVHD
in humans.

Overall, the efficacy of MSCs treatment varies from study to
study, possibly because MSCs are very heterogeneous, depending
on their origin and the methods used to isolate and propagate
them in vitro. Progress will require improved understanding of
the mechanisms of MSCs and the development of methods that
define the optimal source, in vitro culture methods, measurement
of potency, cell dose, and the timing and frequency
of administration.
DEPLETION OF NAÏVE DONOR T CELLS
REDUCE TISSUE INFILTRATION AND
REDUCE GVHD WHILE PRESERVING
GVL EFFECT

Generally, T cells can be divided into two types: (1) naïve T cells
(TN) which have not yet encountered their corresponding
antigens, and (2) antigen-experienced T cells, which include
Frontiers in Immunology | www.frontiersin.org 4
memory and effector T cells (TM) composed primarily of
clonal expansions of T cells specific to their respective antigens
(126). Based on the phenotype, gene expression, metabolic
profile, and function of these antigen-experienced T cells, they
can further be subdivided into three main types: central memory
T cells (TCM), effector memory T cells (TEM), and effector T cells
(TE) (127). Most T cells in the blood of mice have a TN

phenotype and both CD4+ and CD8+ T cells from peripheral
blood mediated lethal GVHD in an MHC-mismatched HCT
model (128). In contrast, bone marrow T cells are TM phenotype
that failed to induce lethal GVHD but retained GVL activity and
facilitated hematopoietic progenitor engraftment (128). This
study indicated that preserving resident marrow TM cells but
not blood TN cells in the transplant inoculum may result in the
desirable outcome of GVL and facilitation of engraftment
without causing GVHD.

In subsequent studies, several different groups evaluated TN

and TM subsets for their ability to cause GVHD using various
murine GVHD models (129–137). The models involved in these
studies included different MHC disparity (e.g., MHC-
mismatched, MHC-matched, and minor H antigen
mismatched), distinct GVHD disease patterns (aGVHD and
cGVHD), as well as CD8+ and CD4+ T cell-mediated models
respectively. Consistently, TN caused severe GVHD, while TEM

did not cause GVHD. Some studies showed that TCM can also
cause intestinal damage that was less severe than with TN (131).
More importantly, the CD8+ TM preserve GVL function in vivo
(133, 135). Taken together, these preclinical murine studies
indicated that TN consistently mediate GVHD, while TM either
do not cause GVHD or cause only mild GVHD while still
contributing to functional GVL effects.

Preclinical studies showed that human TN and TM have
distinctly different fates after alloactivation in vitro (138). TM

lost their function to recognize alloantigens, whereas the TN

remained highly functional (138). These results suggested that
TN-depletion was likely to reduce the expansion of alloreactive T
cells after allo-HCT. Based on these discoveries, a single-arm
clinical trial was designed to evaluate outcomes after CD45RA+

TN-depleted allo-HCT. Accordingly, 35 patients with high-risk
leukemia received TN-depleted peripheral blood stem cell
transplantation (PBSCT) from HLA-matched sibling donors
after myeloablative conditioning (139). During the first three
months after HCT, T cell immune reconstitution was
comparable to that with unmanipulated bone marrow
transplant (BMT) and was significantly better than with
CD34+ selected pan-T cell depleted (TCD) PBSCT recipients,
although the incidence of moderate (grade II-III) aGVHD was
not reduced. GVHD in these patients, however, was uniformly
responsive to corticosteroids, with a very low incidence of grade
III-IV GVHD. The incidence of cGVHD was strikingly reduced
compared to BMT. More importantly, the presence of TM in the
graft contributed to rapid recovery of T cells and the transfer of
protective virus-specific immunity. No excessive rates of
infection or relapse was observed (139). Similar observation
was reported recently on three prospective phase II clinical
trials of 138 patients with acute leukemia and MDS received
TN-depleted PBSCT from HLA matched related or unrelated
May 2022 | Volume 13 | Article 907673
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donors, aGVHD was mild and corticosteroid-responsive;
Strikingly, only 7% of patients developed cGVHD, which was
also mostly mild and steroid-responsive. No apparent increase in
relapse or fatal infections (140). TN-depletion of PBSCT is also
being applied to the setting of HLA-haploidentical HCT (haplo
HCT) (141–144). In a recent report summarizing preliminary
data from the first 50 subjects enrolled in an ongoing clinical
trial, the results indicated an increase in the 3-year overall
survival (OS) and event-free survival (EFS) in non-chemo
refractory recipients receiving TN-depleted grafts (78.9% and
77.7%, respectively) compared to historic T-cell depleted haplo
HCT cohorts (46.7% and 42.7%, respectively; p = 0.004 and 0.003
respectively) (144). Based on these results, clinical trials are now
in progress to compare TN-depleted PBSCT with standard
unmanipulated allo-HCT along with other promising GVHD-
reduction strategies (145, 146).

