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ABSTRACT The microbiota plays an important role in human health and disease de-
velopment. The lung microbiota profile in pulmonary tuberculosis (TB) patients and the
effects of anti-TB treatment on the profile need to be determined thoroughly and com-
prehensively. This study primarily aimed to determine the lung microbiota profile asso-
ciated with pulmonary TB and characterize the longitudinal changes during anti-TB
treatment. A total of 53 participants, comprising 8 healthy individuals, 12 untreated pul-
monary TB patients, 15 treated pulmonary TB patients, 11 cured pulmonary TB patients,
and 7 lung cancer patients, were recruited in the present study. Bronchioalveolar lavage
fluid (BALF) samples were collected from the above participants, and throat swabs were
taken from healthy individuals. Microbiomes in the samples were examined using meta-
genomic next-generation sequencing (mNGS). Differences in microbiota profiles were
determined through a comparison of the indicated groups. Our findings indicated that
the BALF samples displayed decreased richness and diversity of the microbiota com-
pared to those of the throat swab samples, and these two kinds of samples exhibited
obvious separation on principal-coordinate analysis (PCoA) plots. Untreated pulmonary
TB patients displayed a unique lung microbiota signature distinct from that of healthy
individuals and lung cancer patients. Our data first demonstrated that anti-TB treatment
with first-line drugs increases alpha diversity and significantly affects the beta diversity
of the lung microbiota, while it also induces antibiotic resistance genes (ARGs).

IMPORTANCE Characterization of the lung microbiota could lead to a better understand-
ing of the pathogenesis of pulmonary TB. Here, we applied the metagenomic shotgun
sequencing instead of 16S rRNA sequencing method to characterize the lung microbiota
using the BALF samples instead of sputum. We found that alterations in the lung micro-
biota are associated with TB infection and that anti-TB treatment significantly affects the
alpha and beta diversity of the lung microbiota in pulmonary TB patients. These findings
could help us better understand TB pathogenesis.

KEYWORDS tuberculosis,Mycobacterium tuberculosis, anti-TB treatment, antibiotic
resistance genes, lung microbiota, metagenomics

The disaster caused by Mycobacterium tuberculosis infection has been recorded since
early human history, highlighting the major challenges for tuberculosis (TB) control

and eradication. Approximately one-fourth of the world’s population has been infected
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with M. tuberculosis, but only 5 to 10% ultimately develop active TB (1), implying that
host and environmental factors play important roles in determining the outcomes of
M. tuberculosis infection. Current strategies to remedy TB, especially multidrug-resistant
TB, depend heavily on long-term medication (2), which may be accompanied by a high
risk of severe adverse drug reactions, particularly anti-TB drug-induced liver injury (AT-
DILI) (3, 4). Most of the studies indicate that a complex and dynamic interaction
between host and M. tuberculosis contributes to TB pathogenesis, so in addition to ca-
nonical pathogen-directed strategies, host-directed therapy is a novel and promising
approach to anti-TB treatment, especially for drug-resistant TB, and the host micro-
biota is considered a potential target for improving the clinical outcomes.

The application of culture-independent techniques to investigate the lung microbiota
has changed our previous viewpoint that healthy lungs are sterile. Despite the rapid de-
velopment of human microbiota research, the number of available studies on the lung
microbiota in the context of pulmonary TB remains limited. Most of them used sputum as
an indicator for the microbiota of the lung and lower respiratory tract (5–11). However,
sputum is easily contaminated by microbes residing in the upper respiratory tract during
expectoration, leading to an inability to authentically reflect the profiles of the lung micro-
biota. To date, there have been only three published studies that have examined the
microbiota using bronchioalveolar lavage fluid (BALF) samples, which are closer to the
real profile of the microbiota in the lungs (12–14). Among the first-line anti-TB drugs, isoni-
azid (H), pyrazinamide (Z), and ethambutol (E) are considered to specifically target
Mycobacteria, while rifampin (R) is a broad-spectrum antibiotic. A few studies have exam-
ined the impact of anti-TB treatment on the gut microbiota, while the effects of anti-TB
treatment on the lung microbiota have not yet been explored (15, 16). Moreover, almost
all of these studies on the lung microbiota are based on the 16S rRNA gene amplicon
sequencing method, which has obvious limitations, including potential deviations in mi-
crobial composition due to amplification bias and the inability to detect most microorgan-
isms at the species and strain levels (17, 18).

In this study, we employed metagenomic next-generation sequencing (mNGS) to
first investigate the differences in lung microbiota profiles between the upper and
lower respiratory tracts from healthy individuals through comparison of throat swabs
and BALF samples. Then, we characterized the lung microbiota profiles of TB patients
by comparison of microbiota in BALF samples from untreated patients who did not
receive any antibiotics and healthy individuals or lung cancer patients with similar radi-
ological signs. Finally, we attempted to assess the effects of anti-TB treatment on the
lung microbiota profiles through comparison of the indicated groups.

