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patients undergoing hemodialysis
Hongyun Liu1, Ping Zhan1, Jinlong Shi2, Minlu Hu1, Guojing Wang1 and Weidong Wang1*

Abstract

Background: Heart rhythm complexity, a measure of heart rate dynamics and a risk predictor in various clinical
diseases, has not been systematically studied in patients with end-stage renal disease. The aim of this study is to
investigate the heart rhythm complexity and its prognostic value for mortality in end-stage renal disease patients
undergoing hemodialysis.

Methods: To assess heart rhythm complexity and conventional heart rate variability measures, 4-h continuous
electrocardiography for a retrospective cohort of 202 ostensibly healthy control subjects and 51 hemodialysis
patients with end-stage renal disease were analyzed. Heart rhythm complexity was quantified by the complexity
index from the measurement of the multiscale entropy profile.

Results: During a follow-up of 13 months, 8 people died in the patient group. Values of either traditional heart rate
variability measurements or complexity indices were found significantly lower in patients than those in healthy
controls. In addition, the complexity indices (Area 1–5, Area 6–15 and Area 6–20) in the mortality group were
significantly lower than those in the survival group, while there were no significant differences in traditional heart
rate variability parameters between the two groups. In receiver operating characteristic curve analysis, Area 6–20
(AUC = 0.895, p < 0.001) showed the strongest predictive power between mortality and survival groups.

Conclusion: The results suggest that heart rhythm complexity is impaired for patients with end-stage renal disease.
Furthermore, the complexity index of heart rate variability quantified by multiscale entropy may be a powerful
independent predictor of mortality in end-stage renal disease patients undergoing hemodialysis.

Keywords: Complexity, Multiscale entropy, End-stage renal disease, Autonomic nervous system, Heart rate
variability

Background
End-stage renal disease (ESRD), characterized by per-
manent loss of renal function, is the final stage in
chronic kidney disease that becomes a global health
problem with increasing prevalence [1]. Despite recent
progress in medical management and dialysis therapy

technique, mortality rates remain high in ESRD patients
undergoing hemodialysis. The major causes of ESRD are
largely the same causes that contribute to cardiovascular
disease [2]. In addition, sudden cardiac death is common
in patients receiving hemodialysis and may account for
about 30% of overall mortality, which could partly owe
to the impairment of the autonomic nervous system
(ANS) [3–5]. Identification of high-risk patients with
ESRD is of clinical importance and considerable prac-
tical value in strengthening their treatment strategies.
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Patients with ESRD undergoing chronic hemodialysis
is usually present a dysfunction of the ANS, exhibited as
low parasympathetic/vagal modulation associated with
high sympathetic modulation of the heart rate assessed
by heart rate variability (HRV) analysis [6–8]. Several
previous studies have used HRV parameters based on
traditional linear HRV analysis to predict patient out-
comes and found that lower HRV is related to an in-
creased risk of cardiovascular and all-cause mortality in
patients with ESRD receiving chronic hemodialysis [9–
13]. However, the regulation of heart rate by the ANS is
considered to be a non-linear physiological process with
complexity. Recently, multiscale entropy (MSE) mea-
sures quantify multiple spatial and temporal scale com-
plexity of heart rate dynamics, have been introduced as
new risk stratifiers [14, 15]. At present, MSE has been
extensively applied in the assessment of heart rhythm
complexity in heart failure, stroke, myocardial infarc-
tion, epilepsy and other diseases for predicting patient
outcomes [16–19]. Previous studies have also demon-
strated that MSE parameters have greater predictive
power than conventional HRV measures for risk
stratification and prognosis [19, 20]. Heart rhythm
complexity impairment has been associated with ad-
verse outcomes in clinical settings. However, its po-
tential relation to the increased risk of death in ESRD
patients undergoing hemodialysis may be underappre-
ciated and need to be further elucidated. Therefore,
the aim of the present study was to investigate the
heart rate complexity derived from MSE analysis of
long-term electrocardiograms (ECG) and its prognos-
tic value for all-cause mortality in patients with ESRD
receiving hemodialysis therapy.

