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Identifying ultrasound and clinical 
features of breast cancer molecular 
subtypes by ensemble decision
Lei Zhang1, Jing Li2, Yun Xiao3, Hao Cui1, Guoqing Du1, Ying Wang4, Ziyao Li1, Tong Wu1, 
Xia Li3,* & Jiawei Tian1,*

Breast cancer is molecularly heterogeneous and categorized into four molecular subtypes: Luminal-A, 
Luminal-B, HER2-amplified and Triple-negative. In this study, we aimed to apply an ensemble 
decision approach to identify the ultrasound and clinical features related to the molecular subtypes. 
We collected ultrasound and clinical features from 1,000 breast cancer patients and performed 
immunohistochemistry on these samples. We used the ensemble decision approach to select 
unique features and to construct decision models. The decision model for Luminal-A subtype was 
constructed based on the presence of an echogenic halo and post-acoustic shadowing or indifference. 
The decision model for Luminal-B subtype was constructed based on the absence of an echogenic 
halo and vascularity. The decision model for HER2-amplified subtype was constructed based on the 
presence of post-acoustic enhancement, calcification, vascularity and advanced age. The model 
for Triple-negative subtype followed two rules. One was based on irregular shape, lobulate margin 
contour, the absence of calcification and hypovascularity, whereas the other was based on oval 
shape, hypovascularity and micro-lobulate margin contour. The accuracies of the models were 83.8%, 
77.4%, 87.9% and 92.7%, respectively. We identified specific features of each molecular subtype and 
expanded the scope of ultrasound for making diagnoses using these decision models.

Breast cancer is one of the major causes of death for females worldwide and its incidence has been 
increasing1. This disease follows a diverse natural history and is variably responsive to treatments2. The 
limitations of traditional histological classification have led to the development of a new molecular classi-
fication, which has demonstrated the existence of four main subtypes2: Luminal-A type (LA), Luminal-B 
type (LB), Epidermal growth factor receptor 2-amplified type (HER2), and Triple-Negative type (TN). 
Gallen et al.3 found that the LA tumors with high Ki-67 expression (Ki-67 ≥  14%) should be classified as 
LB subtype. Clinically, LA subtype is the most common, and several genomic tests exist for assisting in 
predicting patient outcomes upon receiving endocrine therapy. LB patients can benefit from neoadjuvant 
chemotherapy. HER2 patients generally show excellent clinical outcomes when given an effective ther-
apeutic, trastuzumab, which targets the HER2 gene. TN subtype is a group that only has chemotherapy 
options4–6.

Although pathological diagnosis is the “gold standard” for distinguishing the molecular subtypes of 
breast cancer, it is invasive and might cause physical and psychological discomfort in patients. Accordingly, 
the development of a non-invasive method will significantly improve the diagnostic procedure. The 
utility of ultrasound method for the diagnosis of breast lesions has increased over the past decade7. 
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Ultrasound, with its high level of safety and low cost, is becoming the preferred method for both physi-
cians and patients. Reports have indicated that improvements in ultrasound technologies might make it 
possible to highly sensitively differentiate malignant solid breast masses from benign ones based on their 
different ultrasound features8. A few studies have examined the correlation between ultrasound features 
and certain types of biological behavior. Irshad et al. found that posterior shadowing is strongly asso-
ciated with Estrogen Receptor-positive (ER+ ) and low-grade tumours, whereas posterior enhancement 
is strongly associated with high-grade tumours and a moderate risk of being receptor negativity9. Wang 
et al. demonstrated that in contrast to ER-negative HER2-negative tumours, ER-negative HER2-positive 
tumours were more likely to have spiculated margins with calcification and a higher cancer stages5. 
Ko et al. suggested that TN breast cancers have more circumscribed margins, are hypoechoic, and 
exhibit less calcification and posterior shadowing10. The above studies suggested the possibility of deter-
mining the relationship between patient characteristics and the individual molecular situation, molecular 
ordination or TNBC imaging features. However, although the ultrasound features of breast cancer might 
correlate with the molecular subtypes identified by immunochemistry (IHC) examination, the charac-
terization of the four breast cancer molecular subtypes by ultrasound imaging and clinical modality 
might be complex11. As such, identifying the subtypes might require the assessment of a combination of 
characteristics, similar to those used for differentiating benign and malignant tumours.