RESULTS
Participant characteristics, sequencing statistics, and overview of the microbiota

in all groups. A total of 53 participants, comprising 8 in the healthy control group
(HCG; 3 males, 5 females), 12 in the untreated pulmonary TB group (UTG; 5 males, 7
females), 15 in the treated pulmonary TB group (TTG; 9 males, 6 females), 11 in the
cured pulmonary TB group (CTG; 3 males, 8 females), and 7 in the lung cancer patient
group (LCG; 5 males, 2 females) were recruited in the present study. The characteristics
of the enrolled participants are shown in Table S1. The mean ages of the HCG, UTG,
TTG, and CTG were 30.0, 34.6, 37.5, and 29.9 years, respectively. The LCG exhibited the
greatest mean age at 58.7. None of the participants in the UTG, the CTG, and the HCG
had comorbidities. Two patients in the TTG had diabetes or kidney stones, while three
patients in the LCG had either diabetes or hypertension. All participants had no history
of smoking. Individuals in the TTG had received anti-TB treatment for 2 weeks to
2.5 months, while individuals in the CTG had received anti-TB treatment for longer
than 6 months. All five cohorts exhibited similar average body mass index (BMI). An av-
erage of 8.4 � 107 and 2.1 � 107 clean reads were generated per BALF sample and
throat swabs, respectively (Table S2). The clean reads were aligned to the reference
human genome (GRCh38), and the matching reads were removed. The remaining
reads were mapped to bacterial and archaeal databases. The reads for negative control
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1 (NC1) and NC2 matched to the bacterial domain were 2.57 � 105 and 7.96 � 104,
respectively. The reads for throat swabs from healthy participants matched to the bac-
terial domain were 5.65 � 106. The reads for BALF samples from the HCG, UTG, TTG,
CTG, and LCG matched to the bacterial domain were 1.91 � 105, 2.04 � 105,
3.48 � 105, 4.60 � 105, and 4.67 � 105, respectively (Table S2 and Fig. S1). The raw
reads numbers mapped to bacterial species are provided in Table S3. A constrained
analysis of principal coordinates (CAP) was performed on all cohort data, and it was
found that there was distinct separation of microbiota composition between throat
swab and BALF samples at both the genus and species levels (Fig. 1A and Fig. S2A).
UpSet plots revealed that 1,765 species and 757 genera were common in BALF samples
of all the analyzed groups (Fig. 1B and Fig. S2B).

Microbiota profiles differ significantly between throat swabs and BALF samples.
To investigate differences of microbiota between the upper respiratory tract and lower
respiratory tract, we compared the microbiota between throat swabs and BALF sam-
ples from healthy participants. The ACE index and Chao1 index in throat swabs were
much higher than those in BALF samples at both the species and genus levels (Fig. 2A
and Fig. S3). The Shannon index in throat swabs was significantly higher than that in
BALF samples at the species level, but there was no significant difference at the genus
level (Fig. 2A and Fig. S3), while the Simpson index exhibited no significant differences
between these two groups of samples at the species or genus level (Fig. 2A and Fig.
S3). Principal-coordinate analysis (PCoA) revealed that the cluster of BALF samples
clearly separated from the cluster of throat swabs at both the species and genus levels
(Fig. 2A and Fig. S3), suggesting a divergent composition of the microbiota between
the upper respiratory tract and lower respiratory tracts.

We further analyzed the top 30 relative abundant species between throat swabs
and BALF samples (Fig. 2B and Table S4). The top 30 species in throat swabs and BALF
samples accounted for 61.58% and 84.03% of the total bacteria, respectively. Klebsiella
pneumoniae, Staphylococcus aureus, and Pasteurella multocida were the three most pre-
dominant species in BALF samples, accounting for more than half of the total bacteria,
while Rothia mucilaginosa was the most abundant species in throat swabs, accounting
for 17.39% of the total bacteria alone.

FIG 1 Overview of microbiota within all samples. (A) Constrained analysis of principal coordinates (CAP) using bacterial species relative abundances. The
ellipses indicate throat swab samples. (B) UpSet plots were used to determine the common species within the indicated groups. The vertical bar charts
represent the number of species contained in each type of group. The vertical bar charts represent the number of species included in each group. The
dotted lines show the contained groups.
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The lung microbiota in patients with pulmonary TB differs from that in healthy
people and lung cancer patients. To investigate the association of the lung micro-
biota with M. tuberculosis infection, we compared the microbiota of the UTG to that of
the HCG and the LCG. We observed that the ACE index, Chao1 index, Shannon index,
and Simpson index in the UTG were much lower than those in the HCG and the LCG at
both the species and genus levels (Fig. 3A and Fig. S4A). In contrast, the four indices
exhibited no significant difference between the HCG and the LCG (Fig. 3A and Fig.
S4A). We then plotted PCoA to compare the overall structure of the lung microbial
composition among these three groups. PCoA illustrated that the UTG samples were
hardly separated from the HCG and LCG samples in the plot at the species level but
could be distinguished from the other two groups at the genus level (Fig. 3A and Fig.
S4A). However, permutational multivariate analysis of variance (PERMANOVA) revealed
that the UTG showed significant compositional differences compared to the HCG and
the LCG at both the genus and species levels (for species level, UTG versus HCG,
PERMANOVA, adjusted P value [Padj] = 0.0033, UTG versus LCG, PERMANOVA, Padj=
0.0033; for genus level, UTG versus HCG, PERMANOVA, Padj= 0.01, UTG versus LCG,
PERMANOVA, Padj= 0.01).

