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Gene expression is regulated through complex molecular interactions, involving cis-acting elements that can be situated far

away from their target genes. Data on long-range contacts between promoters and regulatory elements are rapidly accumu-

lating. However, it remains unclear how these regulatory relationships evolve and how they contribute to the establishment

of robust gene expression profiles. Here, we address these questions by comparing genome-wide maps of promoter-

centered chromatin contacts in mouse and human. We show that there is significant evolutionary conservation of cis-
regulatory landscapes, indicating that selective pressures act to preserve not only regulatory element sequences but also

their chromatin contacts with target genes. The extent of evolutionary conservation is remarkable for long-range promot-

er–enhancer contacts, illustrating how the structure of regulatory landscapes constrains large-scale genome evolution.

We show that the evolution of cis-regulatory landscapes, measured in terms of distal element sequences, synteny, or contacts

with target genes, is significantly associated with gene expression evolution.

[Supplemental material is available for this article.]

The evolution of gene expression and the evolution of regulatory
mechanisms have attracted considerable attention ever since the
proposal that phenotypic differences between species may be driv-
en by changes in gene activity rather than by changes in gene
products (King and Wilson 1975). In the past decade, these two
topics have been extensively scrutinized through comparative
“omic” approaches (Khaitovich et al. 2005; Gilad et al. 2006;
Brawand et al. 2011; Villar et al. 2015; Wong et al. 2015;
Berthelot et al. 2018; Cardoso-Moreira et al. 2019). These studies
showed that gene expression patterns are well conserved across
species (Brawand et al. 2011; Cardoso-Moreira et al. 2019), whereas
the sequences and the activities of regulatory elements (in partic-
ular those of expression enhancers) evolve rapidly (Villar et al.
2015; Berthelot et al. 2018). These paradoxical observations war-
rant further exploration to better understand the determinants
of gene expression robustness in the presence of rapidly evolving
regulatory landscapes. However, so far few attempts have been
made to directly connect the evolution of gene expression to the
evolution of regulatory mechanisms at a genome-wide scale
(Wong et al. 2017; Berthelot et al. 2018). These studies proposed
that the presence of complex regulatory landscapes, involving nu-
merous expression enhancers with potentially redundant roles, is
the key driver of the robustness of gene expression levels (Berthelot
et al. 2018).

To date, identifying the regulatory elements that control each
gene remains a challenging task. Transcription is regulated
through complex interactions between trans-acting factors and
cis-acting elements. Genes are typically associated with multiple
cis-acting elements, which can refine their expression levels, con-
trol different expression domains, or confer robustness through

partial redundancy (Spitz and Duboule 2008; Kvon et al. 2021).
Conversely, each regulatory element can influence multiple
genes, either concomitantly or in a context-specific manner
(Schoenfelder and Fraser 2019). The complexity of cis-acting regu-
latory landscapes is nowbetter perceived thanks to chromatin con-
formation capture techniques, which identify pairs of genomic
segments found in physical proximity in the nucleus (Dekker
et al. 2002; Zhao et al. 2006; Schoenfelder et al. 2015). These tech-
niques revealed numerous long-range chromatin contacts be-
tween promoters and distal regulatory elements (de Laat and
Duboule 2013). These long-range interactions challenge a com-
mon assumption, namely, that the targets of cis-regulatory ele-
ments are the neighboring genes in the genome, within a certain
genomic distance (McLean et al. 2010; Villar et al. 2015; Wong
et al. 2017; Berthelot et al. 2018; Danko et al. 2018; Dukler et al.
2020).

Here, we study the evolution of cis-regulatory interactions
and the evolution of gene expression, using genome-wide, high-
resolution chromatin contact data. We perform a comparative
analysis of cis-regulatory landscapes using promoter-centered
chromatin interaction maps for human and mouse (Mifsud et al.
2015; Schoenfelder et al. 2015, 2018; Javierre et al. 2016; Freire-
Pritchett et al. 2017; Rubin et al. 2017; Siersbæk et al. 2017;
Choy et al. 2018; Comoglio et al. 2018; Koohy et al. 2018; Novo
et al. 2018; Pan et al. 2018). Through this study, we aim to better
understand the constraints imposed by the three-dimensional
structure of cis-regulatory landscapes on genome evolution and
the consequences of regulatory landscape changes on gene expres-
sion evolution.
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Results

Promoter capture Hi-C data collection

and construction

of a simulated interaction data set

To examine the evolution of cis-regulato-
ry landscapes,we processed and analyzed
Promoter Capture Hi-C (PCHi-C) data de-
rived from16 human cell types and eight
mouse cell types (Methods; Supplemen-
tal Table S1). The PCHi-C technique was
designed to detect interactions between
gene promoters and other genomic re-
gions, with high sensitivity and spatial
resolution (Mifsud et al. 2015; Schoen-
felder et al. 2015). Briefly, promoter-con-
taining restriction fragments are targeted
using RNA baits and interactions are
scored between pairs of restriction frag-
ments, involving at least one baited frag-
ment (Mifsud et al. 2015; Schoenfelder
et al. 2015). All data were generated with
the same experimental protocol, ensur-
ing that restriction maps are identical
across all samples within a species (Meth-
ods). The data set included interactions
for 19,389 baited fragments for human
and 21,858 for mouse.We focused on in-
tra-chromosome (cis) interactions occur-
ring at a linear genomic distance of
between 25 kb and 2 Mb and involving
a baited and an unbaited restriction frag-
ment (Methods).

To evaluate the significance of the
observations obtained with these data,
we simulated interactions that reproduce
the distribution of distances between
baited fragments and contacted frag-
ments, as well as the numbers of contacts
per baited region, for each sample (Meth-
ods; Fig. 1A–C; Supplemental Fig. S1).
The simulated interactions involve the
same set of baited fragments and are con-
structed on the same restriction map as
the PCHi-C data (Methods; Fig. 1A). We
designed this simulated data set to ac-
count for the effect of the genomic dis-
tance between promoters and contacted
regions, which is traditionally the main
criterion for inferring regulatory interac-
tions, in addition to being the main fac-
tor driving the likelihood of observing a
chromatin contact (Cairns et al. 2016).
However, our simulations cannot repro-
duce other characteristics of the PCHi-C
data, such as the number of contacts
per unbaited genomic fragment (Supple-
mental Fig. S1) or the number of contacts
per baited region across all samples (Sup-
plemental Fig. S2). The simulated inter-
action data cover a larger fraction of the
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Figure 1. Chromatin interactions measured by PCHi-C data are shared among cell types. (A) Example
of interactions between a baited restriction fragment (red) and other restriction fragments, for PCHi-C
data (orange) and simulated data (blue). The positions of ENCODE enhancers are displayed below the
restriction fragments track. (B) Distribution of genomic distances between baited fragments and contact-
ed restriction fragments, in PCHi-C data (CD34 sample, human). (C) Same as B, for simulated data. (D)
Histogram of the number of cell types in which interactions are observed, for human PCHi-C data and
simulated data. (E) Average number of cell types in which interactions are observed, as a function of
the distance between baits and contacted fragments. Dots represent mean values; vertical segments rep-
resent 95% confidence intervals of the mean obtained with a nonparametric bootstrap approach
(Methods). (F ) Chromatin contacts between the SHH gene promoter and other genomic regions.
From top to bottom: gene coordinates; localization of PCHi-C baited fragments; and localization of restric-
tion fragments contacted by the SHH bait in different samples. Rectangles with alternating colors indicate
individual restriction fragments that are contacted by the SHH bait.
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genome than the PCHi-C data, for which contacted regions are
more often shared among baits and among samples (Supplemental
Fig. S2; Supplemental Text). Moreover, restriction fragments con-
tacted in PCHi-C data may differ from those included in the simu-
lations in terms of sequence uniqueness or mappability, because
interactions can only be detected if sequencing reads can be cor-
rectly aligned to restriction fragments. To minimize this possible
source of discrepancy between the PCHi-C and the simulated
data, we filtered interactions to keep only those involving restric-
tion fragments with a sufficient theoretical mappable fraction
and PCHi-C read coverage (Methods; Supplemental Text).