Collectively, the outcomes of TN-depleted allo-HCT are very
encouraging, and the understanding obtained from various
human studies generally correlate with the results of murine
experiments. However, relapses still occur at a low incidence.
The underlying mechanism by which TN and TM exert
differential effects on alloreactivity remains unclear. It has been
proposed that TN cause GVHD while TEM do not because they
lack CD62L and CCR7, which are critical in directing TN toward
to the sites of antigen presentation for GVHD initiation, such as
lymph nodes (LN) and Peyer patches (PP). However, in murine
GVHD model, Anderson et al. showed that CD62L and CCR7
were not required for TN-mediated GVHD, since CD62L-/-

donor T cells still induced GVHD, and GVHD also developed
in recipients that lacked LN and PP. Even when TEM

constitutively express CD62L, they do not cause GVHD (147),
indicating that targeting a single chemokine receptor alone on
TN cells might not be an effective therapy. Therefore, to further
clarify the mechanism in human, future studies are needed
evaluate the difference between TN and TM related to the
respective cell trafficking patterns, or whether pathogen-
specific TM cross react with leukemia/lymphoma-associated
antigens but with little cross-reactivity for alloantigen will need
further investigation.
HOST TISSUE PD-L1 WITH DONOR CD4+

AND CD8+ T CELLS

PD-L1 interact with receptors PD-1 and CD80 (148–152), and
we proposed a general view that PD-L1 interactions with PD-1
and CD80 could differentially regulate GVHD and GVL, as
summarized in our previous review (153). In the current
review, we elaborate on how PD-L1 expressed by host
parenchymal tissues or expressed by donor- and host-type
lympho-hematopoietic cells regulates GVHD and GVL activity
mediated by the same alloreactive T cells. Parenchymal tissue
expression of PD-L1 can effectively tolerize infiltrating T cells by
interaction with PD-1 on activated T cells and induction of T cell
anergy, exhaustion, and apoptosis, together with expansion of
FoxP3+ Treg cells and FoxP3-IL-10+ Tr1 cells (154–156).
Frontiers in Immunology | www.frontiersin.org 5
Nonetheless, upregulation of PD-L1 by host tissues did not
effectively prevent aGVHD, although it can reduce the severity
of aGVHD as indicated by exacerbation of aGVHD in PD-L1-/-

recipients and with PD-1-/- donor T cells. In addition, transgenic
expression of PD-L1 by hepatocytes via hydrodynamic injection
of PD-L1 plasmid ameliorated aGVHD with expansion of
FoxP3+CD4+ Treg cells (157). The lack of effective prevention
of aGVHD by host-tissue PD-L1 may result from the cytokine
environment, since GVHD target tissues express elevated levels
of IL-2, IFN-g, TNF-a, GM-CSF, and IL-6 (7, 158). Neutralizing
TNF-a or IL-6 did not effectively prevent aGVHD, although the
severity of GVHD was reduced in murine recipients and in
human HCT recipients (87–89, 91, 92). Thus, other cytokines
may regulate the effects of PD-L1/PD-1 pathway.
HOST TISSUE PD-L1 AND TOLEROGENIC
ANTI-IL-2 MAB