To accurately detect the different features of breast cancer molecular subtypes, efficient statistical 
methods and computational algorithms for analysing the massive amount of clinical data available need 
to be developed. Decision trees are one of the most popular classification techniques for multiple features 
in data mining and machine learning12, and these can be converted to rule sets to improve interpretation. 
However, existing attempts to apply decision trees to classification using gene expression data have shown 
that single-tree algorithms are not sufficient for high accuracy and stability. In this study, we propose the 
ensemble decision approach that integrated multiple decision trees based on an ensemble decision theory 
to select the special features of each subtype13. We obtained multiple feature sets from the training sets by 
a resampling technique, and integrated the multiple feature sets to produce a combination of features of 
each subtype by the ensemble decision approach. We not only constructed the models but also obtained 
high accuracy with the models, and considered that the ensemble decision approach might have signif-
icant utility for ultrasound diagnosis of breast cancer in the future.

Results
The general description and feature distribution of the four subtypes.  When analysing the 
four breast cancer subtypes, we found that the rates of LA, LB, HER2, and TN were 37.8%, 36.8%, 12.5% 
and 12.9%, respectively, as depicted in Fig.  1a. The images in Fig.  1b–e are ultrasound pictures of the 
four molecular subtypes, which were intuitively diverse. The appearance of each ultrasound feature in 
each subtype is summarized in Fig. 2.

Figure 1.  a: A pie chart of the four breast cancer subtypes. b–e are the ultrasound pictures of the LA, LB, 
HER2 and TN subtypes, respectively. b An LA patient showing the halo and post-acoustic shadowing. c 
An LB patient with vascularity. d An HER2 patient with calcification and enhanced post-acoustic. e A TN 
patient showing the micro-lobulate margin and oval shape.
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Figure 2.  The distributions of 12 the ultrasound features of the four breast cancer subtypes (age, size, 
shape, orientation, border, margin contour, post-acoustic, calcification, boundary, echogenicity, Adler 
and BI-RADS). The colours of the columns represent the different levels of ultrasound features. HER2 
patients were generally older than patients of the other three subtypes. The majority of TN tumours had 
oval-shaped and lobulate margins. The post-acoustic of LA tumours showed shadowing, and this was 
enhanced in HER2 tumors. Calcification occurred most frequently in the HER2 subtype and least frequently 
in the TN patients. The echogenic halo boundary occurred most frequently in the LA subtype and least 
frequently in the LB subtype. The Adler values of the LB and HER2 subtypes were primarily II or III, and 
primarily 0 or I in the TN subtype.
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The ensemble decision models of breast cancer subtypes.  We constructed the models using the 
ensemble decision approach. We randomly selected 80% of the data from each sample category (LA, LB, 
HER2 and TN) to construct the training set, corresponding to 256, 249, 84 and 87 patients, for a total 
of 676 patients. The remaining 20% of the data were used as the test set, which comprised 170 patients.

Identifying LA breast cancer based on ultrasound features.  We randomly selected 80% of LA 
data and 80% nLA data (containing the LB, HER2 and TN categories) for a total of 541 patients from 
the training set and we used these data to construct a decision tree. Then, we repeated this step 1,000 
times, and built 1000 decision trees. We extracted the features from each decision tree and calculated 
their frequencies (FV) across the 1000 decision trees (Table 1). For each feature, we obtained the empir-
ical null distribution by randomly permuting the category labels of the patients and determining the 
corresponding cutoff β( = . )βFV 0 0010  (Table 1). Then, we selected the features ( ≥ βFV FV 0, one-tailed), 
including boundary, post acoustic and Adler. To get the stable features, we repeated the above steps 1,000 
times. The frequencies of the three features were 999, 999 and 117, respectively. We finally chose the 
stable features with high frequency, including boundary and post acoustic, to construct the decision 
model (Fig. 3a).

In the training set, the majority of patients exhibited the echogenic halo (63.7%, n =  163/256) and 
shadowing/indifference in terms of post-acoustic (65.6% +  25.8%, 234/256), which demonstrated that 
shadowing was the most common post acoustic feature, followed by indifference.

IHC was performed in the 170 patients from the test set to evaluate our model. A total of 64 
patients with Estrogen Receptor (ER) and/or Progesterone Receptor (PR) positive, HER2 negative and 
Ki-67 <  14% were classified as LA subtype. Of the 170 patients, 57 had boundary with echogenic halo, 
and of these, 43 cases were of the LA subtype. In particular, there were 31 patients showing echogenic 
halo and post acoustic shadowing, of which 26 were the LA subtype. Additionally, 13 patients exhib-
ited echogenic halo and post acoustic indifference, of which 8 were the LA subtype. The diagnosis of 
two patients whose ultrasounds featured echogenic halo (Fig.  3b1,b2) and post-acoustic shadow 
(Fig. 3b1) or post-acoustic indifference (Fig. 3b2) were confirmed by the IHC results (Fig. 3c1,c2) clas-
sified as LA subtype. Remarkably, our model yielded with an accuracy of 83.8%, sensitivity of 77.3% and 
specificity of 87.5%.