Promoter-centered chromatin contacts can occur in the absence

of gene expression

We first verified to what extent chromatin interactions are shared
among cell types. Within each species, chromatin contacts cluster
by cell type (Supplemental Fig. S3). This result is reassuring, given
the inevitable batch effects that arise from combining PCHi-C data
from several publications. Overall, 56% of the analyzed PCHi-C in-
teractions (N=661,097) are detected in at least two cell types in hu-
man compared with only 27% in the corresponding simulated
data (N=1,828,577; chi-squared test P-value< 10−10) (Fig. 1D).
The increase compared with simulated data is stronger for interac-
tions that occur at large genomic distances. For example, at ∼500
kb, human PCHi-C interactions are observed on average in three
cell types compared with only one cell type in the simulated
data (Fig. 1E). We obtained similar results for mouse (Supplemen-
tal Text). We wanted to verify that this observation is not simply
owing to the presence of ubiquitously expressed genes, which
may contact similar sets of regulatory elements in all cell types.
We used published gene expression data from multiple organs
and developmental stages (Cardoso-Moreira et al. 2019). The num-
ber of cell types in which chromatin contacts are observed is pos-
itively correlated with expression breadth, defined as the number
of samples in which gene expression is detected (RPKM≥1; Meth-
ods) (Supplemental Fig. S4). However, gene expression breadth
spans a wide range of values (from 10% to 100% of samples)
even for those genes that have contacts in all cell types (Supple-
mental Fig. S4). This is illustrated by the interaction landscape of
the developmental gene SHH, which contacts regions situated in
the introns of the neighboring LMBR1 gene in almost all cell types
(where its main enhancer, ZRS, is known to reside) (Lettice et al.
2003), even where SHH expression is not detected (Fig. 1F; Supple-
mental Fig. S5). This result confirms previous reports that promot-
er-centered interactions can be observed in PCHi-C data even in
the absence of gene expression (Schoenfelder et al. 2015).

Thus, PCHi-C data provide a broad overview of promoter-cen-
tered chromatin interactions, likely including preformed contacts,
which precede gene activation (de Laat and Duboule 2013). These
data thus extend beyond regulatory interactions that function ex-
clusively in the sampled cell types. For interactions shared across
cell types, differences between the human and mouse PCHi-C
data sets are genuine between-species differences rather than conse-
quences of unequal cell type sampling. Thus, although similar cell
types were not always available for human and mouse, we are con-
fident that this data set is suited for between-species comparisons.

Inference of cis-regulatory landscapes from PCHi-C chromatin

contact maps

The promoter-centered chromatin contacts defined with PCHi-C
data are known to be enriched in regulatory interactions (Schoen-

felder et al. 2015). We validated this observation by jointly analyz-
ing PCHi-C contact maps and genome-wide enhancer prediction
data sets (Methods). For all data sets, the average restriction frag-
ment length covered by predicted enhancers is significantly higher
in the PCHi-C data than in the simulated data (Wilcoxon rank-sum
test, P-value<10−10) (Fig. 2A). For example, for ENCODE data (N=
408,738 enhancers), the average length fraction that is covered by
enhancers is 3.5% in the PCHi-C data compared with 2.4% in the
simulated data. Moreover, the proportion of restriction fragments
that overlap with at least one enhancer is significantly higher in
PCHi-C data than in simulations. For ENCODE, these proportions
are 36% and 27% in PCHi-C data and in simulations, respectively
(chi-squared test, P-value<10−10). The overlap with enhancers de-
creases when the distance between contacting regions increases,
for both PCHi-C and simulated data (Fig. 2B). The number of cell
types in which interactions are observed is also positively correlat-
ed with the presence of enhancers (Fig. 2C). Similar results were
obtained for both species and for all four enhancer data sets (Sup-
plemental Text). Hereafter, we consider that promoters and en-
hancers are in contact if the corresponding baited fragments of
the promoters are in contact with restriction fragments that over-
lap with the corresponding enhancers, for both PCHi-C and simu-
lated data (Methods).

We note that the numbers of enhancers assigned to genes
based on PCHi-C data are considerably higher than those obtained
with a classical genomic proximity approach in which enhancers
are assigned to the neighboring genes within a 25-kb to 2-Mb dis-
tance interval (Methods). For example, for the human ENCODE
data set, we find that 323,995 gene–enhancer pairs are in contact
in PCHi-C data, whereas the genomic proximity approach predicts
224,446 pairs for the 9395 genes with enhancers assigned to them
by bothmethods. Themedian gene contacts 25 enhancers but has
only 13 neighbor enhancers (Supplemental Fig. S6). Moreover, the
PCHi-C data predict regulatory interactions at larger genomic dis-
tances (median 277 kb for human ENCODE) than those predicted
with the genomic proximity approach (median 88 kb). Only
42,095 gene–enhancer regulatory pairs were predicted by both
approaches; the proportion of gene–enhancer pairs in common in-
creases with the genomic distance between the two (Supplemental
Fig. S6). As a general rule, we can thus confirm that contacts do not
generally form between immediately neighboring promoters and
enhancers (Smemo et al. 2014).

To further test the presence of genuine regulatory interac-
tions in the PCHi-C data, we evaluated the correlations between
gene expression and enhancer activity across samples (Methods).
Because of the complexity of gene regulatory mechanisms, as
well as the inherent noise in activity measurements, these corre-
lations are expected to be weak (Hait et al. 2018). Nevertheless,
the activity levels of genes and enhancers connected in PCHi-C
data are significantly better correlated than in simulated data
(mean Spearman’s correlation coefficient 0.08 in the PCHi-C
data set and 0.04 in the simulations, Wilcoxon rank-sum test
P-value<10−10). The correlations between promoter and enhanc-
er activity levels decrease when the distance between the two el-
ements increases (Fig. 2D). This occurs for both PCHi-C and
simulated data, although correlations always remain higher for
the PCHi-C data set. The decrease with the distance could be ex-
plained by a higher proportion of genuine regulatory relation-
ships at a short distance from the promoter. However, it could
also be explained by the influence of the chromatin environment
on regulatory elements found in the vicinity of the promoter:
Transcriptional activation of the gene could lead to the
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establishment of open chromatin in the broader region around
the promoter, leading to enhancer activation.

Genomic sequences contacted by promoters are conserved

during evolution

We analyzed the sequence conservation of restriction fragments
and enhancers contacted by baited promoters by calculating the
aligned sequence length in pairwise comparisons with nine other
vertebrate genomes (Methods; Fig. 3A). We also used the phyloP
score (Pollard et al. 2010) to investigate evolutionary conservation
at broader evolutionary scales. Wemasked exonic regions for both
approaches (Methods).

Our analyses reveal that restriction fragments contacted by
baits in PCHi-C data are significantly more conserved than those
included in simulated data (Fig. 3B; Supplemental Fig. S7;
Supplemental Text). For the comparison between human and
mouse, the median aligned length fraction of contacted frag-
ments is 26.57% in PCHi-C data (median over N=263,176 frag-
ments), which is significantly higher than the 23.25% observed
in the simulated data set (median over N=563,651 fragments;
Wilcoxon rank-sum test, false-discovery rate [FDR] < 10−10). This
observation holds for all pairwise comparisons between verte-
brates, although conservation scores are expectedly weak for
comparisons between divergent species (Fig. 3B; Supplemental
Text).

In contrast, enhancers contacted by promoters in the PCHi-C
data set (N=170,306) are not significantly more conserved than
enhancers included in the simulated data set (N=292,599; e.g.,
median aligned fraction 63.21% for PCHi-C data, 63.16% for sim-
ulated data, for human and mouse; Wilcoxon rank-sum test, FDR
0.051) (Fig. 3C; Supplemental Text). This suggests that the higher
evolutionary conservation of PCHi-C contacted fragments com-
pared with simulated data may be explained by overlap with
more enhancers but not by overlap with better conserved enhanc-
ers. We note that enhancers that overlap with restriction frag-
ments in the simulated data set but not in the PCHi-C data may
be missing from the latter because they regulate other genes or
function in other cell types.

The extent of sequence conservation tends to increase with
the distance from gene promoters for contacted restriction frag-
ments as well as for enhancers (Supplemental Fig. S7;
Supplemental Text). The distance between promoters and contact-
ed regions or enhancers also covaries with other factors that corre-
late with sequence conservation, such as the GC content, the
overlap with repeats, and the gene density in the neighboring re-
gions (Supplemental Fig. S8). Regions included in the PCHi-C
data and in the simulated data also often differ with respect to
these genomic characteristics. In particular, restriction fragments
contacted in PCHi-C data have lower proportions of repetitive se-
quences than those present in the simulated data (Supplemental
Fig. S8). This observation holds true when separating regions in
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Figure 2. Gene–enhancer pairs connected by PCHi-C data are enriched in genuine regulatory interactions. (A) Average length fraction covered by pre-
dicted enhancers for restriction fragments contacted in human PCHi-C data (orange) and simulated data (blue). (B) Average length fraction covered by
ENCODE enhancers, as a function of the distance between baits and contacted restriction fragments. (C) Average length fraction covered by ENCODE
enhancers, as a function of the number of cell types in which interactions are observed, for human restriction fragments. (D) Distribution of
Spearman’s correlation coefficient between promoter and enhancer activity levels, for promoter–enhancer pairs in contact in PCHi-C data or in simulated
data, according to the distance between them (Methods). (A–D) Bars and dots represent mean values; vertical segments represent 95% confidence inter-
vals of the mean, obtained with a nonparametric bootstrap approach (Methods). (∗) Significant difference between PCHi-C and simulated data (FDR <
10−10) based on a chi-squared test.
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Figure 3. Sequences contacted by promoters are conserved during evolution. (A) Phylogenetic tree for the analyzed species. (B) Sequence conservation
levels, derived from pairwise alignments, for contacted restriction fragments. Violin plots represent the distribution of the percentage of aligned nucleotides
between human and other species. Vertical segments represent median values; white dots represent mean values. (C) Sequence conservation levels for
contacted ENCODE enhancers. (D) Conservation of contacted restriction fragments between human and mouse, as a function of the median genomic
distance between restriction fragments and contacting baits. (E) Same as D, for ENCODE enhancers. (F ) Conservation of contacted restriction fragments
between human and mouse, as a function of the number of genes found within at most 500 kb from the restriction fragment. (G) Same as F, for ENCODE
enhancers. (D–G) Dots represent mean values; vertical segments represent 95% confidence intervals of the mean, obtained with a nonparametric boot-
strap approach (Methods). Filled dots represent nonrepetitive sequences; empty dots represent repetitive sequences.
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classes of similar theoretical mappability (Supplemental Fig. S9).
We thus wanted to verify whether these genomic correlates could
explain the sequence conservation patterns observed in PCHi-C
and in simulated data. We first evaluated sequence conservation
scores separately for repetitive and nonrepetitive positions (Meth-
ods). For both classes of positions, conservation levels are higher
for restriction fragments involved in PCHi-C contacts than for re-
striction fragments included in the simulations (Fig. 3D; Supple-
mental Fig. S10). The increase in conservation with the genomic
distance in PCHi-C is more subtle when analyzing repetitive and
nonrepetitive sequences separately, indicating that it largely stems
from the decrease in repeat proportion with the genomic distance
(Fig. 3D,E; Supplemental Fig. S10).