Methods
The study protocol and population
Healthy database (THEW identification: E-HOL-03-
0202-003) with 202 24-h ECG recordings and ESRD
database (THEW identification: E-HOL-03-0202-016)
contains 51 48-h long-term ECG recordings were se-
lected from the Telemetric and Holter ECG Ware-
house (THEW, http://thew-project.org/datab ases.htm)
at University of Rochester. Raw ECG data, as well as
automated beat annotations reviewed and adjudicated
manually, are available in both databases. All human
data were obtained retrospectively from completed,
Institutional-Review-Board-approved clinical research
studies with subject de-identification. These trials
complied with the Declaration of Helsinki and all
subjects signed informed consent documents.
The ESRD database comprises Holter recordings with

a sampling frequency of 1000 Hz from 51 ESRD patients
with a high risk of death. All 51 ESRD patients under-
went high-resolution 12-lead 48-h continuous ECG

monitoring, and THEW provides 12-lead raw ECG and
heartbeat interval data. ESRD subjects receiving
hemodialysis confirmed the history of diabetes or hyper-
tension requiring treatment entered into this study. The
ESRD patients were enrolled from February 13, 2009 to
June 18, 2010, and they completed their 13-month
follow-up evaluation. All patients Exclusion criteria in-
cluded a history of chronic atrial fibrillation, with class I
antiarrhythmic, pacemaker, implantable cardioverter-
defibrillator device, cardiac resynchronization therapy
device, female subject of childbearing potential not using
medically prescribed contraceptive measures and subject
unable to cooperate with the protocol due to dementia,
psychological, or other related reason. The Healthy
database comprises 24-h Holter recordings from 202 os-
tensibly healthy subjects. Subjects had (1) no overt
cardiovascular disease or history of cardiovascular disor-
ders; (2) no reported medications, history of high blood
pressure and chronic illness, (3) a normal physical exam-
ination, (4) a 12-lead ECG showing sinus rhythm with
normal waveforms (or a normal echocardiogram and
normal ECG exercise testing in the presence of any
questionable findings ECG changes). The ECG signals
were recorded at a sampling frequency of 200 Hz. In
order to reduce the influence of gender and age on ECG
parameters, we try to match each ESRD patient with a
healthy control with the same gender and close age.
After excluding the poor signal quality and incomplete
ECG recordings, 51 ostensibly age-matched healthy con-
trol subjects were selected from 202 healthy subjects and
eventually enrolled in the present study.

ECG preprocessing
All long-term ECG recordings were analyzed with
Kubios (Kubios 2.2, University of Eastern Finland, Kuo-
pio), on which R waves were detected and labeled auto-
matically. Heart-beat interval between 300 and 2000 ms,
consecutive heart-beat interval differences ≤200 ms, and
prolongations or shortenings ≤20% than the average of
five preceding sinus rhythm heart-beat intervals were
considered as sinus rhythm QRS complexes [21]. There-
after, automatic annotated results were carefully visual
inspected and manually corrected by editing ectopic
beats, arrhythmias and noise to suppress computational
errors. Four-hour episodes of heart-beat intervals with-
out naps and exercise within daytime (between 8 a.m.
and 5 p.m.) were extracted from each recording for MSE
and traditional HRV analysis [18, 19]. The 4-h ECG re-
cordings of ESRD patients used in the present study
were selected after the ideal body weight to reduce the
influence of volume overload on HRV. All ECG seg-
ments were selected from the same period to reduce the
confounding effects that may occur due to sleep or diur-
nal rhythm. Furthermore, four-hour ECG segments of
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patients with ESRD after hemodialysis sessions while
performing their usual daily activities were used for fur-
ther analysis.

Traditional HRV analysis
Traditional techniques of HRV analysis are grouped into
the time domain, frequency domain, and non-linear
methods. The time-domain measures including mean
heartbeat intervals (Mean RR), standard deviation of the
heartbeat intervals (SDNN), square root of the mean of
sum of squares of the differences between adjacent
heartbeat intervals (RMSSD), and percentage of the ab-
solute change in consecutive heartbeat interval exceeds
50ms (pNN50) were calculated to represent the total
variance and vagal modulation of heart rate [22]. Based
on the Fast Fourier transform spectrum, the frequency
domain measures were computed from the power spec-
tral density estimate for each frequency band including
absolute power values of very low frequency (VLF,
0.0033–0.04 Hz), low frequency (LF, 0.04–0.15 Hz), high
frequency (HF, 0.15–0.40 Hz) bands, total power (TP,
0.0033–0.40 Hz) and LF/HF power ratio [22]. The VLF,
LF, HF and TP were also transformed in natural loga-
rithmic (ln) value. Five traditional non-linear measures
were also taken into consideration to characterize the
properties of HRV. SD1 denotes the short-term variabil-
ity caused by respiration, whereas SD2 denotes the long-
term variability with both calculated through the Poin-
caré plot method [23]. Approximate entropy (ApEn)
quantifies the single-scale complexity or regularity of the
HRV time series by measuring the unpredictability of
fluctuation patterns, and more uncorrelated random
HRV signals usually produce higher ApEn value [24]. As
a technique for characterizing the nature of long-range
correlations in time series, detrended fluctuation analysis
(DFA) was applied in the present study to quantify slope
α1 and α2 for characterizing the short-term and long-
term fluctuations of HRV signal, respectively [25].