We further analyzed the relative abundance of the top 30 most abundant taxa at
species levels. The top 30 species in the HCG, the UTG, and the LCG accounted for
more than 80% of the total bacteria (Fig. 3B and Table S5). We observed that Klebsiella
pneumoniae, Staphylococcus aureus, and Pasteurella multocida were the three most pre-
dominant species within the three groups, accounting for 56.04%,72.06%, and 43.89%
of the total bacteria, respectively (Fig. 3B). We found that the HCG and LCG were
enriched with Prevotella melaninogenica and Ralstonia pickettii, while the UTG was
enriched with S. aureus and Neisseria gonorrhoeae. The heatmap based on the top 100
species comprehensively and intuitively displayed the differences in the UTG com-
pared to the HCG and the LCG (Fig. S4B). We next employed linear discriminant

FIG 2 Microbiota profiles differ significantly between throat swabs and BALF samples from healthy controls. (A) Alpha diversity indicated by abundance-
based coverage estimator (ACE) index, Chao1 index, Shannon index, and Simpson index at the species level. Adjusted P values are listed at the top of the
bar charts. Beta diversity depicted by principal-coordinate analysis (PCoA) plot based on Bray-Curtis dissimilarity at the species level. Each dot represents
one sample from each group. (B) Bar chart of the top 30 species in the two types of samples. Each color bar represents one species of bacteria.
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analysis using linear discriminant analysis effect size (LeFSe) to identify distinct species
which have the potential as biomarkers to diagnosis TB or lung cancer. LEfSe analysis
showed that three, two, and two specific species were enriched in the UTG, the LCG,
and the HCG, respectively (Fig. 3C), when the linear discriminant analysis (LDA; log10)
was set above 4.0.

Anti-TB treatment significantly alters the lung microbiota. To determine the
effects of anti-TB treatment on the lung microbiota, we compared the microbiota in
BALF samples from the UTG, TTG, and CTG. We observed that the ACE index, Chao1
index, Shannon index, and Simpson index in the UTG were significantly lower than
those in the TTG and the CTG at both the species and genus levels (Fig. 4A and Fig.
S5A). No statistical significance in indices was observed between the TTG and the CTG
(Fig. 4A and Fig. S5A). PCoA illustrated that the TTG and CTG samples were scattered
and extensively overlapped with each other at both the species and genus levels
(Fig. 4A and Fig. S5A). PERMANOVA also demonstrated that there were no significant
compositional differences in the lung microbiota between the TTG and the CTG sam-
ples (PERMANOVA, Padj= 0.82 at the species level; PERMANOVA, Padj= 1 at the genus
level). The UTG samples were clustered together and positioned away from both the
TTG and CTG samples at both the species and genus levels in the PCoA plots (Fig. 4A
and Fig. S5A), consistent with the PERMANOVA results (for species level, UTG versus
TTG, PERMANOVA, Padj= 0.015, UTG versus CTG, PERMANOVA, Padj= 0.0033; for genus
level, UTG versus TTG, PERMANOVA, Padj= 0.11, UTG versus CTG, PERMANOVA, Padj=

FIG 3 Comparison of lung microbiota among the UTG, HCG, and LCG samples. (A) Alpha diversity indicated by the ACE index, Chao1 index, Shannon
index, and Simpson index at the species level. Adjusted P values are listed at the top of the bar charts. Beta diversity depicted by PCoA plot based on
Bray-Curtis dissimilarity at the species level. Each dot represents one sample from each group. (B) Bar chart of the top 30 species in the HCG, UTG, and
LCG samples. Each color bar represents one species of bacteria. (C) Differentially enriched taxa identified by linear discriminant analysis effect size (LEfSe)
among the three groups. The length of the column represents the influence of significantly different species on relative abundance (LDA scores
[log10] . 4). HCG represents the healthy control group; UTG represents the untreated TB group; LCG represents the lung cancer group.
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0.04). These results implied the diversity in the microbial profiles among these sample
groups, indicating the extensive influence and alteration of anti-TB treatment on lung
microbial composition.