Sequence conservation levels for restriction fragments and
enhancers are negatively associated with the gene density in the
neighboring regions, for both evolutionary conservationmeasures
(Fig. 3F,G; Supplemental Fig. S10). This observation is true for both
repetitive and nonrepetitive sequences (Fig. 3F,G; Supplemental
Fig. S10), indicating that it is not simply a consequence of the as-
sociation between repeat frequency and gene density (Supplemen-
tal Fig. S11). For both repetitive and nonrepetitive sequences, and
irrespective of the gene density class, restriction fragments that are
contacted in PCHi-C data are significantly more conserved than
those included in the simulated data (Fig. 3F,G; Supplemental
Fig. S10). We also observed higher sequence conservation in ob-
served versus simulated PCHi-C data when we divided restriction
fragments into classes of similar GC content (Supplemental Fig.
S12) to account for the strong correlation between sequence com-
position and the rate of evolutionary divergence (Duret and Arndt
2008).

These results illustrate the complexity of the factors affecting
the evolution of cis-regulatory elements. The proportion of repeat-
ed elements, gene density, GC content, and the distance to the
baits are all highly correlated withmeasures of sequence conserva-
tion (Supplemental Table S2). The higher fraction of overlap with
enhancers observed in PCHi-C data compared with simulated data
may explain part of the difference in sequence conservation. The
low frequency of repetitive elements observed in PCHi-C data
may in itself be an indication of purifying selection acting on reg-
ulatory elements. Indeed, the most repeat-poor regions in the hu-
man and mouse genomes are the HOX gene clusters, which are
crucial for embryonic development (International Human Ge-
nome Sequencing Consortium 2001). Likewise, the negative asso-
ciation between sequence conservation levels and gene density
may be partly explained by the presence of functionally con-
strained “gene deserts,” rich in regulatory elements (Ovcharenko
et al. 2005). Consistent with these observations, genes that are in
contactwithhighly conserved enhancers are enriched in function-
al categories related to development (Supplemental Table S3).
Moreover, highly constrained human genes, as measured by the
probability of intolerance to loss-of-functionmutations (Methods;
Lek et al. 2016), tend to contact more conserved enhancers (Sup-
plemental Fig. S13), as previously proposed (Dukler et al. 2020).

Pairs of promoters and enhancers involved in chromatin contacts

are maintained in synteny

Genomic rearrangements that separate promoter–enhancer pairs
to different chromosomes or to contact-prohibiting distances are
expected to be counter-selected. To test this hypothesis, we as-
sessed the proportion of promoter–enhancer pairs that are main-
tained in synteny (on the same chromosome and within a

maximum distance of 2 Mb) through pairwise comparisons be-
tween human/mouse and other vertebrate species. We restricted
this analysis to promoter–enhancer pairs that are separated by dis-
tances between 100 kb and 1.5 Mb in the reference species (Meth-
ods). With this convention, synteny “breaks” are evolutionary
events that add at least 500 kb to the distance between promoters
and enhancers. We found that pairs of contacting promoters–en-
hancers are maintained in synteny significantly more often than
in the simulated data set (Fig. 4A; Supplemental Text). For exam-
ple, 95.9% of pairs between promoters and ENCODE enhancers
(N=207,144) are maintained in synteny between human and
mouse compared with 94.7% in the simulated data set (N=
496,622; chi-squared test FDR<10−10) (Fig. 4A). At larger evolu-
tionary distances, there is less difference between the PCHi-C
data and the simulated interactions (chi-squared test FDR=0.034
for the comparison between human and chicken) (Fig. 4A). Our
synteny conservationmeasure is influenced by the genome assem-
bly quality, which likely explains the lower values observed for the
comparison between human and rabbit (Fig. 4A). The excess of
synteny conservation compared with simulated data is mainly vis-
ible at large genomic distances, which are likely to accumulate ge-
nomic rearrangements with time if these are not counter-selected
(Fig. 4B,C; Supplemental Text).

Promoter–enhancer contact maps are conserved during evolution

To further test the presence of selective pressures tomaintain chro-
matin contacts between promoters and enhancers, we directly
compared PCHi-C interaction landscapes between human and
mouse. We tested for contact conservation between pairs of cell
types in human andmouse (Methods). For this analysis, we select-
ed promoter–enhancer pairs that are maintained in synteny in the
target species to avoid the confounding effect of genomic rear-
rangements that break contacts. We also drew the same number
of interactions for each sample to avoid the apparent excess of con-
tact conservation in comparisons involving data with better se-
quencing depth (Methods; Supplemental Text).

For all cell type pairs, the frequency of conserved contacts is
higher in the PCHi-C data (median=12.6%) than in the simulated
data (median=0.99%, Wilcoxon rank-sum test P-value <10−10)
(Fig. 5B). The extent of contact conservation is high for compara-
ble cell types (embryonic stem cells [ESCs] or epiblast-derived stem
cells [epiSCs], preadipocytes and B lymphocytes), but higher val-
ues could be observed in comparisons involving different cell
types (Fig. 5A). This could be explained by technical artifacts lead-
ing to better detection sensitivity in some samples, despite our sub-
sampling procedure. Our chromatin contact conservation
measures are necessarily underestimates, given that human and
mouse PCHi-C data sets do not consist of the same cell types and
that cell type–specific interactions may thus appear as species spe-
cific. Consistent with this, the extent of contact conservation is
higher for interactions observed in multiple cell types (Fig. 5C;
Supplemental Text). Furthermore, the extent of contact conserva-
tion increases with the score attributed to interactions by the CHi-
CAGO processing pipeline (Supplemental Fig. S14).

For both PCHi-C and simulated data, the proportion of con-
served contacts between promoters and enhancers decreases as
the genomic distance between the two increases (Fig. 5D; Sup-
plemental Text), as expected given the overrepresentations of
contacts at relatively short distances in both species (Fig. 1; Supple-
mental Fig. S1). However, here again, the excess of contact con-
servation compared with simulated data is stronger at large
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genomic distances: For example, around 1 Mb, the proportion of
conserved contacts is 0.99% for simulated data, whereas for
PCHi-C data, the value is 25.78% (Fig. 5D). We observed an en-
richment for functional categories related to developmental
patterning among genes that have high conservation levels for
long-distance (minimum 500 kb) promoter–enhancer contacts
(Supplemental Table S4). We also show that the most highly con-
strained human genes (Methods; Lek et al. 2016) have a higher rate
of chromatin contact conservation (Supplemental Fig. S13). These
observations are consistent with the presence of strong functional
constraints on the cis-regulatory landscapes of developmental
genes and, more generally, of dosage-sensitive genes.

The complexity of cis-acting regulatory landscapes is associated

with gene expression characteristics and with the rates of gene

expression evolution

To better understand the functional relevance and the phenotypic
implications of the promoter–enhancer interactions predicted
with PCHi-C data, we examined their relationship with gene ex-
pression evolution. We evaluated gene expression patterns using
a comparative transcriptome collection spanning several organs
and developmental stages (Cardoso-Moreira et al. 2019). This
data set allowed us to identify changes in expression profiles,
such as changes in organ or developmental stage “preference,”

the gain or loss of an expression domain, etc.Wemeasured the ex-
tent of expression conservation through a Spearman’s correlation
coefficient between relative expression values for each pair of
orthologous genes (Methods). Given that gene expression levels
and gene expression breadth are correlated with our estimates of
the rate of expression profile evolution (Supplemental Fig. S15),
we corrected for the effect of these two factors with a multiple re-
gression model (Methods). We repeated all analyses using the Eu-
clidean distance to contrast orthologous gene expression profiles
and obtained similar results (Methods; Supplemental Figs. S16,
S17). Geneswith the highest expression profile conservation levels
are enriched in processes related to RNAmetabolism and transcrip-
tional regulation (Supplemental Table S5).