MSE analysis
The MSE technique was proposed to characterize com-
plex structure of non-linear and non-stationary physio-
logical signals in different temporal scales that ignored
by traditional entropy methods. It comprises of two
steps: 1) coarse-graining the time series in finite length
into different time scales; 2) quantifying the degree of ir-
regularity in each coarse-grained time series by sample
entropy calculations [14, 15]. The quantified entropy
values of coarse-grained time series then are represented
as the function of time scale factors to evaluate the com-
plex structure of physiological time series, and the fea-
tures of the MSE curve can be extracted for clinical
categorization in several diseases [16–19]. In-depth, de-
tails of this methodology have been previously described

[14, 15]. In the present study, the complexity index (CI)
of the HRV time series were quantified by curve fitting
and calculating the area between the MSE curve and the
axis of scale factors [18, 19]. The linear-fitted slope
(Slope 5) and the area under the MSE curve between
scales 1 and 5 (Area 1–5) were calculated to quantify the
short-term complexity and to characterize the short-
scale modulation pattern. Long time scale complexity
was quantified by the fitted area under the MSE curve
between scales 6 and 15 (Area 6–15) and between scales
6 and 20 (Area 6–20), respectively. Since low frequency
drifts, high frequency non-stationarities and general
hidded trends longer than 2 h may lead to incorrectly in-
creased irregularity and diminished sequence matching
manifesting unpredictable effects on calculated sample
entropy values. Empirical mode decomposition (EMD) is
suitable for decomposition of non-stationary, non-linear
physiologic time series and possesses advantages over
wavelet and Fourier analysis because it employs a fully
adaptive approach derived by means of a sifting process.
In order to remove such effects, we used empirical mode
decomposition (EMD) method for raw HRV time series
filtering before performing MSE [18, 19].

Statistical analysis
Clinical data and parameters of ECG recordings were
presented as median (25th and 75th percentiles). Gauss-
ian distribution and homogeneity of variance tests were
applied to determine the distribution and homoscedas-
ticity of sample data. As a result of the non-normal dis-
tribution and heterogeneity of variance of some sample
data, continuous variables were compared between dif-
ferent groups by the Mann-Whitney U test. For single
predictive variable analysis using qualitative or categor-
ical variables, Fisher’s exact tests were applied for com-
parison between different groups. Correlations between
clinical variables and independent factors that predicting
all-cause death for ESRD patients were performed using
Spearman’s correlation tests. The receiver operating
characteristics (ROC) curve was created based on the
sensitivity and specificity of HRV measures in predicting
all-cause death in ESRD patients undergoing
hemodialysis. The area under the ROC curve (AUC)
gave an estimate of the overall discriminate ability
(AUC = 0.5 indicates no discrimination and an AUC =
1.0 indicates a perfect diagnostic test). Statistical analyses
were performed using SPSS version 20 software package
(SPSS, Chicago, Ill, USA). The maximal hazards ratio
and independent correlation of variables with mortality
was determined by Cox regression analysis. Then,
Kaplan-Meier event probability curves and log rank ana-
lysis of the dichotomized groups were obtained. For all
statistical analysis, p values were corrected by the false
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discovery rate (FDR) method for multiple comparisons
and p < 0.05 was considered significant.

Results
Study population
Eventually, a total of 51 ESRD patients and 51 osten-
sibly healthy control subjects were enrolled in the
present study. After a follow-up period of around 13
months, 8 (15.7%) patients died in the ESRD group.
There were 4 cardiac-related deaths and the other 4
patients died for unknown reasons. As shown in
Table 1, ideal body weight, body mass index (BMI)

and pre-dialysis systolic blood pressure (BP_SYS)
values were significantly higher in ESRD patients
while the prevalence of smoking (11.8% vs. 39.2%, p <
0.001) was lower in ESRD group. However, there were
no significant differences in gender, age, height and pre-
dialysis diastolic blood pressure (BP_DIA) between the
ESRD and healthy groups. Detail information on demo-
graphic data, clinical characteristics, and laboratory data
prior to hemodialysis for ESRD patients including both
survival and mortality groups are presented in Table 2. No
clinical variable was significantly different between these
two groups (survival and mortality).

