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Abstract
Ankylosing spondylitis is a chronic, debilitating arthritis with a predilection for the axial skeleton. It has

a strong genetic predisposition, but the precise pathogenetic mechanisms involved in its development

have not yet been fully elucidated. This has implications both for early diagnosis and for effective man-

agement. Recently, alterations in the intestinal microbiome have been implicated in disease pathogene-

sis. In this review, we summarize studies assessing the intestinal microbiome in AS pathogenesis, in

addition to synthesizing the literature exploring the postulated mechanisms by which it exerts it patho-

genic potential. Finally, we review studies analysing manipulation of the microbiome as a potential ther-

apeutic avenue in AS management.
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Introduction

Ankylosing Spondylitis (AS) is an insidiously progressive,

chronic, immune-mediated arthritis, characterized by in-

flammation of the axial skeleton, with early involvement

of the SI joints [1]. Its prevalence ranges from 0.2 to

1.6%, depending on the geographical location and pop-

ulation studied [2], with 90% of patients developing

symptoms before 40 years of age [3].

AS is the prototype of a class of seronegative spondy-

loarthritides (SpA), which also include ReA, PsA, arthritis

associated with IBD and undifferentiated spondyloarthri-

tis [4]. The pathogenesis of AS has not yet been eluci-

dated fully. HLA-B27, present in �90% of those with

AS, is a major risk factor for the development of the

disease [3]. However, despite extensive research, the

precise pathogenic mechanism by which HLA-B27 is in-

volved in AS development remains unclear, and genetic

predisposition alone fails to explain AS pathogenesis ad-

equately. This paucity of information concerning the

causality of AS development has catalysed an expand-

ing field of research analysing alternative pathogenic

mechanisms and predisposing factors. One such area

under investigation is the intestinal microbiota or, more

precisely, intestinal dysbiosis. More than 2000 years

ago, Hippocrates supposedly declared that ‘all disease

begins in the gut’, and most certainly, in recent years

there has been an explosion of scientific literature pio-

neering the intestinal microbiome as crucial to the path-

ogenesis of a number of systemic autoimmune and

inflammatory disorders [5]. Interest in the pathogenic po-

tential of the intestinal microbiota in AS stems from evi-

dence that �60% of those with AS have subclinical

intestinal inflammation [6], with a further 4–16% devel-

oping clinically evident IBD [7], thus establishing
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involvement of the gastrointestinal tract in disease path-

ogenesis. Furthermore, the implication of a number of

bacterial suspects, including Salmonella, Shigella,

Yersinia and Campylobacter, in the initiation of ReA [8]

provides further evidence of a link between the intestinal

microbiota and SpA. In addition to this, Klebsiella pneu-

moniae, an intestinal bacterium with both commensal

and pathogenic potential, has long been implicated as a

precipitating factor for AS [9], further strengthening the

association of the intestinal microbiota and AS

pathogenesis.

In this review article, we aim to delineate the current

understanding of the microbiome in AS disease patho-

genesis, in addition to providing a summary of potential

biological mechanisms by which it exerts its patho-

genic potential. To conclude, with a greater under-

standing of the pathogenic role of the intestinal

microbiome, we will explore methods by which the in-

testinal microbiome can be exploited for therapeutic

benefit in AS management.

Methods

Relevant literature pertaining to the intestinal micro-

biome and AS was identified by keyword searches

of Medline (via PubMed) and Embase (OVID) from in-

ception until 1 February 2021. Keywords included: (an-

kylosing spondylitis); (axial spondyloarthritis);

(spondyloarthropathy); (intestinal microbiome); (intesti-

nal microbiota); (intestinal dysbiosis) and (pathogene-

sis). In addition, manual searching of reference lists

from primary articles was performed. Articles published

in English were included, and there were no restrictions

on study type.

Review

The intestinal microbiome

The intestinal microbiota describes the highly diverse

microbial flora, including commensal, symbiotic and

pathogenic microorganisms, inhabiting our intestine, and

the intestinal microbiome refers to their collective ge-

nome and gene products [10].