These data together suggested that echogenic halo was a significant feature of LA subtype. Combined 
echogenic halo and post-acoustic shadowing/indifference were important for distinguishing the LA sub-
type.

Identifying LB breast cancer based on ultrasound features.  Likewise, we identified the ultra-
sound features of LB breast cancer, including boundary and Adler. The details of FV, cutoff and frequen-
cies were shown in Table 1. Based on the stable features, we constructed the decision model (Fig. 4a).

In contrast to LA breast cancer, the majority of LB patients did not display echogenic halo (86.7%, 
n =  215/248). The Adler degree of 205 LB patients was II or III (82.7%, 205/248), while 43 showed 0 and 
I (17.3%, 43/248), suggesting that vascularity could be used to characterized the LB subtype.

Features LA LB HER2 TN

FV Cutoff Frequencies
Final  

selection FV Cutoff Frequencies
Final  

selection FV Cutoff Frequencies
Final  

selection FV Cutoff Frequencies
Final  

selection

Age 0.792 1.000 0 no 0.978 1.000 0 no 0.972 0.779 998 yes 0.551 0.771 0 no

Size 0.722 1.000 0 no 0.806 1.000 0 no 0.756 0.851 0 no 0.964 0.774 885 no

Shape 0 0.956 0 no 0.034 0.952 0 no 0.011 0.428 0 no 0.999 0.463 992 yes

Orientation 0.002 0.962 0 no 0.218 0.972 0 no 0.183 0.451 0 no 0.013 0.452 0 no

Margin 
border 0 0.945 0 no 0.252 0.956 0 no 0 0.539 0 no 0.036 0.399 996 yes

Margin 
contour 0.566 0.983 0 no 0.741 0.985 0 no 0.117 0.569 0 no 0.845 0.452 462 no

Post. 
acoustic 1 0.987 999 yes 0.992 0.987 397 no 1 0.532 999 yes 0.545 0.496 662 no

Calcification 0.245 0.966 0 no 0.608 0.966 0 no 1 0.437 999 yes 0.825 0.421 993 yes

Boundary 1 0.926 999 yes 0.999 0.954 999 yes 0.026 0.402 0 no 0.461 0.432 0 no

Echogenicity 0 0.913 0 no 0 0.937 0 no 0 0.100 0 no 0 0.117 0 no

Adler 1 0.988 117 no 1 0.993 999 yes 0.567 0.503 934 yes 1 0.662 999 yes

BI-RADS 0.363 0.956 0 no 0.824 0.966 0 no 0 0.441 0 no 0.209 0.428 0 no

Table 1.   The FV, cutoff and frequencies for each subtype.
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Next, we used IHC to further validate our model. A total of 63 patients having ER or/and PR positive, 
HER2 negative and Ki-67 ≥  14% or ER or/and PR positive and HER2 overexpressed or/and amplified 
tumor cells were classified as the LB subtype. Of the 170 patients, 114 showed boundaries without echo-
genic halo, of these 53 cases were of LB subtype. In particular, there were 79 patients lacked echogenic 
halo and vascularity, of these 60 were of LB subtype. The diagnosis of a tumour who had ultrasound 
features without echogenic halo (Fig. 4b1) and vascularity (Fig. 4b2) was confirmed by the IHC exami-
nation (Fig. 4c) and classified as the LB subtype. Our model yielded an accuracy of 77.4%, sensitivity of 
75.9% and specificity of 78.1%.

Our results showed that the combination of echogenic halo and vascularity could help to distinguish 
the LB subtype, while it was necessary to identify other factors that might improve the accuracy of this 
model.

Identifying HER2-amplified breast cancer based on ultrasound features.  Using similar 
approach, we chose the stable high selected features, age, post acoustic, calcification and Adler, to con-
struct the decision model (Fig. 5a). The FV, cutoff and frequencies were displayed in Table 1.

The training set contained 84 HER2 subtype patients, of these 52 patients (61.9%) showed post acous-
tic enhancement, 66 displayed calcification (78.6%), and 49 patients were older than 52 (58.3%). In 
addition, the Adler degree of 70 patients was II or III (82.7%).