Table 1 Demographic data and basic characteristics of ESRD patients and healthy control subjects

Variables ESRD patients
(n = 51)

Healthy control subjects
(n = 51)

P value

Male/female 30/21 24/27 0.321

Age (year) 57 (52–67) 58 (52–65) 0.859

Height (cm) 169 (162–177) 168 (159–175) 0.451

Weight (kg) 82 (72–97) 70 (64–83) < 0.001

BMI (kg/m2) 29.37 (24.39–33.47) 25.30 (23.62–27.48) < 0.001

BP_SYS (mmHg) 143 (127–169) 120 (118–140) < 0.001

BP_DIA (mmHg) 73 (65–88) 80 (75–80) 0.227

Smoking, n (%) 6 (11.8) 20 (39.2) 0.003

Diabetes Mellitus, n(%) 32 (62.7%) N.A N.A

Hypertension, n(%) 51 (100%) N.A N.A

LVEF (%) 60 (55–65) N.A N.A

Duration of dialysis (year) 2 (3–6) N.A N.A

Kt/V 1.42 (1.24–1.61) N.A N.A

URR (%) 74 (70–79) N.A N.A

nPCR 0.85 (0.72–0.97) N.A N.A

Sodium (mEq/dL) 139 (137–141) N.A N.A

Potassium (mEq/dL) 5.1 (4.4–5.4) N.A N.A

Chloride (mEq/dL) 100 (97–103) N.A N.A

Bicarbonite (mEq/dL) 26 (22–29) N.A N.A

Blood Urea Nitrogen (mg/dL) 58 (45–72) N.A N.A

Creatinine (mg/dL) 8.3 (6.6–10.4) N.A N.A

Glucose (mg/dL) 106 (88–137) N.A N.A

Calcium (mg/dL) 8.7 (8.3–9.2) N.A N.A

Phosphate (mg/dL) 5.3 (4.3–6.2) N.A N.A

Calcium Phosphate Product 44.7 (35.6–51.1) N.A N.A

Albumin (g/dL) 4.0 (3.8–4.2) N.A N.A

Hemoglobin (g/dL) 11.7 (11.0–12.3) N.A N.A

Hematocrit (%) 36.0 (34.0–38.0) N.A N.A

β-blocker, n (%) 34 (66.7) N.A N.A

CCB, n (%) 25 (49.0) N.A N.A

ACEI, n (%) 15 (29.4) N.A N.A

ESRD end-stage renal disease, BMI body mass index, BP_SYS systolic blood pressure, BP_DIA diastolic blood pressure, N.A not applicable, LVEF left ventricular
ejection fraction, URR urea reduction ratio, nPCR normalized protein catabolic rate, CCB calcium channel blocker, ACEI angiotensin-converting-enzyme inhibitor
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Holter data
The results of traditional HRV and MSE analyses in
ESRD and healthy groups are presented in Table 3 and
Fig. 1. For traditional HRV parameters and CI derived
from the MSE profiles, ESRD patients had significantly
lower SDNN, RMSSD, pNN50, VLF, LF, HF, TP, LF/HF,
SD1, SD2, α1, Slope 5, Area 1–5, Area 6–15 and Area
6–20 in comparison to the healthy control subjects. In
contrast, patients with ESRD had significantly higher
ApEn and α2 values than those of healthy controls (all
p < 0.05, Table 3). The ESRD patients exhibited signifi-
cantly reduced entropy values over most of the time

scales, except scale 1, 2, 13 and 14 (Fig. 1). In addition,
all of the average MSE curves of ESRD group had a pat-
tern of an initial decrease which is different from that of
the healthy control group.
For all the analyzed traditional HRV analyses, there

were no significant differences between the survival and
mortality groups (all p > 0.05, Table 4). For MSE
analysis, the entropy values were significantly lower over
different time scales in the mortality group (Fig. 1).
Meanwhile, the mortality group had significantly lower
CI including Area 1–5 (2.49 (1.79–3.68) vs. 4.11 (3.36–
4.72), p = 0.002), Area 6–15 (7.39 (6.27–9.92) vs. 11.92

Table 2 Clinical data of the ESRD patients in survival and mortality groups

Variables Survival
(n = 43)

Mortality
(n = 8)