The CTG and the TTG exhibited similar compositions of the top 30 most abundant
species, but they were different from those of the UTG (Fig. 4B). The top 30 species in
the TTG or the CTG accounted for more than 85% of the total bacteria, while these spe-
cies in the UTG accounted for more than 95% of the total bacteria (Fig. 4B). Among the
three groups, K. pneumoniae, S. aureus, and P. multocida were the three most abundant
species. The total abundance of the three species accounted for 50.72%, 52.92%, and
72.06% of the total bacteria in the CTG, the TTG, and the UTG, respectively (Fig. 4B and
Table S6). We observed that P. melaninogenica, Prevotella jejuni, R. pickettii, Neisseria
subflava, and Prevotella intermedia were enriched in the TTG and CTG, while S. aureus,
Pasteurella multocida, Escherichia coli, and Neisseria gonorrhoeae were enriched in the

FIG 4 Anti-TB treatment significantly alters the lung microbiota. (A) Alpha diversity indicated by the ACE index, Chao1 index, Shannon index, and Simpson
index at the species level. Adjusted P values are listed at the top of the bar charts. Beta diversity depicted by PCoA plot based on Bray-Curtis dissimilarity
at the species level. Each dot represents one sample from each group. (B) Bar chart of the top 30 species in the UTG, TTG, and CTG. Each color bar
represents one species of bacteria. (C) Bar chart of top 30 SEED functions in the UTG, TTG, and CTG. (D) Differentially enriched taxa identified by linear
discriminant analysis effect size (LEfSe) among the three groups. The length of the column represents the influence of significantly different species on
relative abundance (LDA scores [log10] . 4). UTG represents the untreated TB group; TTG represents the treated TB group; CTG represents the cured TB
group.
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UTG (Fig. 4B). The heatmap based on the top 100 species revealed that the overall tax-
onomic profile in the UTG was distinct from that in the TTG and the CTG (Fig. S5B). The
TTG and CTG shared similar patterns of microbial compositions (Fig. S5B).

To identify the specific bacterial species associated with anti-TB treatment, we
applied linear discriminant analysis using LEfSe to analyze microbial contents among
the three groups. Two specific species were significantly enriched in the UTG, with an
LDA (log10) of .4. We observed that S. aureus, a potential respiratory pathogen, was
strongly enriched in the UTG compared to that in the TTG or the CTG (Fig. 4D).

SEED functional analysis of the metagenome demonstrated that the TTG and the
CTG had similar profiles of the top 30 functions, but they were slightly different from
those of the UTG (Fig. 4C). LEfSe analysis demonstrated that SEED functions related
to protein synthesis, stress response defense and virulence, amino acids and deriva-
tives, and cofactor vitamin prosthetic groups were significantly enriched in the UTG
(Fig. 4D). The function related to energy and precursor metabolite generation, which
was observed to be enriched in the HCG above, was found to be enriched in the CTG
(Fig. 4D).

Anti-TB treatment increases the diversity and abundance of ARGs in TB patients.
Patients with drug-susceptible tuberculosis were prescribed long-term antibiotic regi-
mens that last at least 6 months as recommended by the WHO. We therefore examined
whether long-term antimicrobial exposure in the lung microbiota affects antimicrobial
resistance. The average abundance of antibiotic resistance genes (ARGs) per group
according to antibiotic class is summarized in Fig. 5A and Table S7. A total of 48 ARGs
were detected among these three groups. The lung resistome were dominated by
beta-lactam resistance genes (TEM-126, CfxA2, OKP-A-12, IMP-42, ACT-22, VIM-13), fol-
lowed by tetracycline resistance genes (tetM, tetQ, tet32, tet37, tetW) and macrolide-lin-
cosamide-streptogramin B (MLSB) resistance genes (ErmB, mel, ErmF). The CTG samples
exhibited the highest abundance of ARGs. The TTG had a slightly lower abundance of
ARGs than the CTG. The UTG had much less ARG abundance than either the TTG or the
CTG. Many resistance genes primarily conferring tetracycline resistance represented in
the TTG and the CTG were absent from the UTG. The tremendously increased number
of resistance genes in the TTG and CTG was consistent with an increase in medication
time, suggesting that long-term anti-TB drug exposure may promote antimicrobial re-
sistance. In addition, we did not observe anti-TB drug resistance genes enriched in the
TTG or the CTG samples. The cooccurrence network analysis revealed a gradually more
complicated connection between resistance genes and species from the UTG to the
CTG, consistent with the increased diversity and abundance of ARGs (Fig. 5B to D).