There were 22 patients with IHC features of HER2 subtype include ER and PR negative and HER2 
overexpressed or/and amplified tumour cells. Of the 170 patients, 9 patients showed post acoustic 

Figure 3.  a: The model for the LA subtypes following these rules: First, the boundary was judged. If the 
boundary had an echogenic halo, then we judged post-acoustic. If the post-acoustic was shadowing or 
indifferent, the tumour was classified as the LA subtype. b: b1 and b2 show the ultrasound images of LA1 
and LA2, respectively. The boundary of the red arrow indicates the echogenic halo, and the post-acoustic of 
the green arrow indicates shadowing. c: c1 and c2 are the IHC results of patients b1 and b2, respectively (c1, 
× 100; c2, × 100). From top to bottom, the three images for c1 represent ER (+), PR (+), HER2 (−), and 
Ki67 <  14%, and the three images for c2 represent ER (+), PR (−), HER2 (−), Ki67 <  14%. Tumour cells 
that stained dark brown are positive (as ER for c1 and c2). In contrast, unstained tumour cells are negative 
(as HER2 for c1 and c2).
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enhancement, calcification, vascularity (Adler II or III) and were older than 52, of which 8 were of the 
HER2 subtype. The diagnosis of a patient whose post-acoustic showed enhancement (Fig. 5b1), exhib-
ited calcification (Fig.  5b1), was older than 52 and abundant vascularity (Fig.  5b2) was confirmed by 
IHC examination (Fig. 5c) and classified as being of the HER2 subtype. The accuracy of the model was 
evaluated by the IHC results, showing an accuracy of 87.9%, sensitivity of 20% and specificity of 97.2%.

These data suggested that the combination of post acoustic enhancement, calcification, age older than 
52 and vascularity shows high specificity, but low sensitivity, for distinguishing the HER2 subtype.

Identifying triple-negative breast cancer based on ultrasound features.  For triple-negative 
breast cancer, we also chose the stable high selected features of shape, margin contour, Adler and calci-
fication (Table 1), to construct the corresponding decision model (Fig. 6a).

In the training set of 87 TN patients, 50 exhibited an irregular shape (57.5%), while 37 had an oval 
shape (42.5%). A total of 25 patients showed a smooth margin contour (28.7%), 56 patients had a lobulate 
margin contour (64.4%) and 6 patients had angular or spiculate margin contours (6.9%). Additionally, 
23 patients had calcification (26.4%). 57 patients (65.5%) showed the Adler degree 0 or I. The TN sub-
type was characterized by both an irregular or an oval shape and smooth or lobulate margin contours. 
However, TN subtype patients were hypovascularity and lack of calcification.

Using IHC, TN subtype was characterized by ER, PR, and HER2 negative tumor cells, and a total of 
22 patients were determined. As seen from the model, there were two categories of TN breast cancer. 
There were 14 patients exhibiting an irregular shape and a lobulate margin contour lacking calcification 
that were hypovascular, of these 10 had the TN subtype. Additionally, there were 4 patients had an 
oval shape, were hypovascular and showed lobulate margin contour, of which all were the TN subtype. 
Furthermore, the lobulate margin contour was primarily a micro-lobulate margin contour. The diagnosis 
of two patients, one of whom was type 1tumour with an irregular shape and a lobulate margin contour, 
no calcification and hypovascularity (Fig. 6b1) and another that was type 2 with an oval shape, lobulate 
margin contour and hypovascularity (Fig. 6b2), was confirmed by IHC examination (Fig. 6c1,c2) as the 

Figure 4.  a: The model for LB subtypes followed these rules: First, the tumour boundary was judged. If 
the boundary did not exhibit an echogenic halo, then the Adler value was judged. If the Adler was II or 
III, the tumour was classified as the LB subtype. b: b1 and b2show the 2-dimensional and colour Doppler 
ultrasound images from one patient with the LB subtype. The boundary of the red arrow indicates the 
abrupt interface. The blue-red region of the green arrow indicates a blood vessel graded using the Adler 
degree. c: The IHC results from the patient (c, × 100). From top to bottom, the three images depict ER (+), 
PR (+) and HER2 (+). The tumour cells stained dark brown are positive (such as ER, PR and HER2 for c).
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TN subtype. The accuracy of the model was evaluated based on the results from the IHC, yielding a 
significant accuracy of 92.7%, a sensitivity of 63.2% and a high specificity of 98.1%.

Together, the combination of irregular shape, lobulate margin contour, lack of calcification and hypo-
vascularity or the combination of oval shape, hypovascularity and lobulate margin contour has high 
accuracy and specificity but low sensitivity for distinguishing the TN subtype.