We observe that genes that are in contact with a large num-
ber of predicted enhancers in PCHi-C data show higher average
expression levels, for both human and mouse (Kruskal–Wallis
test, P-value <10−10) (Fig. 6A). This confirms previous observa-
tions showing that the number of enhancers in the gene vicinity
is positively correlated with expression levels (Berthelot et al.
2018). We also show that these genes generally have broad ex-
pression patterns; that is, they are expressed in large numbers
of samples (Kruskal–Wallis test, P-value<10−10) (Fig. 6B). This
suggests that the contact with a large number of enhancers
may enable gene activation in a wide variety of spatiotemporal
contexts. We note that consistent with the enrichment observed

A

B C

Figure 4. Long-range promoter–enhancer pairs are conserved in synteny. (A) Proportion of human promoter–enhancer (ENCODE) pairs maintained in
synteny (i.e., found on the same chromosome, within a maximum distance of 2 Mb) in other vertebrate genomes for PCHi-C data (orange) and simulated
data (blue). (B) Proportion of human promoter–enhancer pairs maintained in synteny in the mouse genome as a function of the distance between them in
the human genome. (C) Same as B, for the comparison between human and opossum. (B,C) Bars represent 95% two-sided confidence intervals for the
proportions (Methods). (∗) Significant difference between PCHi-C and simulated data (FDR <10−10) based on a chi-squared test.
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for genes with conserved expression profiles, functional catego-
ries associated with regulation of expression are overrepresented
among genes with a large number of contacted enhancers
(Supplemental Table S6).

Our results thus confirm that the complexity of the regula-
tory landscape is linked to the pattern of gene expression (Berthe-
lot et al. 2018). However, after correcting for the effect of gene
expression levels and expression specificity, our expression con-
servation measure is not strongly correlated with the number of
contacted enhancers (Kruskal–Wallis test, P-value =3.4 ×10−3 for
human, P-value=0.85 for mouse) (Fig. 6C). These observations
indicate that the complexity of cis-acting regulatory landscapes
—as measured with chromatin interaction data—contributes to
the robustness of gene expression during evolutionary time,
but only through the association between the number of regula-
tory elements, expression level, and expression breadth. The
numbers of enhancers assigned to genes with the genomic prox-
imity approach (Methods) do correlate positively with gene ex-
pression conservation (Kruskal–Wallis test, P-value<10−10 for
both species, Supplemental Fig. S18), as previously reported (Ber-
thelot et al. 2018, Danko et al. 2018). The distance to the next
promoter, which is the only determinant of the numbers of en-
hancers attributed to genes with this approach, also correlates
positively with the extent of expression conservation (Kruskal–
Wallis test, P-value <10−10 for both species) (Supplemental Fig.
S18). These observations may be explained by the strong enrich-
ment of developmental functions among the genes with large

numbers of neighbor enhancers (Supplemental Table S7). Thus,
they may reflect the genomic architecture of developmental
genes rather than their pattern of chromatin interactions.

We also evaluated the conservation of gene expression levels
using transcriptome sequencing data for the cell types sampled in
bothhuman andmouse PCHi-C data sets (Methods; Supplemental
Table S8). We confirm that there is a strong positive correlation
between the number of contacted enhancers and gene expres-
sion levels in each cell type (Kruskal–Wallis test, P-value <10−10)
(Supplemental Fig. S19). However, like for the conservation of
gene expression profiles, we do not find a significant association
between the number of contacted enhancers and the conservation
of gene expression levels after correcting for the effect of the gene
expression level within species (Kruskal–Wallis test, P-value>0.05
for all comparisons) (Supplemental Fig. S19).

The evolution of cis-regulatory landscapes is correlated

with the evolution of gene expression profiles

We next investigated the relationship between the evolution of
cis-regulatory landscapes and the evolution of gene expression
patterns. We evaluated the evolutionary conservation of PCHi-C-
predicted regulatory landscapes at three different levels: the con-
servation of the contacted enhancer sequences, of the synteny
between promoters and enhancers, and of their chromatin con-
tacts (Methods). We correlated these measures of regulatory land-
scape evolution with the evolution of gene expression profiles,

A B

D

C

Figure 5. Chromatin contacts between promoters and enhancers are conserved. (A) Heatmap representing the frequency of contact conservation in
comparisons between pairs of PCHi-C samples (one human sample and onemouse sample). We subsampled the PCHi-C data to obtain the same numbers
of interactions for each sample (Methods). Yellow rectangles highlight comparable cell types. (B) Distribution of the frequency of contact conservation
between all pairs of samples, for PCHi-C data (orange) and for simulated data (blue). (C ) Proportion of human promoter–enhancer contacts conserved
in mouse, as a function of the number of human cell types in which interactions are observed. (D) Proportion of human promoter–enhancer contacts con-
served in mouse, as a function of the distance between the two elements in the human genome. (B,C) Bars represent 95% two-sided confidence intervals
for the proportions (Methods).
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corrected for the effect of expression level and expression breadth
as described above (Methods).

We found significant positive associations between the rate of
regulatory landscape evolution and the rate of gene expression
profile evolution (Fig. 6D–F; Supplemental Figs. S16, S17). Specifi-
cally, genes that contact enhancers with highly conserved
sequences tend to have well-conserved expression profiles
(Kruskal–Wallis test, P-value<10−10 for both species) (Fig. 6D).

We observe a similar correlation when measuring enhancer se-
quence evolution with phyloP scores (Supplemental Fig. S20).
Moreover, genes that underwent synteny breaks in their regulatory
landscapes tend to have less conserved expression profiles
than genes in conserved synteny (Kruskal–Wallis test, P-value
4.7 ×10−5 for human, P-value 1.2 ×10−6 formouse) (Fig. 6E). Final-
ly, we tested the correlation between the proportion of conserved
contacts and the rate of expression profile conservation. Although

A B C

D E F

Figure 6. The complexity and the evolution of cis-regulatory landscapes are associated with gene expression evolution. (A) Average expression levels as a
function of the number of contacted enhancers in PCHi-C data for human (red) andmouse (blue). (B) Gene expression specificity index (tau, which ranges
from zero for housekeeping genes to one for highly specific genes; Methods) as a function of the number of contacted enhancers. (C) Expression conser-
vation as a function of the number of contacted enhancers in PCHi-C data. (D) Expression conservation as a function of the average sequence conservation
of contacted ENCODE enhancers. (E) Expression conservation, depending on whether or not genes underwent at least one break of synteny with the con-
tacted enhancers between human and mouse genomes. (F ) Expression conservation as a function of the proportion of promoter–enhancer contacts con-
served in the other species’ PCHi-C data. (A–F) Dots represent median values across all genes in a class; vertical segments represent 95% confidence
intervals for the median. (C–F) Gene expression conservation is measured with a Spearman’s correlation coefficient between human and mouse relative
expression profiles, for pairs of one-to-one orthologous genes, across organs and developmental stages (expression data from Cardoso-Moreira et al.
2019). Expression conservation is further corrected to account for the effect of expression levels and of expression specificity with a multiple linear regres-
sion model (Methods). Enhancer predictions are taken from ENCODE. Expression conservation values are the same for both species, but PCHi-C contact
maps differ.
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weobserve a positive tendency,we couldnot conclude on the pres-
ence of a consistent significant signal for both species (Kruskal–
Wallis test, P-value 0.26 for human, 5 ×10−4 formouse). Similar re-
sults are foundwhenwe contrast gene expression profiles between
species with the Euclidean distance (Supplemental Fig. S17). These
conclusions are also confirmed bymultiple regressionmodels that
explain the rate of gene expression profile evolution as a function
of gene expression characteristics (gene expression level and gene
expression specificity) and regulatory landscape characteristics
(Supplemental Table S9). We note that we did not observe signifi-
cant correlations between quantitative expression level differences
and cis-regulatory landscape evolution in the cell types that were
sampled for both mouse and human (Supplemental Fig. S19).