Cured TB patients exhibit similar alpha and beta diversity of the lung microbiota
but harbor distinct profiles of ARGs compared to those of healthy controls. The above
results indicated that TB infection is associated with reduced alpha diversity while anti-
TB treatment increased alpha diversity. To determine how the lung microbiota changes
in cured TB patients after long-term anti-TB treatments, we compared the lung micro-
biota between the HCG and the CTG samples. There were no significant differences in
the ACE index, Chao1 index, Shannon index, or Simpson index at species or genus level
between the HCG and the CTG groups (Fig. 6A and Fig. S6A). In addition, there were
no significant compositional differences between the two cohorts at the genus or spe-
cies level (PERMANOVA, Padj= 0.24 at the genus level; PERMANOVA, Padj= 0.22 at the
species level). The HCG and the CTG samples displayed similar compositions of the top
30 most abundant species (Fig. S6B). The top 30 species in both groups accounted for
more than 85% of the total bacteria. We did not identify any species that were differen-
tially present between the two groups using LEfSe, even with an LDA of .2.0 (data not
shown). These results indicated that cured TB patients displayed structures and com-
positions of lung microbiota similar to those of healthy people. Interestingly, we found
that the CTG displayed much more diversity and abundance of ARGs than the HCG,
and the groups shared few common ARGs (Fig. 6B). The cooccurrence networks of bac-
teria and ARGs in the CTG displayed connections that were much more complicated
than those in the HCG (Fig. 6C and D).
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DISCUSSION

Although sputum samples have been used extensively as indicators of lung micro-
biota to study respiratory diseases, the samples are inevitably contaminated by the
pharyngeal microbiota during the collection process (19–22). Some previous studies
have demonstrated that pharyngeal contamination has little effect on the microbiota
harvested by the bronchoscopy (23–25). We therefore chose to use bronchoalveolar
fluids collected by bronchoscopy to investigate the lung microbiota in participants.
Studying the lung microbiota in healthy individuals is necessary to determine the asso-
ciations between microbial changes and respiratory diseases. However, obtaining BALF
samples from healthy individuals is challenging because bronchoscopy is an invasive
collection method. Thus, very few previous works recruited healthy participants as con-
trols to study the lung microbiota in pulmonary TB (12). Here, we mainly recruited
healthy volunteers who had provided health care service in the department of TB for
more than 5 years. Although these volunteers had no radiological signs of pulmonary TB,
due to the nature of their jobs requiring them to work in close contact with active TB
patients, they were willing to accept the examination of bronchoscopy for metagenomic

FIG 5 Anti-TB treatment increases the diversity and abundance of ARGs. (A) Bar chart of the abundance of ARGs based on drug classes. (B, C, and D)
Cooccurrence network of bacterial species and antimicrobial resistance genes in the UTG (B), TTG (C), and CTG (D) samples based on Spearman correlation
index greater than 0.8 in samples. Blue circles, bacteria; colored circles, antimicrobial resistance genes. The blue to red color of edges with increasing
thickness indicates the increase in the correlation between two nodes. The UTG undirected network with average degree 1.916, modularity of 0.797,
average pathlength of 5.734. The TTG undirected network with average degree 2, modularity of 0.905, average pathlength of 3.535. The CTG undirected
network with average degree 3.719, modularity of 0.573, average pathlength of 3.842.
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analysis to thoroughly exclude earlier M. tuberculosis infection. Our results also confirmed
that no reads of M. tuberculosis were found in these healthy volunteers, which had the
great significance of psychologically comforting these high-risk individuals.

The divergence of alpha and beta diversity in the throat swabs and BALF samples
from healthy participants revealed significant differences in the microbiota between
the upper and lower respiratory tracts, suggesting that the lung contains a self-sustain-
ing microbiota. These results also indicated that the microbiota in BALF samples was
not contaminated by pharyngeal microbiota during our collection process.

Our results demonstrated that microbiota profile in BALF samples from TB
patients exhibited significantly lower diversity and richness than those of healthy
participants, which is contradictory to some previous results from sputum samples
(6, 11, 26). These differences are likely to be caused by the type of sample.
However, another study from Mexico on microbiota from BALF samples demon-
strated that TB patients displayed lower diversity but higher richness of lung micro-
biota compared to those of healthy control and interstitial pneumonia patients
(12). These controversial findings could be explained by some factors, such as geo-
graphical factor, DNA sequencing methods, and sample size. PERMANOVA revealed
that the pulmonary TB patients displayed significant compositional differences
compared to healthy controls or lung cancer patients. These results indicated that
pulmonary TB patients were associated with a unique lung microbiota profile.