Sorted donor CD4+ T cells can cause severe GVHD by expressing
FASL and producing proinflammatory cytokines (e.g., IFN-g and
TNF-a) (159, 160), while sorted donor CD8+ T cells prevent
graft rejection and mediate GVL effects by expressing perforin/
granzyme, without causing aGVHD in animal models (161, 162).
IL-2 produced by CD4+ T cells makes CD8+ T cells resistant to
anergy and apoptosis induced by PD-1 signaling (163). We
found that administration of tolerogenic anti-IL-2 mAb (JES6)
that specifically blocks IL-2 interaction with IL-2Rb effectively
prevents aGVHD while preserving strong GVL effect in a host
tissue PD-L1-depdent manner. In GVHD target tissues, blockade
of IL-2b signaling increased inhibition of AKT-mTOR pathway
mediated by PD-L1/PD-1 signaling, upregulated T cell
expression of PD-1 and Blimp-1, and expanded IL-10+FoxP3-

CD4+ Tr1 cells (156). In lymphoid tissues, donor CD8+ T cells
expanded and had increased expression of granzyme B and
generation of TCF-1+CD8+ memory progenitors that can give
rise to cytotoxic effector cells, which contribute to strong GVL
activity (156). Maintenance of donor CD8+ T cells in lymphoid
tissues may result from the lack of host-type PD-L1 expression
and lack of PD-L1/PD-1 signaling. Thus, administration of
tolerogenic anti-IL-2 that specifically blocks IL-2Rb signaling
may represent a novel approach for preventing aGVHD while
preserving strong GVL activity through the expansion of
functional CD8+ T cells in lymphoid organs while inducing
Tcon anergy/exhaustion in GVHD target tissues (Figure 1).
An anti-human IL-2Rb mAb has been developed (164) but has
not been evaluated in clinical trials.

Administration of tolerogenic anti-IL-2 mAb that blocks IL-2
interaction with IL-2Rb did not prevent cGVHD (156).
Although the treatment was very effective at prevention of gut
aGVHD, the recipients developed cGVHD with body weight loss
(156). The lack of protection of thymus may result from
autoreactive PD-1hiIFN-g+IL-10+CD4+ T cell interactions with
B cells. Our previous report showed that autoreactive IFN-g+IL-
10+CD4+ T cells can activate B cells to produce autoantibodies
(165), and donor-type tissue-resident PD-1hiCD4+ T helper cells
May 2022 | Volume 13 | Article 907673
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interact with B cells in the GVHD target tissues to produce
autoantibodies that mediate thymus damage and cutaneous
GVHD (166). Those PD-1hi T helper cells were derived from
naïve CD4+ T cells in the graft (166), depletion of naïve T cells in
the graft was recently reported to effectively prevent
cGVHD (140).
HOST TISSUE PD-L1 AND DEPLETING
ANTI-CD4 MAB