Discussion
One challenge of breast cancer ultrasound research studies has been the development of a reliable 
decision-making rule for classifying patients into molecular subtypes. Accordingly, we have proposed a 
new method called the ensemble decision approach. From our analysis, we obtained relatively meaning-
ful results using the ensemble decision approach. The ensemble decision approach not only identified the 
unique features of each molecular subtype but also generated models for distinguishing the molecular 
subtypes. The accuracy of the models test was high. The results described above show that a single feature 
could not identify the molecular subtype, but instead that an ordination of the features was valuable for 
molecular subtype diagnosis.

Echogenic halo and post-acoustic shadowing characterized the LA subtype. Previous studies had 
examined the relationship between the ultrasound features and pathological characteristics of breast 
cancer. It had been suggested that tumours with acoustic shadowing might be formed by desmoplas-
tic reactions that were more likely to exist in low-grade tumours and were caused by excessive sound 
reflection or attenuation by the tumour compared to the surrounding tissue. It had been confirmed that 
tumours of the LA subtype were mostly low-grade tumors14. Therefore, the LA subtype was mostly9 

Figure 5.  a: The model for the HER2 subtype followed these rules: First, the post-acoustic was judged. If 
it was enhanced, then calcification was judged. If calcification was present, then the age was judged. If the 
patient was older than 52, then the Adler was judged. If the Adler was II or III, the tumour was classified 
as being of HER2 subtype. b: b1 and b2 show the 2-dimensional and colour Doppler ultrasound images 
of one HER2 subtype patient. The image shows a red arrow that indicates post-acoustic enhancement. The 
punctuated, extensively hyperechoic focus is shown by the yellow arrow and indicates calcification. The blue-
red region of the green arrow indicates a blood vessel graded using the Adler degree. c: The IHC results 
from the patient (c, × 100). From top to bottom, the three images for c represent ER (−), PR (−), and HER2 
(+). Tumour cells stained dark brown are positive (as for HER2 in c). In contrast, the unstained tumor cells 
are negative (as for ER and PR in c).
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associated with a post-acoustic shadowing. The echogenic halo corresponded to the histopathological 
features of tumour cells invading fat tissue admixed with adipocytes and elastic fibers15. The echogenic 
halo was thought to exist in low-grade and spiculate tumours8. Because the LA subtype was mostly of 
low-grade14 and ER (+ ) breast cancer accounts for the majority of cells that exhibit an echogenic halo9, 
most LA cancers also exhibited an echogenic halo. Our findings were similar to the results of Eun et al., who 
indicated that ER-positive/PR-negative/HER2-negative breast cancers more frequently exhibited echo-
genic halo than triple-negative and HER2 subtype10.

The absence of an echogenic halo and the presence of vascularity were the characteristics of the LB 
subtype. The LB subtype was associated with an increased risk of relapse and most are of high-grade16, so 
that was a lack of echogenic halo. Previous studies had shown that overexpression of HER2 was closely 
associated with increased angiogenesis and the expression of vascular endothelial growth factor (VEGF), 
which mediated endothelial cell signaling and other functions17. There was preclinical evidence support-
ing the role of angiogenesis in mediating downstream HER2 signaling18. The results of this study showed 
that Luminal-B subtype tumours overexpressing HER2 demonstrate vascularity in ultrasound images.

Post-acoustic enhancement, calcification, older age and vascularity were the characteristics of the 
HER2 subtype. In contrast to the Luminal-A subtype, tumours with acoustic enhancement were found 
to be more cellular and tended to be high-grade tumours19 because of the reduced attenuation of the 
ultrasound waves compared to the surrounding tissue. The HER2 subtype was found to mainly include 
high-grade tumours with adverse prognoses20. Thus, the HER2 subtype showed post-acoustic enhance-
ment. Our results were similar to previous findings11. Studies by Sung et al. showed that the expression 
of the HER2 oncogene was strongly correlated with the presence of calcification upon ultrasound21,22, and 