FIG 6 Comparison of the lung microbiota between the CTG and the HCG samples. (A) Alpha diversity indicated by the ACE index, Chao1 index, Shannon
index, and Simpson index at the species level. Adjusted P values are listed at the top of bar charts. (B) Bar chart of the abundance of ARGs based on drug
classes between the two groups. Each bar chart represents one gene. (C and D) Cooccurrence network of bacterial species and ARGs in the HCG and CTG
based on Spearman correlation greater than 0.8 in samples. The HCG undirected network with average degree 1.625, modularity of 0.619, average
pathlength of 2.618.
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Due to the application of metagenomic sequencing methods, we were able to
identify the changed taxon at species level. Our study revealed a high relative
abundance of species S. aureus significantly enriched in TB patients. S. aureus is a
very common pathogen that can infect multiple organs and cause critical diseases,
such as pneumonia, endocarditis, and bacteremia (27, 28). These increased patho-
genic bacteria may cause secondary infection in TB patients, which might exacer-
bate the lung disease. Our findings displayed that the relative abundances of
Ralstonia pickettii and P. melaninogenica were significantly lower in the untreated
TB patients than in the healthy controls or lung cancer patients. It was reported
that R. pickettii is able to catalyze ethionamide into active form against mycobacte-
ria (29). The decreased abundance of R. pickettii in TB patients may not be condu-
cive to outcomes of anti-TB treatment. It has been reported that Prevotella is associ-
ated with better lung function and less inflammation (30, 31). The lower relative
abundance of P. melaninogenica in the untreated TB patients may weaken lung
function and accelerate inflammation. Although the differences in the lung micro-
biota between healthy controls and pulmonary TB patients were observed, we were
unable to determine whether the identified changes were a cause or consequence
of M. tuberculosis infection due to the limited evidence in the present study.
Further study will be required to investigate the exact relationships between the
altered microbiota and M. tuberculosis infection.

Lung cancer and pulmonary tuberculosis are common diseases. Lung cancer and
pulmonary TB have similar clinical symptoms and radiological signs in their onset; in
particular, there were high proportions of pulmonary TB patients with negative bacteri-
ology, so it is difficult to properly distinguish them. In addition to radiographic evalua-
tion, there have been numerous biomarkers to assist the diagnosis of lung cancer,
such as carcinoembryonic antigen (CEA), cytokeratin 19 fragments (CYFRA 21-1), 2-
phospho-D-glycerate hydrolase (NSE), squamous cell carcinoma antigen (SCC-Ag), and
pro-gastrin-releasing peptide (Pro-GRP) (32–34). Similarly, these differential taxa could
be used as potential markers to assist in the diagnosis of TB or lung cancer. However,
these species need further confirmation by other independent cohorts before being
used as biomarkers.

Antibiotics have significant impacts on the human microbiota, causing a rapid
decrease in diversity, especially after broad-spectrum antibiotic treatment (15, 35–37).
It has been reported that conventional anti-TB treatment induced significantly
decreased diversity and richness of gut microbiota (38). The lung microbiota was sup-
posed to be decreased in diversity and richness, since the anti-TB drug rifampin is a
broad-spectrum antibiotic. However, our findings revealed that TB patients taking con-
ventional anti-TB therapy exhibit significantly higher alpha diversity and significantly
different beta diversity compared to those of untreated TB patients. These findings are
consistent with a recent study performed by Hu and colleagues, which demonstrated
that cured TB patients had a higher alpha diversity and had a different community
composition of lung microbiota after negative conversion (13). These findings sug-
gested that anti-TB treatment may cause differential effects on the lung and gut micro-
biota. We observed that the relative abundances of P. melaninogenica, P. jejuni, and P.
intermedia were increased after anti-TB treatment. Hu’s studies reported increased
Prevotella after negative conversion (13, 14). However, they did not identify these spe-
cifically changed species from Prevotella genus. We also found significantly decreased
abundances of S. aureus and P. multocida in response to anti-TB treatment. We specu-
lated that M. tuberculosis infection alters lung microenvironment, which may restrain
certain microbes but induce growth for some other bacteria. The increased abun-
dance and diversity of the lung microbiota in treated TB patients and cured patients
may be due to the clearance of M. tuberculosis by anti-TB treatment. In addition, we
observed that untreated TB patients clustered more closely together on PCoA plots
than other groups, suggesting that TB contributes to stabilizing the microbiota struc-
ture. Functional metagenomics analysis revealed that anti-TB treatment resulted in
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strongly decreased relative abundance of virulence-related genes. However, the
undefined relationships between these altered lung microbiota caused by anti-TB
treatment and the prognosis of tuberculosis require further investigation.