P value

Male/female 25/18 5/3 1.000

Age (year) 55 (52–65) 66 (62–70) 0.087

Height (cm) 170 (162–178) 168 (166–171) 0.595

Weight (kg) 83 (72–101) 76 (65–93) 0.223

BMI (kg/m2) 30.22 (24.39–34.29) 26.28 (24.09–31.76) 0.214

BP_SYS (mmHg) 141 (127–169) 146 (123–183) 0.866

BP_DIA (mmHg) 77 (69–83) 71 (58–88) 0.517

Smoking, n (%) 5 (11.6) 1 (12.5) 1.000

Diabetes Mellitus, n (%) 25 (58.1) 7 (87.5) 0.672

Hypertension, n (%) 43(100) 8 (100) 1.000

Duration of dialysis (year) 3 (2–6) 3 (2–7) 0.793

LVEF (%) 60 (55–64) 62 (51–85) 0.370

Kt/V 1.42 (1.24–1.61) 1.44 (1.25–1.64) 0.776

URR (%) 74 (70–79) 75 (69–80) 0.640

nPCR 0.85 (0.69–0.96) 0.95 (0.76–1.05) 0.158

Sodium (mEq/dL) 139 (137–141) 139 (137–142) 0.886

Potassium (mEq/dL) 5.0 (4.4–5.3) 5.2 (4.5–5.5) 0.357

Chloride (mEq/dL) 100 (97–103) 100 (97–103) 0.897

Bicarbonite (mEq/dL) 27 (23–29) 22 (21–25) 0.065

Blood Urea Nitrogen (mg/dL) 56 (43–70) 70 (50–89) 0.214

Creatinine (mg/dL) 8.3 (6.6–9.5) 9.0 (6.6–11.0) 0.595

Glucose (mg/dL) 106 (88–143) 110 (81–136) 0.698

Calcium (mg/dL) 8.8 (8.4–9.2) 8.6 (6.8–9.1) 0.232

Phosphate (mg/dL) 5.2 (3.9–6.0) 5.6 (4.8–6.6) 0.249

Calcium Phosphate Product 44.5 (35.5–51.3) 46.0 (42.0–49.7) 0.679

Albumin (g/dL) 4.0 (3.8–4.2) 4.0 (3.5–4.3) 0.630

Hemoglobin (g/dL) 11.7 (10.9–12.3) 11.6 (11.2–12.7) 0.688

Hematocrit (%) 36.0 (33.0–38.0) 37.0 (36.0–39.0) 0.076

β-blocker, n (%) 29 (67.4) 5 (62.5) 0.541

CCB, n (%) 20 (46.5) 5 (62.5) 0.329

ACEI, n (%) 13 (30.2) 2 (25.0) 0.565

ESRD end-stage renal disease, LVEF left ventricular ejection fraction, URR urea reduction ratio, nPCR normalized protein catabolic rate, CCB calcium channel blocker,
ACEI angiotensin-converting-enzyme inhibitor

Liu et al. BMC Nephrology          (2020) 21:536 Page 5 of 11



Table 3 Traditional HRV measurements and CI over 4-h continuous ECG recordings for ESRD patients and healthy control subjects
Variables ESRD patients

(n = 51)
Healthy control subjects
(n = 51)

P value

Traditional HRV analysis

Mean RR (msec) 779 (733–858) 754 (690–836) 0.137

SDNN (msec) 36 (28–50) 71 (59–95) < 0.001

RMSSD (msec) 12 (8–15) 18 (13–29) < 0.001

pNN50 (%) 0.14 (0.02–1.06) 1.77 (0.42–6.64) < 0.001

VLF (msec2) 18 (10–41) 68 (45–142) < 0.001

LF (msec2) 50 (23–178) 333 (234–790) < 0.001

HF (msec2) 34 (14–65) 106 (46–270) < 0.001

TP (msec2) 109 (55–280) 511 (376–1232) < 0.001

lnVLF (msec2) 2.88 (2.32–3.69) 4.23 (3.85–4.84) < 0.001

lnLF (msec2) 3.91 (3.17–5.17) 5.81 (5.46–6.61) < 0.001

lnHF (msec2) 3.51 (2.68–4.13) 4.67 (3.86–5.48) < 0.001

lnTP (msec2) 4.69 (4.10–5.62) 6.24 (5.94–7.11) < 0.001

LF/HF 1.68 (0.84–3.96) 3.42 (2.37–6.85) < 0.001

SD1 (msec) 8 (5–10) 12 (9–20) < 0.001

SD2 (msec) 14 (10–23) 31 (26–47) < 0.001

ApEn 1.47 (1.36–1.52) 1.36 (1.27–1.46) < 0.001

α1 1.07 (0.83–1.26) 1.32 (1.15–1.49) < 0.001

α2 0.62 (0.49–0.71) 0.52 (0.46–0.61) 0.005

MSE analysis

Slope 5 0.04 (−0.04–0.08) 0.10 (0.07–0.15) < 0.001

Area 1–5 3.90 (3.29–4.49) 4.39 (3.95–5.24) 0.004

Area 6–15 11.62 (9.13–12.85) 12.63 (11.42–13.65) 0.013

Area 6–20 18.10 (14.34–20.28) 19.79 (18.19–21.70) 0.017

ESRD end-stage renal disease, HRV heart rate variability, Mean RR mean heartbeat intervals, SDNN standard deviation of the heartbeat intervals, RMSSD square root
of the mean of sum of squares of the differences between adjacent heartbeat intervals, pNN50 percentage of the absolute change in consecutive heartbeat
interval exceeds 50 ms, VLF very low frequency, LF low frequency, HF high frequency, TP total power, ApEn approximate entropy, MSE multiscale entropy