To test whether the genomic distance between interacting
promoters and enhancers has an effect on the robustness of gene
expression, we analyzed separately medium-range interactions
(genomic distance <500 kb) and long-range interactions (genomic
distance >500 kb). We found significant associations between the
conservation of regulatory landscapes, on one hand, and gene ex-
pression patterns and gene expression conservation, on the other
hand, for both distance classes (Supplemental Fig. S21). However,
the effect is generally weaker for long-range interactions, suggest-
ing that distal regulatory elements contribute less to gene expres-
sion evolution than proximal elements (Supplemental Fig. S21).
We also found significant associations between the degree
of sequence conservation of neighbor enhancers and the extent
of gene expression conservation (Kruskal–Wallis test, P-value=
2.1 ×10−6 for human, P-value=1.4 ×10−10 for mouse) (Supple-
mental Fig. S22). However, these associations are less strong than
the ones observed with the PCHi-C data (above), and the presence
of synteny breaks does not correlate significantlywith gene expres-
sion conservation with the neighbor enhancer data set (Supple-
mental Fig. S22).

Discussion

In this study, we investigated the evolution of cis-regulatory land-
scapes using experimentally determined promoter–enhancer con-
tacts. These data allowed us to evaluate long-range promoter–
enhancer interactions, which are thought to be a critical part of
cis-regulatory networks (Montavon and Duboule 2012). The use
of chromatin contact data avoids the simplification made by
most previous studies, which predicted target genes based on ge-
nomic proximity alone (McLean et al. 2010; Villar et al. 2015;
Wong et al. 2017; Berthelot et al. 2018; Danko et al. 2018; Dukler
et al. 2020). The PCHi-C data revealed cis-regulatory landscapes
that are more complex than those predicted based with the “geno-
mic proximity approach”: Genes are assigned higher numbers of
enhancers, and a larger fraction of these enhancers are situated
far away from their predicted target genes.

We were able to assess the evolution of cis-regulatory land-
scapes at multiple levels. Starting with primary sequence analyses,
we show that regions contacted by promoters in PCHi-C data are
better conserved than in simulated data, even after correcting for
confounding factors such as repetitive sequence content, GC con-
tent, etc. Moreover, distant regulatory elements have higher over-
all levels of sequence conservation than those found in the
immediate vicinity of their putative target genes, largely owing
to a lower overlap with repetitive sequences. Enforcing the idea
that long-range contacts between promoters and enhancers are
an important mode of gene expression regulation, we showed
that synteny breaks that would prohibit these interactions are un-

derrepresented and thus potentially counter-selected. Moreover,
we observed substantial contact conservation for long-range pro-
moter–enhancer pairs, although very little is expected by chance.
These results confirm early hypotheses stating that the presence of
long-range regulatory interactions constrains the large-scale evolu-
tion of vertebrate genomes (Lemaitre et al. 2009; Mongin et al.
2009). We thus validate previous computational studies, which
predicted long-range regulatory interactions based on long-term
conservation (Mongin et al. 2009; Clément et al. 2020). Our find-
ings are also consistent with a recent comparative analysis of hu-
man and chimpanzee Hi-C data, which proposed that changes
in 3D genome structure may contribute to regulatory evolution
(Eres et al. 2019).

We re-evaluated the relationship between gene expression
evolution and regulatory evolution. Although it seems intuitive
that changes in cis-regulatory landscapes should affect gene ex-
pression, it is well established that, overall, protein-coding gene ex-
pression patterns evolve slowly (Necsulea and Kaessmann 2014),
whereas distal cis-regulatory elements such as enhancers evolve
rapidly (Cheng et al. 2014; Villar et al. 2015). Consistently, so
far, only mild associations between expression evolution and reg-
ulatory evolution were reported in vertebrates (Pai et al. 2011;
Zhou et al. 2014; Wong et al. 2015; Berthelot et al. 2018). The ro-
bustness of regulatory networks, achieved through the presence of
redundant cis-regulatory elements, is a plausible explanation for
this paradoxical finding (Frankel et al. 2010; Cannavò et al.
2016; Osterwalder et al. 2018). Consistently, it was previously
shown that the number of enhancers attributed to genes is posi-
tively associated with gene expression conservation (Berthelot
et al. 2018; Danko et al. 2018). However, this result was obtained
with the traditional approach of inferring regulatory relationships
based on genomic proximity. With this approach, genomic archi-
tecture plays an important role, because the size of the neighbor-
ing intergenic and intronic regions directly influences the
number of enhancers assigned to a given gene. Thus, genes in-
volved in developmental processes or transcriptional regulation,
which can be surrounded by large gene deserts (Montavon and
Duboule 2012), tend to have large numbers of regulatory elements
attributed to them (Supplemental Table S7). Because these genes
need to be tightly regulated to avoid deleterious phenotypic conse-
quences, this functional enrichment could explain part of the pos-
itive association between regulatory landscape complexity and
gene expression robustness. These observations raise the question
of whether expression robustness is achieved not only through the
number of regulatory elements that are available to genes but also
through the evolution of a specific genomic architecture. For ex-
ample, the presence of large intergenic regions around develop-
mental genes may contribute to the “resilience” of their
expression patterns during evolution by preventing unwanted
transcriptional or regulatory interference (Montavon et al. 2011).

With PCHi-C data, we do not observe a strong association be-
tween the numbers of contacted enhancers and gene expression
conservation, beyond what is explained by expression levels and
expression breadth. This puzzling observation might be explained
by the fact that regulatory relationships inferred with PCHi-C data
are to a great extent orthogonal to genomic architecture:
Enhancers contacted by promoters are not necessarily their imme-
diate neighbors. Another explanation may reside in the discrep-
ancy between the PCHi-C, gene expression, and enhancer data
sets that we used here in terms of biological sampling. Unlike pre-
vious studies, which analyzed genes and enhancers that are active
in the same tissue (Berthelot et al. 2018), here we rely on
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heterogeneous sample collections for the different types of data.
Despite this drawback, we could uncover significant associations
between the rate of regulatory landscape evolution and the pattern
of gene expression evolution by analyzing relative expression
profiles across comparable organs and developmental stages
(Cardoso-Moreira et al. 2019). Although it does not include biolog-
ical samples directly related to organ development, there is evi-
dence that our PCHi-C data set provides a good starting point to
study its underlying cis-regulatory landscapes. For example, we
found that genes that have evolutionarily conserved chromatin
contacts at large genomic distances are enriched in functional cat-
egories associated with embryonic development. Analyzing ex-
pression profiles with this comparable transcriptome collection
has the advantage of reducing technical biases linked to gene ex-
pression comparisons between distant species, as well as of provid-
ing a broader overview of the pattern of expression evolution.
Despite the functional redundancy of cis-regulatory networks, by
jointly analyzing numerous biological conditions, we increase
the likelihood of observing the molecular consequences of en-
hancer evolution. Nevertheless, performing similar analyses with
comparable PCHi-C and transcriptome sequencing data would
likely reveal even stronger relationships between regulatory land-
scape evolution and gene expression evolution.

We show that genomic rearrangements that affect cis-regula-
tory landscapes are associated with an increased divergence of
expression profiles. By partially restructuring cis-regulatory land-
scapes, genomic rearrangements likely contribute to gene expres-
sion evolution, not just by disrupting existing regulatory
relationships but also by redistributing regulatory elements and
thus allowing their adoption by other genes (Lettice et al. 2011).
These effects on gene expression explain why rearrangements
are generally counter-selected, as indicated by our synteny conser-
vation analyses. Our findings offer an intermediate point of view
between reports that large-scale rearrangements that perturb regu-
latory landscapes can have strong phenotypic consequences, in
mouse models of human diseases (Lupiáñez et al. 2015), and re-
ports that multiple chromosomal rearrangements in Drosophila
laboratory strains have little to no effects on gene expression
(Ghavi-Helm et al. 2019). We note that our work, like previous
studies, does not provide a complete overview of the phenotypic
consequences of regulatory landscape rearrangements. On one
hand, studies that were motivated by the need to understand the
genomic underpinnings of human diseases are necessarily biased
toward events with deleterious consequences (Lupiáñez et al.
2015). On the other hand, studies ofDrosophila strains are likely bi-
ased toward genomic alterationswith little impact on organism fit-
ness (Ghavi-Helm et al. 2019). Here, we can only observe those
genomic rearrangements that were maintained during evolution,
and thus also exclude events with highly deleterious effects. This
inherent limitation may explain why we do not observe stronger
correlations between gene expression evolution and regulatory
evolution. Moreover, we only analyze genes that are kept as ortho-
logs between human and mouse. We speculate that cases where
promoter–enhancer interactions are affected by major evolution-
ary events, such as large-scale genome rearrangements, could often
lead to loss of function or pseudogenization rather than gene ex-
pression profile changes.

We note that recent studies have proposed that the presence
of chromatin contacts or loops between promoters and enhancers
may be dispensable for gene activation in mammals (Alexander
et al. 2019; Benabdallah et al. 2019) and in Drosophila (Heist
et al. 2019; Ing-Simmons et al. 2021). This idea challenges the

model of gene regulation centered on contacts between promoters
and regulatory elements, which was built over the last decade by
chromatin conformation studies (de Laat and Duboule 2013;
Schoenfelder and Fraser 2019). The PCHi-C technique, like other
“C” techniques, cannot inform on the precise molecular mecha-
nisms that underlie the physical proximity between genomic re-
gions. Thus, the promoter–enhancer interactions that we analyze
here may be the result of more complex cellular dynamics, such
as the one described in the “phase separation” model (Hnisz
et al. 2017). Nevertheless, irrespective of the underlyingmolecular
process, our results support the idea that interactions between pro-
moters and enhancers separated by large distances in the linear ge-
nome are a critical part of the complex regulatory networks that
control gene expression in mammals.