aGVHD is mediated by donor CD4+ and CD8+ T cells in the graft,
and cGVHD is mediated mainly by CD4+ T cells from the graft and
from T cells that are de novo generated from progenitors in the
GVHD-damaged thymus (167, 168). With a murine model that
reflects characteristic features of acute and chronic GVHD, we
showed that sorted CD4+ T cells induce both acute and chronic
GVHD. Sorted CD8+ T cells did not induce aGVHD but did induce
cGVHD that depended on de novo generated CD4+ T cells (169). In
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follow-up studies, we administered a depleting anti-CD4 mAb
weekly for 4 weeks after HCT to deplete donor CD4+ T cells
derived from the graft and from de novo-regeneration early after
HCT (163). Notably, the administration of anti-CD4 mAb did not
affect bone marrow reconstitution and allowed full recovery of
donor CD4+ T cells on day 100 after HCT (163). The depletion of
CD4+ T cells by anti-CD4 mAb prevented both acute and chronic
GVHD while preserving strong GVL activity in murine and
humanized xeno-GVHD models (163). In GVHD target tissues,
depletion of CD4+ T cells allowed host tissue PD-L1 interaction
with PD-1 expressed by donor CD8+ T cells to induce anergy,
exhaustion and apoptosis. In lymphoid tissues, however, the
treatment allowed PD-L1/CD80 interactions to augment
expansion of CD8+ T cells early after HCT, which contributed to
strong GVL activity (163). CD4+ T cells help CD8+ T cells via their
production of IL-2 that prevents T cell tolerance induced by PD-1
signaling (163). Deletion of CD4+ T cells not only removed the IL-2
effect on donor CD8+ T cells and augmented infiltrating CD8+ T
tolerance but might also prevented formation of tissue resident
FIGURE 1 | Depletion of donor CD4+ T cells and tolerogenic anti-IL-2 mAb (JES6-1) administration prevents acute GVHD while preserving GVL activity. The depletion of
CD4+ T cells by anti-CD4 mAb prevented both acute and chronic GVHD while preserving GVL activity. In GVHD target tissues, depletion of CD4+ T cells allowed host
tissue PD-L1 interaction with PD-1 expressed by donor CD8+ T cells to induce anergy, exhaustion and apoptosis. In lymphoid tissues, the treatment allowed PD-L1 and
CD80 interactions among lymphocytes and DCs to augment expansion of CD8+ T cells that mediating GVL activity. Furthermore, CD4+ T cells help CD8+ T cells via their
production of IL-2. Administration of tolerogenic anti-IL-2 mAb (JES6) expanded IL-10+FoxP3-CD4+ Tr1 cells in GVHD target tissues. In addition, increased expression of
granzyme B and generation of TCF-1+CD8+ memory progenitors that can give rise to cytotoxic effector cells in lymphoid tissues, leading to effectively prevention of
aGVHD while preserving GVL activity. Created with BioRender.com.
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CD4+ T cell helpers for B cells that mediate cGVHD.
Administration of depleting anti-CD4 mAb may also deplete the
pre-existing host-type tissue-resident CD4+ T cells in GVHD target
tissues that augment induction of aGVHD (66). Therefore,
administration of depleting anti-CD4 mAb early after HCT may
represent one of the most effective approaches to prevent acute and
chronic GVHD while preserving strong GVL activity (Figure 1).
DONOR- AND HOST-TYPE
HEMATOPOIETIC CELL EXPRESSION
OF PD-L1 DIFFERENTIALLY REGULATE
ALLOREACTIVE T CELL EXPANSION
AND GVL ACTIVITY

PD-L1 is induced and constantly expressed by parenchymal cells
in inflamed GVHD target tissues (163, 170). Host-type
hematopoietic cells in the lympho-hematopoietic tissues are
rapidly eliminated and replaced by donor-type cells early after
HCT (171). Donor-type cells in lymphoid tissues expressed
higher levels of PD-L1 and CD80 but lower levels of PD-1 as
compared to those in the GVHD target tissues (163). Thus, PD-
L1 interaction with CD80 in the lymphoid tissues is likely
dominant in lymphoid tissues, while PD-L1 interaction with
PD-1 is dominant in GVHD target tissues, although both
interactions exist in the two compartments. Accordingly, PD-
L1 interactions with PD-1 and CD80 differentially regulate
GVHD and GVL activity (163).

Blazar’s group showed that while host-tissue PD-L1 ameliorated
aGVHD, donor cell PD-L1 augmented T cell expansion and
aGVHD (172). Since PD-L1 interaction with PD-1 always inhibits
T cell expansion (173), the role of donor T cell PD-L1 on
augmenting T cell expansion and GVHD must be through PD-L1
interaction with CD80 or other ligands. Consistently, we observed
that PD-L1 or CD80 deficiency in donor T cells and specific
blockade of PD-L1 interactions with CD80 by anti-PD-L1 mAb
(43H12) given on day 0 before T cell activation in vivo reduced
CD8+ T expansion (163). Blockade of PD-L1 interaction with CD80
after T cell activation on day 5 after HCT, however, augmented
donor CD8+ T expansion (174). Although we assumed that PD-L1
interaction with CD80 occurred in trans (151, 157, 175), recent
publications showed that PD-L1 interactions with CD80 do occur in
cis and that PD-L1/CD80 interactions in cis on APCs reduced PD-
L1 interaction with PD-1 and reduced CD80 interaction in trans
with CTLA-4 on T cells, thereby augmenting CD8+ T cell expansion
(176, 177). Our studies, however, showed that in vivo 43H12
blockade augmented expansion of CD44+CD62L-CD8+ memory/
effector T cells in tumor draining lymph nodes (178). This effect is
opposite from blocking cis PD-L1/CD80 interactions, suggesting
that trans PD-L1/CD80 interaction occurs in vivo. Furthermore,
these findings correlate with the observation that blockade at
day 5 accelerated the expansion of donor CD8+ T cells in
allogeneic recipients (174). Naïve T cell expressed low levels of
PD-L1 and CD80, while activated T cells and APC express high
levels of PD-L1 and CD80 (151). Thus, administration of 43H12 on
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day 0 predominantly blocks PD-L1/CD80 cis interactions on host
APC (176, 177), while administration of 43H12 on day 5 primarily
blocks trans PD-L1/CD80 interactions (153, 157).