Figure 6.  a: The model for the TN subtype followed two rules. First, the tumour shape was judged. If the 
shape was irregular, then the margin contour was assessed. If it was lobulate, then the calcification was 
judged. If calcification was absent, then the Adler degree was judged. If Adler degree was 0 or I, the tumor 
was classified as the TN subtype. Second, if the tumour was oval or round, then the Adler degree was 
judged; if the Adler was 0 or I, then the margin contour. If it was lobulate, the tumor was classified as the 
TN subtype. b: b1 and b2 show the ultrasound images of TN1 and TN2. From left to right, the two images 
show 2-dimensional and colour Doppler, respectively. The margin contour of red arrow depicts the lobulate 
margin of TN1. The margin contour of the yellow arrow depicts the micro-lobulate margin of TN2. c: c1 
and c2 show the IHC results for the TN1 and TN2 patient (c1, × 100; c2, × 100). From top to bottom, the 
three images of c1 and c2 represent ER (−), PR (−), HER2 (−). Unstained tumour cells are negative (as for 
ER, PR and HER2 in c).
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this result was similar to results obtained by many others as well as this study23. The HER2 oncogene was 
overexpressed in the HER2 subtype, which might account for the frequent observation of calcification. 
We found that an older age was characteristic of HER2, which was in contrast to results from other 
groups16 and this might be due to the sequential decision. In accordance with previous studies, the HER2 
subtype was found to be vascular in ultrasound images.

Triple-negative breast cancer was associated with aggressive histological features, unresponsiveness to 
the usual endocrine treatment, a poor prognosis and a shorter survival time24–26. However, because the 
TN breast cancer mass could look benign, being able to discriminate TN breast cancer was of critical 
importance. Ko et al. suggested that TN breast cancers have more circumscribed margins, were hypo-
echoic and exhibit less calcification or posterior shadowing10. Dogan et al. found that TN breast cancers 
were masses without calcification, and 32% had circumscribed margins27. By ultrasound, Wang et al. 
concluded that TN-negative breast cancers (n =  20) were more likely to lack calcification and were more 
likely to present as hypoechoic (80%) masses with an irregular (54%) or lobulated (20%) shape and with 
distinct (40%), microlobulate (33%), smooth or circumscribed (27%) margins5. Ko et al. found that TN 
breast cancers were likely to be irregular (83%) or oval shaped (16%), with circumscribe (57%), angu-
lar (16%), indistinct (12%), microlobulated (9%), or spiculated (5%) margins10. In general, our results 
showed that there were two categories of imaging features for TN breast cancer. One was an irregular 
shape with lobulate margins, while the other was an oval shape with micro-lobulate margins. However, 
both categories lack vascularity, which is similar to the observations of the above study. Wojcinski et al. 
described this smooth appearance as a pushing border that was associated with a non-infiltrative process 
caused by rapid tumour growth28.

The decision models had significant applications in clinical diagnostic. For an unknown breast mass, 
we extracted 12 ultrasound features (Table 2), and input them into the four decision models containing 
18 rules (Supplemental Information). Through the predictions of models, we obtained the categories 
of mass (that is, the prediction results from four decision models) and then identified the subtype. For 
example, assume the twelve ultrasound features of a patient were: age, 48 years; size, 23 cm; shape, irreg-
ular; orientation, parallel; margin border, indistinct; margin contour, angular/spiculate; post-acoustic, 
shadowing; calcification, absent; boundary, echogenic halo; echogenicity, hyper-, isoechoic; Adler, I; 
BI-RADS, V. Then, using the four decision models, the prediction would be “YES” only for LA subtype 
model and “NO” for the other three models (e.g., LB, HER2 and TN). Thus, the patient would be judged 
as LA subtype (for details see the Supplemental Information).

In conclusion, it is a valuable to use the ensemble decision approach to identify ultrasound and clin-
ical features of breast cancer molecular subtypes. Distinguishing molecular subtypes using ultrasound 
feature-based classification models is an improvement on ultrasound diagnosis, which can serve as an 
effective method of auxiliary diagnosis and guide treatment in the clinical setting.

Materials and Methods
The study protocol was approved by the Ethics Committee of Harbin Medical University (2008–0022) 
and written informed consent was obtained from all participants involved in the study. The methods used 
in this study were performed in accordance with approved guidelines. Our study sample consisted of 
1,000 consecutive patients with breast cancer who underwent surgery and biopsy in the Second Affiliated 
Hospital of Harbin Medical University between Jan. 22, 2009 and Jan. 20, 2014, who were initially diag-
nosed by breast ultrasound. Patients who were treated with neo-adjuvant therapy, failed to undergo 
histological examination, or had multiple breast cancers were excluded. A total of 864 women (mean 
age 46.31 ±  9.79 years; range 11–67 years) with definite histological results were evaluated in this study.