Methods

PCHi-C data processing

We collected and processed publicly available PCHi-C data for
human (Mifsud et al. 2015; Javierre et al. 2016; Freire-Pritchett
et al. 2017; Rubin et al. 2017; Choy et al. 2018; Pan et al.
2018) and mouse samples (Schoenfelder et al. 2015, 2018; Sier-
sbæk et al. 2017; Comoglio et al. 2018; Koohy et al. 2018;
Novo et al. 2018). We selected PCHi-C data sets that were gener-
ated with experimental procedures similar to those described by
Schoenfelder et al. (2015). Genome fragmentation was generated
with the HindIII restriction enzyme in all cases, ensuring identi-
cal restriction maps across all samples within a species. We pro-
cessed PCHi-C data for 26 samples and 16 cell types for human
and 14 samples and eight cell types for mouse (Supplemental Ta-
ble S1). The data include several cell types (ESCs, epiSCs, adipo-
cytes, and B cells) that are comparable across species, although
cell culture procedures and differentiation stages may differ (Sup-
plemental Table S1).

To homogenize computational analyses across data sets and
species, we re-processed all PCHi-C raw data. We used the HiCUP
pipeline (Wingett et al. 2015), which aligns reads, filters artifactual
fragments (such as circularized reads and re-ligations), and re-
moves duplicates. We mapped PCHi-C reads to the human hg38
(GRCh38.p12) and mouse mm10 (GRCm38.p6) genome assem-
blies, downloaded from Ensembl release 94 (Cunningham et al.
2019), using Bowtie version 2.3.4.3 (Langmead and Salzberg
2012). We called interactions with the CHiCAGO pipeline (Cairns
et al. 2016). We selected chromatin contacts with a CHiCAGO
score greater or equal to five in at least one sample (Supplemental
Table S1). An interaction between a bait and a restriction fragment
is said to be detected in a given cell type if it was detected in at least
one of the corresponding samples.We combined detected interac-
tions across samples and found 910,180 unique interactions be-
tween 19,389 baited restriction fragments and 308,359 other
fragments for human and 824,406 interactions between 21,858
baited fragments and 247,668 other fragments for mouse. These
data are provided in Supplemental Data Set S1.

We further focused on intra-chromosomal contacts (cis-inter-
actions) separated by a genomic distance of 25 kb to 2Mb, comput-
ed between themidpoint of baited and contacted regions.We thus
exclude short-range interactions that have high levels of back-
groundnoise (Cairns et al. 2016), as well as interactions that are be-
yond the typical size observed for topologically-associating
domains (Dixon et al. 2012). We discarded interactions that in-
volved restriction fragments <150 bp or >50 kb. We also removed
interactions probably involved in structural variation or potential
genome assembly issues, that is, pairs of contacting regions
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separated by a large distance in a reference species (>1 Mb), and by
a small distance (<100 kb) in the target species. The list of excluded
restriction fragments is provided in Supplemental Data Set S1.
Finally, we restricted our analyses to contacts between baited and
nonbaited restriction fragments.

Simulated interactions

We generated simulated interaction landscapes that reproduce
the observed distribution of distances between baited restriction
fragments and nonbaited contacted fragments, as well as the
number of contacted fragments per bait, for each sample (Supple-
mental Text). To do this, we computed the absolute linear geno-
mic distance between the center position of each baited fragment
and each interacting fragment. We then divided the observed
interactions into 5-kb distance classes, from 25 kb to 2 Mb up-
stream of and downstream from the baited region. We computed
the fraction of contacts observed in each distance class, across all
baited fragments, for each sample. This distance distribution was
used to simulate contacts, as follows: For each baited fragment,
we computed the contact probability for all fragments found
on the same chromosome, within the 25-kb to 2-Mb distance
window, as the average probability of the overlapping distance
classes (a single fragment can overlap with multiple distance clas-
ses). We then randomly drew contacts among the list of all
possible interactions based on this empirical probability distribu-
tion. We respected the number of interactions observed in the
real PCHi-C data, for each bait. However, we discarded a posteri-
ori those simulated interactions that fell within a baited restric-
tion fragment; after this filtering step, the number of contacts
per bait are lower in the simulated data than in the PCHi-C
data (Supplemental Fig. S1). The simulated interaction data are
available in Supplemental Data Set S2.

Theoretical mappability and PCHi-C read mapping statistics

We evaluated the theoretical mappability of all restriction frag-
ments by drawing artificial sequencing reads from the genome
and remapping them with Bowtie 2 (Langmead and Salzberg
2012), with the same parameters as the HiCUP pipeline. The start-
ing points of the reads were spaced by 5 nucleotides. We did not
simulate sequencing errors. Regions for which artificial reads
were aligned unambiguously to their original location were said
to be mappable. We computed the percentage of mappable bases
and the maximummappable stretch (the largest perfectly mappa-
ble interval) for each restriction fragment. As several read lengths
were available for each species, we repeated this procedure for
each read length and computed the minimum values. We also es-
timated the actual number of mapped PCHi-C reads attributed to
each fragment in each sample using BEDTools utilities (Quinlan
andHall 2010).Wediscarded restriction fragments that had amax-
imum theoretical mappable stretch <150 bp and fewer than 50
mapped PCHi-C reads, combined across all samples.

Subsampled chromatin interaction data set

To minimize differences in detection sensitivity among PCHi-C
samples (Supplemental Table S1; Supplemental Text), we generat-
ed subsampled data sets.We first computed theminimumnumber
of observed interactions (N) across all samples for each species
(79,843 for human and 70,475 for mouse). We then ranked inter-
actions based on their CHiCAGO score and kept the strongest
N interactions from each PCHi-C sample, reasoning that the rela-
tive ranking would remain unchanged if detection power was
reduced. For simulated data sets, we randomly resampled N inter-
actions. We applied the same filtering steps described previously

(e.g., discarding bait–bait interactions, trans interactions, and in-
teractions occurring at distances <25 kb or >2 Mb) on the subsam-
pled data before analyzing them further. We used these
subsampled interaction data sets to evaluate sample clustering
within species (Supplemental Fig. S3; Supplemental Text) and for
pairwise comparisons of contact conservation between the human
and mouse samples (Fig. 5A,B; Supplemental Text).

As PCHi-C and simulated data sets differ in terms of total
numbers of interactions after pooling all available samples
(Supplemental Text), we randomly subsampled the pooled simu-
lated data set to obtain the same number of interactions as in
pooled PCHi-C data. These data sets were used in the contact con-
servation analyses that rely on pooled samples across species (Fig.
5C,D; Supplemental Text) and are available in Supplemental Data
Sets S1 and S2.

Sample clustering

We evaluated the similarity between pairs of samples from the
same species, starting from the percentage of shared interactions,
that is, 100 times the ratio between the number of shared interac-
tions and the number of interactions observed in at least one of the
samples. For each pair of samples, we computed the difference be-
tween the percentage of shared interactions in PCHi-C data and
the percentage of shared interactions in simulated data. We com-
puted this measure of similarity on the subsampled PCHi-C and
simulated data.We used this pairwisemeasure of similarity to clus-
ter samples within a species using the hierarchical clustering ap-
proach implemented in the “hclust” function in R (R Core Team
2014). We also used functions within the “ade4” R package
(Dray et al. 2007) to perform a correspondence analysis for each
species, starting from a contingency table describing for each
unique chromatin interaction whether it was observed or not in
each sample. We performed this analysis on the subsampled
PCHi-C data set.

Baited region annotation

We assigned transcription start sites (TSSs) to PCHi-C baited re-
striction fragments using annotations from the Ensembl database,
release 94. We downloaded transcript coordinates from Ensembl
using the BioMart interface (Kinsella et al. 2011). For each baited
fragment, we extracted all transcription start sites that were found
within, at most, 1 kb of the fragment. The baited fragment anno-
tation is available in Supplemental Data Set S1; gene and transcript
annotations are provided in Supplemental Data Set S3.