Fig. 1 The sample entropy over different time scales. The orange square open symbols represented the entropy of patients with ESRD, and the
light blue open circles the entropy of healthy control subjects. The green open squares represented the entropy of the survival group after
session hemodialysis treatment, and the pink solid squares the entropy of the mortality group after session hemodialysis treatment. Symbols
represent the mean values of entropy for each group and bars represent the standard error (SE ¼ SD=

ffiffiffi

n
p

, where n is the number of subjects).
*p < 0.05, **p < 0.01, and ***p < 0.001 for comparison between groups
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(10.16–13.69), p < 0.001) and Area 6–20 (11.96 (9.84–
15.54) vs. 18.78 (16.63–21.60), p < 0.001) than those of
survival group (Table 4). Furthermore, the above inde-
pendent risk factors or predictors derived from MSE
quantification did not significantly correlate with any
clinical variables observed in the study (all p > 0.05,
Table 5).
The ROC curves of the predictive parameters (Area

1–5, Area 6–15 and Area 6–20) were depicted in Fig. 2.
Area 6–20 (AUC = 0.895) showed the best overall dis-
criminative power than Area 1–5 (AUC = 0.858) and
Area 6–15 (AUC = 0.892) in the outcome prediction for
ESRD patients receiving hemodialysis. Figure 3 showed
Kaplan-Meier survival curves for all-cause death accord-
ing to the contribution of Area 6–20. For the ESRD pa-
tients undergoing hemodialysis, survival seems to be

related to whether the values of Area 6–20 were low (<
13.43). Cox regression analysis demonstrated that ESRD
patients with Area 6–20 < 13.43 had a higher risk of
death (4.8% vs. 66.7%) than those with Area 6–20 ≥
13.43 (Hazard ratio = 13.61, 95% CI: 2.74–67.77). How-
ever, no statistical risk factors were found in data of
demographic characteristics, baseline clinical evaluation,
or laboratory tests. The Area 6–20 may be a significant
independent predictor of all-cause mortality for patients
with ESRD, and when the cut-off value of Area 6–20
was set at 13.43, the sensitivity and specificity were 88.4
and 75%, respectively.

Discussion
To our knowledge, this is the first report to explore the
predictive value of heart rhythm complexity quantified
by MSE analysis in chronic hemodialysis ESRD patients.
The results of the present study confirm that heart
rhythm complexity and cardiac autonomic function are
impaired in patients with ESRD. Importantly, the

Table 4 Traditional HRV measurements and CI over 4-h
continous ECG recordings for the study subjects in survival and
mortality groups

Variables Survival
(n = 43)

Mortality
(n = 8)

P value

Traditional HRV analysis

Mean RR (msec) 779 (732–885) 795 (753–852) 0.846

SDNN (msec) 34 (26–48) 43 (35–53) 0.143

RMSSD (msec) 13 (8–15) 9 (6–19) 0.445

pNN50 (%) 0.14 (0.02–1.06) 0.07 (0.01–3.97) 0.917

VLF (msec2) 21 (10–51) 11 (4–22) 0.117

LF (msec2) 53 (25–183) 29 (11–70) 0.344

HF (msec2) 34 (16–65) 16 (7–102) 0.526

TP (msec2) 141 (70–311) 67 (32–155) 0.271

lnVLF (msec2) 3.02 (2.36–3.82) 2.43 (1.76–2.79) 0.119

lnLF (msec2) 3.96 (3.23–5.20) 3.37 (2.77–4.07) 0.351

lnHF (msec2) 3.52 (2.85–4.10) 2.76 (2.31–4.26) 0.533

lnTP (msec2) 4.95 (4.25–4.95) 4.18 (3.71–4.98) 0.277

LF/HF 1.92 (0.85–3.97) 1.41 (0.46–3.46) 0.460

SD1 (msec) 9 (5–10) 6 (4–14) 0.476

SD2 (msec) 15 (10–23) 11 (7–16) 0.344

ApEn 1.47 (1.36–1.52) 1.45 (1.36–1.49) 0.430

α1 1.07 (0.83–1.27) 1.04 (0.57–1.21) 0.476

α2 0.64 (0.52–0.71) 0.59 (0.34–0.73) 0.445

MSE analysis

Slope 5 0.05 (0.04–0.09) 0.02 (0.05–0.07) 0.509

Area 1–5 4.11 (3.36–4.72) 2.49 (1.79–3.68) 0.002

Area 6–15 11.92 (10.16–13.69) 7.39 (6.27–9.92) < 0.001

Area 6–20 18.78 (16.63–21.60) 11.96 (9.84–15.54) < 0.001

HRV heart rate variability, Mean RR mean heartbeat intervals, SDNN standard
deviation of the heartbeat intervals, RMSSD square root of the mean of sum of
squares of the differences between adjacent heartbeat intervals, pNN50
percentage of the absolute change in consecutive heartbeat interval exceeds
50 ms, VLF very low frequency, LF low frequency, HF high frequency, TP total
power, ApEn approximate entropy, MSE multiscale entropy