Taken together, our studies suggest that when donor T cells
interact with host APCs in lymphoid tissues early after HCT, the
interaction of PD-L1 on donor T cells with CD80 on host-APCs
augments donor T cell expansion. After donor T cells are fully
activated and host APCs in the lymphoid tissues are eliminated,
donor T cells interact with donor APCs, and the PD-L1/CD80
between donor T cells and APCs augment the tolerance effect of
PD-1/PD-L1 interactions. This hypothesis is supported by our
observation that blockade of PD-L1/CD80 interaction between
activated donor CD4+ T cells and APCs in allogeneic recipients
augmented the expansion of the CD4+ T cells, and the effect
occurred only in WT donor T cells but not in PD-1-/- donor T
cells (157).

Administration of anti-PD-1 or anti-PD-L1 mAb to the
patients who with tumor relapsed after allo-HCT induced
lethal aGVHD (179–182). Since blockade of PD-L1/CD80
interaction reduced but did not completely remove the
inhibitory effect of PD-L1/PD-1 interactions, we expect that
administration of antibodies to specifically block PD-L1/CD80
interaction will augment GVL effect in lymphoid tissues while
maintaining the protective effect of PD-L1/PD-1 interactions in
GVHD target tissues. Therefore, blockade of PD-L1/CD80 in
patients with relapse could augment GVL activity with
little GVHD.
SEQUENTIAL ADMINISTRATION OF
TOLEROGENIC ANTI-IL-2 AND
JAK INHIBITOR

JAKs are intracellular signaling components that function as
downstream signal mediators for many cytokines (183). The JAK
family contains four members. Among these, JAK1, JAK2, and
JAK3 may be important for the development of GVHD (184–
188). JAKs regulate the function of immune cells that mediate
GVHD, including APCs (189), T cells (190), and B cells (191).
Thus, numerous studies have been conducted to investigate the
role of JAKs inhibitors in regulating GVHD in preclinical
models. John F. DiPersio’s group evaluated the effect of JAK1/
JAK2 inhibitors in an MHC-mismatched murine model and
showed that JAK1/JAK2 inhibitors inhibited IFNR and IL-6R
signaling, which inhibited migration of alloreactive T cells to
GVHD target organs by decreasing expression of CXCR3. JAK1/
JAK2 inhibition also expanded Tregs, and the two effects
effectively prevented GVHD (184, 192). Similarly, inhibition of
JAK1/JAK3 inhibition also reduced aGVHD and enhanced
survival (187). While significant evidence supports the role of
multi-kinase inhibitors that target more than one JAK protein,
selective JAK1, JAK2 or JAK3 inhibition is also effective in many
GVHD models (188, 193, 194). The impact of JAK inhibitors on
GVL activity, however, is variable. For example, Baricitinib
( JAK1/ JAK2 inh ib i tor ) enhanced GVL e ff e c t s by
downregulating PD-L1 expression in tumors (192). While
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Ruxolitinib (JAK1/JAK2 inhibitor) impaired murine CTL
activity against tumor cells in vitro, neither pacritinib (JAK2
inhibitor) nor ruxolitinib interfered with the GVL effect in vivo in
MHC-mismatched murine models (186, 194). In xenograft
models, however, ruxolitinib significantly impaired antitumor
activity against U937 cells, while only pacritinib preserved CTL
function (194). The success of many clinical studies evaluating
the efficacy of JAK inhibitors for treatment of both SR-aGVHD
and SR-cGVHD (185, 195–200), have prompted interest in
testing JAK inhibitors for prevention of GVHD (201, 202).
Since our previous study showed tolerogenic anti-IL-2 mAb
effective prevent aGVHD and maintain GVL activity, but did
not prevent cGVHD (156). It would also be of interest to test
whether sequential administration of tolerogenic anti-IL-2 mAb
and JAK inhibitors will effectively prevent both aGVHD and
cGVHD while preserving GVL activity.
SUMMARY