Genomic characteristics of PCHi-C contacted sequences

We extracted the repeat-masked DNA sequence of all baits and
contacted regions and used BLAT (Kent et al. 2002) to search
for sequence similarity in the same genome. For each sequence,
we counted the number of BLAT hits corresponding to at least
80% of their repeat-masked length with at least 95% sequence
identity. We discarded sequences with more than one BLAT
hit, which could be potentially duplicated in the reference ge-
nome. We evaluated the repetitive sequence content for restric-
tion fragments and enhancers using RepeatMasker annotation
tables provided by the UCSC Genome Browser (Hinrichs 2006).
We evaluated the number of protein-coding genes found within
a maximum distance of 500 kb, upstream of and downstream
from the contacted sequences. We also analyzed the GC content
of restriction fragments and enhancers. These genomic character-
istics are available in Supplemental Data Set S1 for restriction
fragments and in Supplemental Data Set S4 for enhancers.
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Predicted enhancer elements

We evaluated the presence of predicted enhancer elements in the
PCHi-C contacted regions using different data. For human, we
used prefiltered data from a recent study (Hait et al. 2018; http
://acgt.cs.tau.ac.il/focs/download.html), obtaining 408,802 en-
hancer positions predictedwithDNase I hypersensitivity (DHS) as-
says by the ENCODE consortium (Thurman et al. 2012). For
mouse, we extracted enhancer positions predicted based on the
presence of H3K4me1, H3K4me3, and H3K27ac histone modifica-
tions from the ENCODE consortium (The Mouse ENCODE
Consortium et al. 2014). We downloaded the midpoint coordi-
nates of predicted enhancer elements for 23 tissues or cell lines
from http://chromosome.sdsc.edu/mouse/download.html (previ-
ously http://promoter.bx.psu.edu/ENCODE/download.html),
and we extended them by 75 bp on each side. We then combined
the enhancer coordinates across all samples, obtaining 740,058
enhancer regions.

To confirmour results, we also used human enhancers predic-
tion from the Roadmap Epigenomics consortium (Roadmap Epi-
genomics Consortium et al. 2015) and from global run-on
sequencing analyzed in the same study (Hait et al. 2018; http://
acgt.cs.tau.ac.il/focs/download.html). Moreover, we downloaded
enhancers predicted with the Cap Analysis of Gene Expression
method by the FANTOM5 consortium (Andersson et al. 2014)
for human (https://zenodo.org/record/556775#.X3Gvf5rgprl)
and mouse (https://zenodo.org/record/1411211#.X3Gvq5rgprm).

We converted enhancer coordinates to the latest genome as-
sembly of each species if needed (hg38 for human and mm10 for
mouse) using liftOver and associated genome alignment files
downloaded from the UCSC Genome Browser (Kent et al. 2002).
Finally, we applied the same procedure described above for restric-
tion fragments to discard duplicated enhancers and to evaluate
their genomic characteristics (GC content, repetitive sequences,
proximal gene density). The predicted enhancers data and their ge-
nomic characteristics are available in Supplemental Data Set S4.

Prediction of contacts between gene and enhancers

We constructed gene–enhancer pairs by associating to each “bait-
ed” protein-coding gene all the predicted enhancers that over-
lapped with the restriction fragments contacted by its baits. We
applied this procedure to each enhancer data set described above,
obtaining four different contact data sets for human and two data
sets for mouse (Supplemental Data Set S4).

Prediction of gene–enhancer association using the genomic

proximity approach

We inferred regulatory relationships between promoters and en-
hancers using the genomic proximity approach, as implemented
by Berthelot et al. (2018).We first determined for each gene the ca-
nonical transcript, based on Ensembl APPRIS annotations when
available (Cunningham et al. 2019). For genes that did not have
APPRIS annotations, we kept the transcripts with the longest cod-
ing sequence (for protein-coding genes) or with the longest exonic
sequence (for noncoding RNAs). For this analysis, we kept only
protein-coding genes, long noncoding RNAs, and antisense tran-
scripts. Each gene was assigned a unique TSS, belonging to the ca-
nonical transcript. Then, we defined for each gene a putative
regulatory region delimited by the closest TSS upstream of and
downstream from the gene’s TSS. Enhancers found within this re-
gionwere then assigned to the focal gene.We restricted promoter–
enhancer relationships defined with the genomic proximity ap-
proach to the same 25-kb to 2-Mb distance interval used for the

PCHi-C data. The corresponding data are available in Supplemen-
tal Data Set S4.

Correlated activity of gene–enhancer pairs

We evaluated the correlation of gene expression and enhancer ac-
tivity levels for each promoter–enhancer pair across samples.
Depending on the data set, activity levels were evaluated with
ChIP-seq or DHS experiments (ENCODE, RoadmapEpigenomics
consortia), with the CAGE technique (FANTOM5 consortium),
or with theGRO-seq technique. In all cases, we used processed pro-
moter and enhancer activity data (Hait et al. 2018). We download-
ed normalized activity profiles for promoters and enhancers from
http://acgt.cs.tau.ac.il/focs/download.html. We computed pair-
wise Spearman correlations, based on normalized activity profiles
across samples, for all pairs of promoters–enhancers in contact in
the real PCHi-C data or in the simulated data. We then tested
whether the correlation coefficient distributionswere significantly
different, using the Wilcoxon rank-sum test for median compari-
sons, as implemented in R (R Core Team 2014). The resulting
data are available in Supplemental Data Set S12.

Sequence conservation

To evaluate the conservation of sequences contacted in PCHi-C
data, we first identified putative homologous regions using
liftOver on whole-genome alignments between a reference species
(human or mouse) and a target species (human, macaque, mouse,
rat, rabbit, cow, elephant, dog, opossum, or chicken) downloaded
from the UCSC Genome Browser (Hinrichs 2006). We set a low
threshold (10%) for the minimum ratio of bases that must remap
in the liftOver conversion. We discarded regions that were dupli-
cated or split in the target genome. The regions that could not
be projected with liftOver were considered as nonconserved and
were given a conservation score of zero. The predicted homologous
regions were then aligned with Pecan (Paten et al. 2008). We com-
puted the conservation score as the ratio between the total number
of aligned (without gaps) base pairs and the total number of posi-
tions in the alignment. To better evaluate the determinants of se-
quence conservation patterns in PCHi-C data, we also measured
sequence conservation separately for repetitive and nonrepetitive
sequences using the information provided in the repeat-masked
genome sequence available in Ensembl (Zerbino et al. 2018). We
extracted exonic coordinates from the Ensembl database, and we
masked exons before evaluating sequence conservation. We dis-
carded sequences whose alignment lengthwas <10 bp.We applied
the same alignment procedure to predicted enhancers.

We also analyzed the phyloP basewise conservation score
(Pollard et al. 2010). We retrieved from the UCSC Genome
Browser (Hinrichs 2006) phyloP scores calculated from multiple
alignments of 30 vertebrate species for human and for 60 verte-
brate species for mouse. We computed average phyloP scores for
each restriction fragment and enhancer across all nonexonic bases
that had phyloP coverage. We also computed average phyloP
scores separately for repetitive and nonrepetitive sequences, using
RepeatMasker annotations downloaded from the UCSC Genome
Browser (Hinrichs 2006).

The alignment statistics and phyloP scores are available in
Supplemental Data Set S6 and in Supplemental Data Set S7.

Synteny conservation

We defined synteny conservation between a reference and a target
species as the presence of the gene and of the predicted enhancer
on the same chromosome and at a distance of <2 Mb in both spe-
cies. We restricted this analysis to protein-coding genes with one-
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to-one orthologs in the target species, as predicted in the Ensembl
database (release 99 for macaque, release 94 for all other species).
We also selected only enhancers that had predicted homologous
regions in the target genome, as defined above. For each pair of
species, we discarded the 10% least conserved enhancers based
on the alignment score defined above. We further restricted this
analysis to promoter–enhancer pairs that are separated by distanc-
es between 100 kb and 1.5 Mb in the reference species. We then
asked whether the predicted homolog of the contacted enhancer
was on the same chromosome and within 2 Mb of the TSS of the
orthologous gene. If the orthologous gene in the target species
had more than one TSS, we considered the minimum distance be-
tween these and the homologous contacted region. The resulting
data are available in Supplemental Data Sets S8 and S9.

Chromatin contact conservation

We restricted this analysis to protein-coding genes with one-to-
one orthologs in the target species, in contact with enhancers
that had predicted homologs in the target species, as described
above. We further restricted the analysis to cases where the one-
to-one orthologous gene was also baited in the PCHi-C data of
the target species (human or mouse). To dissociate contact conser-
vation from synteny conservation, we require that the bait and re-
striction fragment be situated on the same chromosome in the
target species. We excluded interactions for which the restriction
fragment contacted was baited or the distance bait-contacted frag-
ment was <25 kb or >2 Mb, for either the reference or the target
species.We then asked whether the predicted homolog of the con-
tacted enhancer overlapped any of the regions found in contact
with the bait(s) associated with the orthologous gene in the
PCHi-C data of the target species. The proportion of conserved
contacts was computed with respect to the number of pairs satisfy-
ing all previous criteria (i.e., homology prediction for the baited
gene and the contacted enhancer, presence of baits for the orthol-
ogous gene in the target species, distance, and unbaited contacted
fragment filters).