Table 5 Correlations between MSE parameters and clinical
characteristics

Variables ESRD patients (n = 51)

Area 1–5 Area 6–15 Area 6–20

Age (year) 0.061 −0.024 −0.050

BP_SYS (mmHg) −0.100 −0.152 −0.133

BP_DIA (mmHg) −0.080 0.039 0.055

BMI (kg/m2) 0.017 −0.152 −0.134

LVEF (%) −0.058 −0.061 − 0.069

Duration of dialysis (year) 0.112 0.213 0.235

Kt/V 0.022 −0.045 −0.038

URR (%) 0.222 0.038 0.009

nPCR −0.183 −0.219 − 0.219

Sodium (mEq/dL) 0.096 0.083 0.099

Potassium (mEq/dL) −0.163 −0.128 − 0.113

Chloride (mEq/dL) −0.121 − 0.005 0.005

Bicarbonite (mEq/dL) 0.197 0.106 0.111

Blood Urea Nitrogen (mg/dL) −0.172 −0.081 − 0.060

Creatinine (mg/dL) 0.039 0.068 0.072

Glucose (mg/dL) −0.130 −0.129 − 0.117

Calcium (mg/dL) 0.102 0.183 0.165

Phosphate (mg/dL) −0.049 −0.131 − 0.138

Calcium Phosphate Product 0.019 −0.098 −0.112

Albumin (g/dL) 0.118 0.087 0.071

Hemoglobin (g/dL) −0.018 −0.075 − 0.080

Hematocrit (%) −0.045 − 0.232 −0.243

Values are correlation coefficients; ***p < 0.001; **p < 0.01; *p < 0.05. ESRD end-
stage renal disease, BMI body mass index, BP_SYS systolic blood pressure,
BP_DIA diastolic blood pressure, LVEF left ventricular ejection fraction, URR
urea reduction ratio, nPCRnormalized protein catabolic rate
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deterioration of heart rhythm complexity seems to be re-
lated to a increased risk of subsequent motality. Specific-
ally Area 6–20 among all the analyzed measures of HRV
may be a predictor of increased mortality risk for all-
cause death in ESRD patients. Undergoing session
hemodialysis, which is complementary to existing risk
stratification strategies.
The dynamic balance of ANS plays a sophisticated and

important role in maintaining the homeostasis of normal
physiological processes to stay healthy in the human
body [26]. Since HRV measures provide information on
the degree of autonomic control of the heart rate, they
are often used as a non-invasive and effective tool for as-
sessment of the cardiac autonomic function and ANS
state. Furthermore, low HRV is associated with mortality
in various diseases [27–30]. In the present study, we
found that all of the analyzed traditional HRV parame-
ters, as well as conventional non-linear measures and CI,
were significantly different between the ESRD and
healthy control groups except for the Mean RR. Consist-
ent with previous studies [10, 31–33], lowered HRV
metrics and CI were observed in our study, which con-
firms that ESRD patients have impaired vagal control or
cardiac autonomic function as well as heart rhythm
complexity caused by disease pathology. Therefore, the
multiscale method showed the phenomenon of heart
rhythm decomplexification in ESRD patients, which con-
tradicting the result obtained using the traditional ApEn
algorithms.
DFA is often used to quantify the fractal correlation

property of the HRV time series, and the short-term
fractal scaling exponent α1 has been feasible to predict

mortality in various disease states [34–36]. Suzuki et al.
showed that decreased α1 is an independent predictor
for mortality in ESRD patients undergoing hemodialysis,
and the addition of this metric to clinical risk factors sig-
nificantly improves risk stratification [37]. In addition,
Chiang et al. also found that increased short-term fractal
scaling exponent α1is an independent predictor for
lower cardiac and total mortality in patients with ESRD
receiving peritoneal dialysis [36]. However, Lin et al.
demonstrated that there were no significant differences
in fractal scaling exponent (both α1and α2) for ESRD
patients and those controls with normal renal function
[38]. In the current study, we found that patients with
ESRD had significantly lower α1 and higher α2 than
those in healthy control subjects. This finding is consist-
ent with previous reports of altered correlation proper-
ties under pathologic conditions [39]. Since antagonizing
regulation of the sympathetic and vagal nerves on the
heart is the physiological basis of the DFA method, the
abnormal heart rate dynamics in ESRD patients evalu-
ated by DFA are probably due to the co-activation of
sympathetic and vagal outflow, which breakdown the in-
trinsic correlation property of HRV.
In this study, not only conventional non-linear mea-

sures like fractal scaling exponents and ApEn but all
other traditional analyzed linear HRV metrics showed
no independent predictive power for mortality in pa-
tients with ESRD receiving hemodialysis therapy. This
finding is inconsistent with previous studies [9, 10, 12,
36, 37]. In addition, we observed no significant correla-
tions of clinical risk factors with these HRV measures.
The discrepancy between our findings and previous
studies could be due to two main factors. The first, the
ECG signals were recorded in free-running conditions,