The cellular interactions that lead to GVHD occur in the skin, liver,
gut and lung, while those that lead to GVL activity occur in lympho-
hematopoietic tissues (12, 61). We summarized the approaches that
GVHD could be prevented while preserving GVL activity in
Figure 2. First, inhibiting alloreactive T migration and expansion
in GVHD target tissues while allowing full activation and expansion
of alloreactive T cells in lympho-hematopoietic tissues. Approaches
that specifically prevent alloreactive T cell infiltration into GVHD
target tissues include the following (Table 1): 1) targeting
chemokine or chemokine receptors, such as CCR5, CXCR3,
MAdCAM-1; 2) anti-CD3-preconditioning that depletes host DCs
that imprint alloreactive T cell tissue tropism; 3) FTY720 that
prevents alloreactive T cell egress from lymphoid tissues; and 4)
neutralizing or blockade signaling pathways of inflammatory
cytokines such as TNF-a and IL-6. Some of these approaches
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(i.e., FTY720, anti-TNF-a and anti-IL-6R) have been tested in the
clinic, but the effect was minimal (94–96), while some (i.e., anti-
CD3-preconditioning, anti-CCR5) have not been tested. Depletion
of naïve T cells effectively prevents cGVHD and severe aGVHD.
FIGURE 2 | Summary of approaches for prevention of GVHD while preserving GVL activity. (1) Retention of donor T cells in lympho-hematopoietic tissue. (2) Depletion of
naïve donor T cells and infusion of mesenchymal stem cells. (3) Augmentation of tissue PD-L1 mediated immune tolerance. Created with BioRender.com.
TABLE 1 | Approaches that prevent alloreactive T cell infiltration into GVHD
target tissues.

Strategies Preclinical studies Clinical applications References

Targeting
chemokine or
chemokine
receptors

anti-CXCR3, CXCR3
transfected Tregs,
CCR5 deletion, a4b7
deletion, anti-
MAdCAM-1

CCR5 deletion mutation
in both donor and
recipient decreased
GVHD.

(26–28,
30–35, 38,
41–43)

Anti-CD3
preconditioning

Depletes host CCR7+

DCs in the draining
lymph nodes and
markedly reduces
alloreactive T cell
tissue tropism for gut,
liver, lung and skin.

N/A (54, 55)

S1PRs agonist
FTY720

Retains alloreactive T
cells in the lymphoid
tissues and prevents
T cell infiltration of
GVHD target tissues.

A 66-year-old patient
with severe CNS GVHD
treated successfully.

(56–62)

Neutralizing or
blockade
signaling
pathway of
inflammatory
cytokines

Anti-TNF ameliorates
GVHD while
preserving GVL effects
in experimental murine
models.
Anti-IL-6R inhibits Th1
and Th17 cells while
expanding Tregs, thus
preventing GVHD in
murine models.
Combined blockade
of both TNF and IL-
6R prevents GVHD
but does not impair
GVL effects.

Anti-IL-6 for GVHD
prophylaxis had no
improvement in long
term-survival.
Addition of etanercept
(TNF inhibitor) to a
standard GVHD
prophylaxis regimen
delayed development of
aGVHD but had no
favorable impact on
cGVHD.

(84–93)
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Evidence suggests that the high incidence of mild aGVHD in these
patients helps to decrease the risk of relapse without increasing the
risk of non-relapse mortality. Other promising approaches are to
augment parenchymal tissue protective mechanisms mediated by
PD-L1 interaction with PD-1 and CD80, including 1)
administration of depleting anti-CD4 mAb that allows
parenchymal tissue PD-L1/PD-1 interaction to tolerize infiltrating
donor CD8+ T cells while allowing lymphoid tissue PD-L1
interaction with CD80 to augment expansion of donor CD8+ T
cells that mediate GVL activity (163) (2); administration of
tolerogenic anti-IL-2 mAb early after HCT that prevents aGVHD
while preserving strong GVL activity (156), potentially in
combination with JAK inhibitors to prevent cGVHD.
Frontiers in Immunology | www.frontiersin.org 9
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