It has been reported that antibiotic treatment reduces gut microbiome diversity but
accelerates enrichment of antibiotic resistance genes and different antibiotics have dif-
ferent effects on gut resistome (39, 40). Pulmonary TB treatment often lasts for at least
6 months. Such long-term antibiotic exposure may have a large impact on lung resis-
tomes. Our findings revealed a tremendously increased abundance of ARGs after anti-
TB treatment. The increased abundance of ARGs is very likely to be due to the changed
microbiota, since the CTG and TTG showed an alpha diversity of lung microbiota signif-
icantly higher than that of the UTG. Lung resistomes in TB patients were dominated by
beta-lactam resistance genes and with high prevalence of tetracycline resistance genes
and MLSB resistance genes, which is not consistent with Micheal Aogain’s report that
airway resistome in sputum from healthy people or patients with chronic respiratory
disease was dominated by macrolide resistance genes (41). This difference may be due
to the collected analyzed sample type. The cured TB patients and treated TB patients
displayed different profiles of ARGs. The CTG showed a higher abundance of ARGs
than the TTG. The CTG has a higher percentage of tetracycline resistance genes but a
lower percentage of MLSB resistance genes, suggesting that different antibiotics expo-
sures have different effects on profile of ARGs in lung of TB patients. In addition, our
findings demonstrated that the cured TB patients exhibited alpha and beta diversity
similar to those of healthy controls. However, we found that the cured TB patients
exhibited an abundance of ARGs higher than that of the healthy people, suggesting
that lung microbiota in cured TB patients did not completely return to normal status.
This is an important warning worthy of clinical consideration. Although progress has
been made in the use of antibiotics to improve the clinical outcomes of pulmonary TB
patients, we must be aware of the potential long-term impact of antimicrobial resist-
ance and strictly control drug overuse for the treatment of TB.

There are several limitations in this study that should be noted. First, the number of
individuals included was relatively small. Further studies including a larger number of
samples are required to confirm our findings. In addition, in this study, we focused
only on bacteria and did not analyze viruses or fungi, which are also important for
shaping the profile of the lung microbiota and should be considered in future studies.

Conclusions. We profiled the differences in microbiota between the upper respira-
tory tract and lower respiratory tract by comparing the microbiota in throat swabs and
BALF samples. Our findings demonstrated that pulmonary TB patients display a unique
lung microbiota signature distinct from that of healthy individuals and lung cancer
patients. This study exhibited that anti-TB treatment increases alpha diversity and
affects beta diversity in the lung microbiota. Our data also indicated that anti-TB treat-
ment accelerates the enrichment of ARGs.

MATERIALS ANDMETHODS
Study design and sample collection. Five different cohorts of participants were recruited according

to the following criteria: (i) the untreated pulmonary TB group (UTG) included patients not taking any
antibiotics, (ii) the treated pulmonary TB group (TTG) included patients receiving more than 2 weeks of
standard anti-TB treatment, (iii) the cured pulmonary TB group (CTG) included patients with bacterial
negative conversion who had finished long-term anti-TB treatment, (iv) the healthy control group (HCG)
were health care providers in the TB department who exhibited negative chest radiological signs and
interferon gamma (IFN-g) release assay (IGRA), and (v) the lung cancer patient group (LCG) included
patients with diagnoses confirmed by cellular or tissue pathology. All the TTG and CTG participants were
sensitive to first-line anti-TB drugs and received the standard regimen of 2 months of HRZE (isoniazid,
rifampin, pyrazinamide, and ethambutol) and 4 months of HR (isoniazid and rifampin). Pulmonary TB
patients were diagnosed based on clinical symptoms and radiological signs as described previously (42,
43) and had a positive detection for M. tuberculosis in BALF samples indicated by culture, PCR, or
GeneXpert approach. All participants were free of HIV and had no history of smoking. Detailed informa-
tion on each participant is shown in Table S1. BALF samples were collected from all participants by instil-
ling prewarmed sterile saline (20 mL each time, 2 to 6 times) and aspirating (10 to 20 mL each time). To
identify the potential contamination from the environment or reagents used for DNA extraction, we col-
lected saline control samples after injection through the bronchoscope using a sterile syringe. Because
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the amount of DNA extracted from blank is extremely small, which is not enough for construction of
sequencing library, the collected saline control samples were then mixed with THP-1 cells for DNA
extraction and designated negative control 1 (NC1). Prepared genomic DNA extracted from HeLa cells
was used as negative control 2 (NC2) to determine possible contamination during sequencing library
construction. These control samples were processed in parallel with the actual samples. Throat swabs
were also collected from healthy participants to investigate differences in the microbiota between the
upper and lower respiratory tracts. The collected samples were stored at280°C for microbiota profiling.

DNA extraction. Total DNA was extracted from BALF samples using an Omega Biotech Mag-Bind
Universal Pathogen 96 kit (Omega Bio-Tek, Inc., Norcross, GA, USA) according to the manufacturer’s pro-
tocols. The concentration and quality of extracted DNA were determined using a Qubit dsDNA assay kit
(Life Technologies, USA). All extracted DNA was stored at280°C until further processing.

Metagenome sequencing. The above extracted DNA samples were used for metagenome sequenc-
ing by Guangzhou Sagene Biotech Co., Ltd. (Guangzhou, China). One microgram of total DNA per sam-
ple was used as an input material for sequencing library construction using a NexteraXT DNA sample
preparation kit (Illumina, CA, USA). Prepared genomic DNA from HeLa cells was used as negative control
2 (NC2) to identify the possible contamination during sequencing library construction. After quality
assessment, the library preparations were sequenced on an Illumina NovaSeq 6000 platform, and
paired-end raw reads were generated with a read length of 150 bp.