Fig. 3 Kaplan-Meier survival curves (P < 0.001) for all-cause mortality
according to the the MSE parameters Area 6–20. The mortality for
Area 6–20 ≥ 13.43 and Area 6–20 < 13.43 were 4.80 and
66.7%, respectively

Fig. 2 Analysis of the discrimination power of the survival and
mortality by receiver operating characteristic (ROC) curve analysis.
The areas under the curve of Area 1–5, Area 6–15 and Area 6–20
were 0.858, 0.892 and 0.895, respectively
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which may cause the measurements quantified by trad-
itional linear and non-linear HRV analyses not to accur-
ately assess the autonomic function. Additionally,
different lengths of the HRV time series should also be
taken into consideration for comparing the results of dif-
ferent studies. The second, the severity, cognitive per-
formance, mental state and administration of drugs of
ESRD patients can influence the results of HRV mea-
sures calculation, especially measurements (RMSSD, HF,
α1, etc.) reflecting short-term variability and cardiac
vagal regulation. The predictive ability of traditional lin-
ear and non-linear HRV parameters may be weakened
and even absorbed by the associations between the
above possible clinical risk factors and cardiac vagal
impairment.
In contrast, heart rhythm complexity based on MSE

appeared to enhance risk stratification in our study. CI
Area 6–20 had the best performance for mortality pre-
diction and is independent of clinical factors. This find-
ing is consistent with previous studies regarding
mortality using the MSE method. Norris et al. conducted
a study to examine MSE parameters as predictors of
trauma patient mortality in intensive care units. They
concluded that MSE would be a robust predictor of
trauma patient mortality in the face of variations in data
density and duration [40]. The same group conducted
afterward two larger studies, the results of which vali-
dated the above findings and confirmed that loss of
heart rhythm complexity quantified by MSE could iden-
tify trauma patients at increased risk of subsequent hos-
pital death [41, 42]. Ho et al. investigated the prognostic
value of parameters derived from MSE in patients with
systolic heart failure. They found that MSE parameter
Area 6–20 showed the strongest predictive power be-
tween survival and mortality groups among all the
parameters [43]. In a study in patients receiving extra-
corporeal life support, Lin et al. also demonstrated that
MSE metrics representing heart rhythm complexity were
significantly associated with mortality [44]. This evi-
dence showed the potential relationship between risk
stratification, especially mortality and decomplexification
of heart rate dynamics in patients with critical illnesses.
Our results indicated that not only cardiac autonomic
function but heart rhythm complexity were impaired in
hemodialysis ESRD patients. Furthermore, the significant
association between all-cause mortality and MSE index
Area 6–20 implied a direct association between ESRD
outcomes and heart rhythm complexity.
There are three limitations to our study. First, our

findings are based on a retrospective, single-center, small
sample size of ESRD patients with different medication
administration. Therefore, it is difficult to discriminate
between other possible contributing factors and to pre-
dict the possible effects of drugs on the cardiac

autonomic function. The predictive ability of the MSE
parameters might also be underpowered due to the small
sample size. Second, we analyzed ECG recordings be-
tween hemodialysis sessions. The acute and chronic ef-
fects of hemodialysis on the heart rhythm complexity of
patients with ESRD might be unpredictable. Third, the
endpoint of our study was all-cause mortality, whether
decomplexification of heart rate dynamics is associated
with cardiac death is still needs to be elucidated. Our
findings are preliminary, multicenter, sizeable and pro-
spective studies are warranted to determine the relation-
ship between mortality and heart rhythm complexity in
ESRD patients undergoing hemodialysis treatment.

Conclusions
The present study suggests that impaired heart rhythm
complexity is associated with poor prognosis in ESRD
patients receiving hemodialysis treatment. Specifically,
an Area 6–20 < 13.43 seems to be a significant independ-
ent and powerful predictor of increased mortality risk
for all-cause death. Heart rhythm complexity also pro-
vides an additional insight into risk stratification for
ESRD patients. For ESRD patients with high risk of
death, regular ECG monitoring combined with antiar-
rhythmic drugs and subcutaneous defibrillator may be
valuable and useful for managing physician in develop-
ing all-cause mortality mitigation strategies.
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