Ultrasound examination.  All the real-time scanning was performed by a radiologist with 4 years 
of experience in breast ultrasound. The ultrasound was performed with a HITACHI Vision 900 system 
(Hitachi Medical System, Tokyo, Japan) equipped with a linear probe of 6–13 MHz. The static images 
and cine clips from B-mode and Doppler ultrasound were saved in the database for double-blind anal-
ysis. Three breast radiologists with 7, 9 and 13 years of clinical experience, respectively, retrospectively 
and independently reviewed the ultrasound images. A consensus interpretation was reached in cases of 
disagreement. A consensus interpretation was reached in cases of disagreement. The examined ultra-
sound criteria were listed, illustrated and defined in Table 2. Specifically, the Adler degree was the blood 
flow level of the vascularity characterization29. The BI-RADS was the assessment category of the breast 
tumour based on the Breast Imaging Reporting and Data System (BI-RADS), a standardized lexicon for 
ultrasound features developed in 2003 by the American College of Radiology (ACR)30.

Histological examination.  The experiments followed the reporting recommendations for tumour 
marker prognostic studies (REMARK)31. All the tumours were excised and stained with hematoxylin-eosin 
(HE). The tissues were formalin-fixed, paraffin-embedded and subsequently used for immunochemistry 
(IHC) staining with appropriate antibodies. The cutoff point for ER-positive, PR-positive expression was 
10%. HER-2 status was graded as 0, 1+ , 2+  and 3+ . Only a HER-2 status of 3+  was deemed to be pos-
itive, while statuses of 0 and 1+  were deemed to be negative. Fluorescence in situ hybridization (FISH) 
was performed on all grade 2 samples. Samples with a < 2-fold-change in expression were regarded as 
negative, and samples with a > 2-fold increase were regarded as positive for gene amplification24,32. Ki67 
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was visually scored for the percentage of tumour cell nuclei with positive immunostaining above back-
ground. Over 14% was considered high expression, and less than 14% was considered low expression33.

Molecular subtypes of breast cancer.  Breast cancer molecular subtypes were categorized accord-
ing to the immunohistochemistry results for ER, PR, HER2 and Ki-67, as recommended by the 12th 
International Breast Conference30, as follows:

Luminal A type (LA): ER or/and PR positive, HER2 negative and Ki-67 <  14%;
�Luminal B type (LB): ER or/and PR positive, HER2 negative and Ki-67 ≥  14%, ER or/and PR positive  
�and HER2 overexpressed or/and amplified;
HER2 amplified type (HER2): ER and PR negative and HER2 overexpressed or/and amplified;
Triple-Negative type (TN): ER, PR and HER2 negative.

Ensemble decision approach.  We proposed an ensemble decision approach based on a recursive 
partition tree, using the following basic procedures. First, a resampling technique was used to construct 
a training set and a test set for learning and testing, respectively. Second, a binary tree was grown on 
the outset, with 80% of the data randomly selected from each sample category of the training set by a 
recursive partition algorithm. This step was repeated 1,000 times, so that 1,000 trees and the FV of each 
feature were obtained. Third, feature selection was optimized using a method we developed.

Variables Definition

Size Maximum diameter of the tumor by ultrasound

Shape Oval, round Oval, spherical or round

irregular Not round or oval

Orientation Parallel Long axis of lesion parallels the skin line

Not parallel Long axis, not oriented along the skin line

Margin border circumscribed A margin that is well defined or sharp, with an 
abrupt transition

indistinct No clear demarcation between mass and its 
surrounding tissue

Margin contour smooth Smooth, even margin without any irregularity

lobulate Short cycle undulations impart a scalloped 
appearance to the margin of the mass

Angular, spiculate Margin is formed or characterized by sharp 
lines projecting from the mass

Post. acoustic Indifferent No shadowing or enhancement

Enhancement Increased posterior echo

Shadowing Decreased posterior echo and combined

Calcification Absent No punctuated extensively hyper-echoic foci

Present Punctuated extensively hyper-echoic foci

Boundary Abrupt interface No thin capsule or echoic halo

Echogenic Halo Blurred, irregular hyperechoic rim around the 
lesion

Echogenicity Hyper-, isoechoic Hyper- or isoechogenicity compared to fat, e.g., 
fibroglandular tissue

Complex, hypoechoic Hypoechoic compared to fat tissue

Adler 0 Vascularity not present

I 1-2 spot vessels, caliber shorter than 1 mm

II 1-2 vessels, longer than the radius of the tumor

III More than 4 vessels

BI-RADS I No lesion found

II Benign finding

III Probably benign finding

IV Suspicious abnormality

V Highly suggestive of malignancy

Table 2.   Definition of the ultrasound features criteria.