Data processing and sequence analysis. Preprocessing of raw data. Raw reads were filtered
using fastp 0.19.5 (44) (–detect_adapter_for_pe -W 4 -q 15 -u 40) with other parameters keeping as
default settings to remove adaptors and low-quality reads. The quality of processed reads was assessed
using fastqc 0.11.5 with default settings (45). The preprocessed reads were mapped to the reference
human genome (GRCh38) using bowtie2 with default settings (-un-conc option) (46), and matching
reads were removed. Summary of metagenomic sequencing data was provided in Table S2.

Taxonomic classification. Taxonomy of the remaining reads was classified using kraken2 (–paired)
with kraken2 bacterial and archaeal databases and default settings (47, 48). Taxonomic abundance was
normalized using bracken (-r 150 -l G) based on kraken2 output (49).

Decontamination and filtering of classified data. Normalized data obtained from bracken during
taxonomic classification of each cohort were combined according to study design using the excel
vlookup function and were manually checked to ensure that all data were correctly matched to respec-
tive taxa. Combined normalized data were filtered and decontaminated using the decontam 1.6.0 R
package using prevalence threshold of 0.5 (50) and keeping species that appeared in more than 5 sam-
ples. Abundance data were further filtered to remove low-abundance species using a summed abun-
dance of 0.0005 as the threshold for all samples in each comparison for downstream analyses.

Statistical analysis and visualization of data. The top 30 species or genera of each comparison
were selected and visualized as bar charts using reshap2 1.4.4, tidyverse 1.3.0, dplyr 1.0.0, and the
ggplot2 3.3.0 R packages.

Alpha diversity in a group was calculated based on filtered and normalized counts with rarefying to
the lowest taxonomy using the vegan 2.5.6 R package. Intergroup differences and significance were cal-
culated using Tukey’s honestly significant difference (HSD) test with a confidence level of 95% and the
least significant difference (LSD) test with a Padj of ,0.05 and were visualized as box plots using the
reshape2 1.4.4, ggplot2 3.3.0, devtools 2.3.2, bindrcpp 0.2.2, ggthemes 4.2.4, agricolae 1.3.3, dplyr 1.0.0,
and ggpubr 3.3.0 R packages. Principal-coordinate analysis among sample groups was calculated using
Bray-Curtis dissimilarity and visualized using vegan 2.5.6, labdsv 2.0.1, ggplot2 3.3.0, and scales 1.1.0 R
packages (51–53). Heatmaps of sample groups were generated using the pheatmap package 1.0.12 in R
based on the top 100 species. Functional profiles were analyzed using megan6 community edition with
SEED mapping file and LCA (lowest common ancestor) filtering parameters of 100 as minimal bit-score
and 25 as minimal support (54). Taxonomical biomarkers of each sample group were analyzed using the
LEfSe package 1.0 (format_input.py -c 1 -u 2 -o 1000000; run_lefse.py -l 4; plot_res.py –dpi 600 –format
pdf) with an LDA score of 4 and a P value of ,0.05 (55). UpSet plots were generated using the upsetR
package 1.4.0 after converting the data frame of average counts of each cohort to a data frame contain-
ing only 0/1 values and ordering by frequency of intersection size. PERMANOVA of the cohorts was per-
formed using the adonis function of the vegan package in R software with permutations of 999 and
Bray-Curtis dissimilarity. Pairwise analysis between cohorts was performed using the pairwise.adonis
function of the vegan package using Bray-Curtis dissimilarity method with the Bonferroni correction as
the p.adjusted method. Constrained analysis of principal coordinates (CAP) was performed using the
capsale function of the vegan package in R software with Bray-Curtis as the distance method.

Resistomics analysis. Resistomes were identified and quantified using shortbred 0.9.5 (56, 57).
Specific resistomic markers were generated using the shortbred_identify function (–clustid 0.95 –
qclustid 0.95 –markerlength 10) based on the protein homolog model of the CARD database with the
uniref90 database as a reference (58, 59). Quantification of antibiotic resistance genes was performed
using the shortbred_quantify option (-id 0.80) using resistomic markers generated and normalized to
reads per kilobase per million (RPKM) (56). The cooccurrence network analysis was done using Hmisc
and igraph R packages. The cooccurrence of bacteria and antibiotic resistance genes was calculated
using Spearman correlation index of.0.8 and P value of,0.01 using the hmisc package and was visual-
ized using the igraph package in R (60). The generated cooccurrence plots were visualized using gephi
0.9.2 with fruchterman reingold layout and default settings (61). The statistics (average degree, modular-
ity, average pathlength, etc.) of the cooccurrence plots were generated by gephi 0.9.2 during running
the plots.
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