We evaluated the contact conservation for each pair of hu-
man and mouse samples. We performed this analysis on the
down-sampled data set, which comprises the same number of
contacts for each sample. We also evaluated the extent of chro-
matin contact conservation for the pooled PCHi-C data set. In
this case, we used as a comparison the subsampled pooled simu-
lated data set, which matches the number of interactions ob-
served in the pooled PCHi-C data set. For the analyses that
contrast the extent of regulatory landscape conservation and
gene expression conservation, we use the entire PCHi-C data,
without subsampling.

The resulting data are available in Supplemental Data Sets S10
and S11.

Gene expression data

To evaluate the gene expression patterns, we used expression data
for human and mouse across multiple organs and developmental
stages (Cardoso-Moreira et al. 2019). We downloaded gene-level
reads per kilobase of exon per million mapped reads (RPKM) val-
ues. For evolutionary comparisons, we analyzed protein-coding
genes predicted as one-to-one orthologs for human and mouse
in the Ensembl database release 94, and to organ/developmental
stage combinations that were directly comparable between the
two species (Cardoso-Moreira et al. 2019). We renormalized the
data across samples and species using a median-scaling procedure
based on the genes that vary the least in terms of ranks across sam-
ples (Brawand et al. 2011). For the expression conservation analy-

ses, we required genes to be expressed above aminimum threshold
(RPKM=1) in at least three samples. The resulting expression data
and sample details are provided in Supplemental Data Set S5.

We also aimed to compare gene expression levels between hu-
man andmouse in cell types that are comparable between the two
species and for which PCHi-C data is also available. We analyzed
ESCs or epiSCs, adipocytes, and B cells. For these cell types, we
downloaded RNA-seq data from the ENCODE consortium and
from the NCBI Sequence Read Archive (SRA; https://www.ncbi
.nlm.nih.gov/sra) database. We computed gene expression levels
using kallisto (Bray et al. 2016) on cDNA sequences extracted
from Ensembl 94. For each gene, we computed mean and median
transcript per million (TPM) expression levels across all replicates
for each cell type. We applied the same normalization procedure
as above (Brawand et al. 2011). These values were used to compute
cell type–specific gene expression conservation values between
human and mouse. The resulting expression data and sample de-
tails are provided in Supplemental Data Set S5 and Supplemental
Table S8.

Gene expression characteristics

Wedefined gene expression breadth as the number of organ/devel-
opmental stage combinations in which the average RPKM level
across biological replicates was above one, using the expression
data described above.We analyzed the distribution of this estimate
of expression breadth as a function of the maximum number of
cell types in which interactions were observed for baited genes.
We also computed a tissue/developmental stage specificity index
with the formula tau= sum (1 – ri)/(n−1), where ri represents the
ratio between the expression level in sample i and the maximum
expression level across all samples, and n represents the total num-
ber of samples (Liao et al. 2006). Genes with perfectly homoge-
neous expression levels across all samples thus have a tau value
of zero, whereas genes expressed in a single condition have a tau
value of one. We computed this index on RPKM values, averaged
across all replicates for a given species/organ/developmental stage
combination.

Evolutionary conservation of gene expression profiles

To evaluate the conservation of gene expression patterns between
human and mouse, we first computed relative expression profiles
by dividing the RPKMvalues (averaged across biological replicates)
by the maximum value observed among samples for each gene.
We used the transcriptome data described above (Cardoso-
Moreira et al. 2019). We measured expression conservation as
the Spearman’s correlation coefficient between the relative expres-
sion profiles of orthologous genes. We also measured expression
conservation as 1−d, where d is the Euclidean distance between
orthologous gene expression profiles. As these measures of expres-
sion conservation are significantly correlated with the average
gene expression level and with the expression specificity index
(Supplemental Fig. S15), we built linear regressions that model
the relationship between expression conservation, expression spe-
cificity, and expression levels (averaged across all samples and
across species, for each gene) and extracted the residual values.
We referred to these residual values as “corrected expression con-
servation” in the figures. The gene expression conservation data
are provided in Supplemental Data Set S5.

We analyzed the factors associated with gene expression evo-
lution with multiple regression models (Supplemental Table S9).
The response variable in these models is the conservation of
gene expression profiles,measured by Spearman’s correlation coef-
ficient before and after correction. The explanatory variables are
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various regulatory landscape characteristics (number of contacted
enhancers, sequence conservation for contacted enhancers, syn-
teny conservation, contact conservation) and gene expression
characteristics (gene expression level, gene expression specificity).

Evolutionary conservation of gene expression levels

We measured quantitative gene expression differences between
species for the three cell types that were present in the PCHi-C
data sets of both human and mouse: B lymphocytes, preadipo-
cytes, and ESCs. We also performed a comparison between hu-
man ESCs and mouse epiSCs. To do this, we computed average
TPM levels across all replicates available for a given cell type for
each species. We then estimated expression divergence as the ab-
solute value of the difference between human and mouse, divid-
ed by the maximum of the two values, for each gene. We note
that this expression divergence measure is strongly correlated
with gene expression levels. To correct for this effect, we con-
structed a linear regression that models the relationship between
the expression divergence and the average expression levels,
across both species, and extracted the residual values. Gene ex-
pression conservation measures are defined as expression diver-
gence values subtracted from one. We referred to these values
as “corrected expression conservation.” The gene expression con-
servation data are provided in Supplemental Data Set S5.

Evolutionary divergence of regulatory landscapes

We performed this analysis on one-to-one orthologous protein-
coding genes between human and mouse. For each gene pair, we
evaluated the number of enhancers found in contact with the ref-
erence gene promoter(s), the sequence alignment score of the con-
tacted enhancers, the number of enhancers with conserved
sequences in the target species (i.e., successfully projected with
liftOver in the target genome and with an alignment score
≥40%) and found in conserved synteny with the orthologous
gene in the target genome (as defined above), and the number of
enhancers with conserved sequences, whose predicted homolog
was also in contact with the orthologous gene in the target ge-
nome. We could thus evaluate for each pair of orthologous genes,
the median alignment score of contacted enhancers, the percent-
age of conserved enhancers maintained in synteny, and the per-
centage of conserved contacts. These two last measures were
calculated only for genes that had between five and 100 conserved
enhancers. We then correlated these measures with the gene ex-
pression conservation values calculated above.

Constraints on gene sequence

We analyzed the probability of intolerance to loss-of-functionmu-
tations for a gene (pLI score), inferred from variation in human
exome-sequencing data leading to truncating proteins (Lek et al.
2016). We downloaded precomputed pLI scores for transcripts
from the website indicated in the original article (ftp://ftp.broadin
stitute.org/pub/ExAC_release/release0.3/functional_gene_constraint).
We then associated pLI scores to genes using Ensembl94 annotations.
We retained the 17,558 genes associatedwith a unique transcript. The
pLI scores are provided in Supplemental Data Set S6.

Gene Ontology enrichment

We used GOrilla (Eden et al. 2009) to perform Gene Ontology en-
richment analyses on single-ranked lists of genes. We considered
only protein-coding genes present in the human PCHi-C data
and with a one-to-one orthologous gene in the mouse. Genes
were ranked by the following factors: the number of contacted

ENCODE enhancers, the number of neighbor enhancers, the me-
dian distance between enhancers and the gene TSS, the mean
alignment score of contacted enhancers, the proportion of en-
hancers that are conserved in synteny and in contact, and the
gene expression profile conservation. The ontology enrichment
results are provided in Supplemental Data Set S13 and
Supplemental Tables S3–S7.

Statistics and graphical representations

We used R 3.5.2 for all statistical analyses and graphical represen-
tations (R Core Team 2014). Given that the variables we analyze
are often not normally distributed, we used nonparametric statis-
tical tests as a general rule.We computed 95% confidence intervals
for mean values using the BCa nonparametric bias-corrected and
accelerated bootstrap method (DiCiccio and Efron 1996) as imple-
mented in the coxed_0.3.3 package in R (Kropko and Jeffrey 2019).
We performed 100 bootstrap replicates. We computed 95% confi-
dence intervals for median values using the formula ±1.58 IQR/
sqrt(n), where IQR is the inter-quartile range of the distribution
and n the total number of values. This formula is implemented
in the boxplot.stats function in the grDevices package in R
(Chambers et al. 1983). We performed pairwise comparisons of
distributions with the Wilcoxon rank-sum test and multiple com-
parisons with the Kruskal–Wallis test, both implemented in the
stats package in R.We compared proportions with the chi-squared
test and computed two-sided 95% confidence intervals with the
prop.test function in R. For all tests, we display P-values as
“<10−10” if lower values are found. For the analyses in which
we performed multiple tests, we computed FDRs with the
Benjamini–Hochberg approach.

Data access

All processed data generated in this study are available as Supple-
mental Data Sets in the Supplemental Material, as well as at https
://pbil.univ-lyon1.fr/members/necsulea/RegulatoryLandscapes. All
scripts used in this analysis are available as Supplemental
Code and at GitHub (https://github.com/AlexandreLaverre/
Regulatory_Landscape).
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