www.nature.com/scientificreports/

1 1Scientific Reports | 5:11085 | DOI: 10.1038/srep11085

Figure 7.  The step-by-step protocol for the ensemble approach computational algorithm. ① Construct 
the training and test set by sampling patients. The training set and test set contain 80% and 20% of the 
initial patients for each subtype, respectively. ② Binary classification: LA, LB and TN are classified as one 
category, called nHER2 (take HER2 as an example). ③ Randomly sample patients, 80% HER2 and 80% 
nHER2, from the training set, called the outer set. ④ Grow a tree on the particular set obtained from step 2. 
⑤ After repeating steps 2-4 1,000 times, we obtained 1,000 trees. ⑥ Count the occurrence frequencies of all 
features in the above 1,000 trees. ⑦ Randomly assign a label to each patient. Then, use the shuffled data to 
conduct steps 1-5. Compute the relevance intensity, (FV) βFV 0, for each feature. Repeat the permutation 
10,000 times to obtain an empirical threshold for the specified significance level of β. ⑧ After repeating 
steps 2–6 1,000 times, we obtained the stable high occurrence frequency of features. ⑨ Construct the model 
based on the selected features.
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Construction of a features matrix.  The ultrasound matrix could be represented by an m*n matrix, in 
which m represented the patients and n represented the feature. In the matrix, each element X =  (xpq) 
represented the qth ultrasound features of the pth sample (Xp). Each sample could be described by a 
feature vector Xi =  (xi1,…,xiq). The samples were divided into four classes, LA, LB, HER2 and TN3.

Ensemble feature selection.  The proposed ensemble selection was a data-mining method based on deci-
sion trees, which had previously been applied as an effective solution to classification and prediction 
problems12. The meaning of the decision tree was a sequence of binary splits of the data, separating one 
class from the other classes as effectively as possible34. The recursive partition tree is one of the most 
effective methods used for constructing decision trees35.

Construction of the training set and the test set.  The given data were divided into two sets. The training 
set was used to build the classification model, and the test data set was used to validate the model. First, 
we randomly selected 80% of the data from each sample category to construct the training set, and the 
remaining 20% of the data were used as the test set. Then, from the training set, we randomly selected 
80% of the data from one type and 80% of the data from the remaining types, called the outer set, to 
construct the decision tree (the following description used HER2 as an example).

Algorithm of the recursive partition tree.  The trees were structured as a root, internal and leaf nodes. A 
binary tree was grown from the outer set using a recursive partition algorithm. Depending on whether a 
particular selected predictor was above a chosen cutoff value, the samples were divided into smaller and 
smaller groups. If the ultrasound feature leads to minimal impurity at the node, this feature was selected 
at the node of the tree. At each internal node, a decision was made with regard to the choice of a feature 
and a threshold value (cut-off), such that class impurity was reduced to a minimum when a branch was 
created by an the induction rule13.

Selection of relevant ultrasound features.  When tree growth was stopped, we extracted the ultrasound 
features at the nodes. A subset of the ultrasound features was obtained from the particular outer set, 
denoted {F1, F2,…, Fq} We defined FV as the magnitude of the relevance intensity, which could be used 
to calculate whether an ultrasound feature was relevant to one category as follows:

( )( ) ( )∑ ∑= , , …, = 


, 

/



 ( )FV f F F F F w I f F w 1k q d d k d d d1 2

fk denoted for a particular ultrasound feature; wd was the weight, a measure of the classification perfor-
mance of Fd; ( )∈ , ,FV I f F[0 1]; k d  was an indicator functions:
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k d

To build the distribution of the FV, we randomly assigned a category label to each patient in a process, 
called the permutation approach. FV(fk) was computed using the permutation results. Then, FV0(fk), the 
empirical null distribution, was obtained. The critical value, βFV 0, was obtained based on the given empir-
ical FV0(fk) and a specified significance level, β(e.g. 0.001). If ≥ βFV FV 0 (one-tailed), the ultrasound 
feature was chosen. We repeated this step 1,000 times and selected the stable highly frequent ultrasound 
features from an ultrasound features subset. The final decision tree was constructed from the feature 
group.

Evaluation of the ensemble decision model.  We used the χ2 statistic method to assess the accuracy of 
the extracted ultrasound features subset,

χ = ( − − / ) / ( + )( + )( + )( + ) ( )n n n n n n n n n n n n n n[ 2 ] [ ] 32
00 11 01 10

2
00 01 10 11 00 10 01 11

Where, n =  n00 +  n01 +  n10 +  n11, n00 was the frequency of true negatives, n01 was the frequency of false 
positives, n10 was the frequency of false negatives and n11 was the frequency of true positives. This sta-
tistic followed an asymptotic χ2 distribution with one degree of freedom.

The computational process was implemented on the R platform. The specific workflow was shown 
in Fig. 7.
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