The microbiota is predominantly composed of bacte-

ria, with Frimicutes and Bacteroidetes representing the

two most abundant phyla in healthy adults [11]. An in-

creasing body of evidence has confirmed that the intes-

tinal microbiome is essential for health, exerting

pleiotropic roles in immune system modulation, nutrition

and metabolism [12]. Owing to these essential functions,

the intestinal microbiota has been coined the ‘microbial

organ’ [13]. Intestinal dysbiosis is a consequence of al-

tered diversity, composition or function of the intestinal

microbiota [14]. Such dysregulation of the intestinal

microbiota has been implicated in the initiation and per-

petuation of a myriad of autoimmune and inflammatory

diseases, including the spondyloarthritides [5].

Analysis of the intestinal microbiome

The analysis of the intestinal microbiome has undergone

a significant paradigm shift in recent decades and, corre-

spondingly, our understanding of the microbiome and its

role in health and disease has increased. In the 1970s,

Carl Woese analysed the 16S ribosomal RNA (16S rRNA)

genes of prokaryotes and successfully elucidated micro-

bial phylogeny, creating the field of molecular phyloge-

netics and later catalysing the concept of metagenomics

[15]. Before the work of Woese, the study of the micro-

biome was significantly limited, given the inability of

>70% of bacteria to be cultured readily [11]. The 16S

rRNA genes have highly conserved regions common to

most bacteria, interspersed with hypervariable regions

unique to individual bacterial taxa [16]. 16S rRNA gene

sequencing uses primers that target the highly conserved

sequences within the hypervariable regions, enabling

PCR amplification and subsequent sequencing, taxo-

nomic assignment and community comparisons of bacte-

rial species [17]. After sequencing, highly similar

sequences are categorized into a single group, referred

to as operational taxonomic units, which are then either

compared with existing reference sequences, enabling

taxonomic assignment, or compared based on sequence

similarity, referred to as ‘de novo operational taxonomic

unit clustering’ [18]. The latter, although sometimes used

for taxonomic assignment, is more frequently used in

studies of community diversity. The 16S rRNA sequenc-

ing approach is the most commonly used method for

microbiome analysis, owing to its relatively low cost and

large body of archived reference data, thus supporting

large-scale microbiome analyses. However, it has a num-

ber of shortcomings that must be considered. Taxonomic

classification is reliant on the quality of the pre-existing

reference database. This precludes characterization of

previously unknown microbiota, in addition to the in-

creased potential for inaccurate taxonomic classification.

There is a further risk of inaccurate taxonomic classifica-

tion owing to chimera formation or the intrinsic error rate

of sequencing [19]. However, undoubtedly, one of the

biggest limitations of this method is the inability of opera-

tional taxonomic units to allow for accurate identification

at the species level [20].

Metagenomic sequencing, an alternative method of

microbiome analysis, captures not only fragments of

genes, but focuses on the entire genome [21]. One such

approach is that of high-throughput whole-genome

shotgun sequencing (WGS), which uncovers the com-

plete genetic information of microbes, providing specific

taxonomic information down to the species level, in ad-

dition to describing functional profiling and enzymatic

capabilities [22]. However, WGS is expensive and time

consuming, requiring extensive data analysis [23].

Where metagenomics has the potential to describe

the potential functional capabilities of the intestinal

microbiome, methodology is expanding to analyse the

real functional activity of a chosen intestinal micro-

biome. Metatranscriptomic methods analyse the RNA

transcribed by the microbiota [24], and metabolomic
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and metaproteomic approaches describe the metabo-

lites and proteins, respectively, present in the micro-

biome [25, 26]. These evolving areas in microbiome

analysis are providing further insight into the relation-

ship of the gut microbiome with the host, and although

somewhat in its infancy, the multiomic approach is pro-

viding increased understanding of the gut–host symbi-

otic interaction central to health and to disease states.

Another consideration in microbiome analysis con-

cerns the type of sample analysed. The majority of stud-

ies examining the intestinal microbiota analyse faecal

samples, given their ease of obtainment vs mucosal

samples from intestinal biopsies. However, using faecal

samples alone fails to account for the spatial heteroge-

neity of distinct microbial habitats along the intestinal

tract [27]. In particular, ileal inflammation is common in

AS, and the ileal microbiome analysed using mucosal

samples obtained at biopsy differs significantly from the

microbial profile of faecal samples [28]. This is an impor-

tant consideration when planning a study examining the

intestinal microbiota in those with AS, especially to en-

sure reproducibility and authenticity of findings. Future

studies examining intestinal microhabitats are essential.

Evidence of altered intestinal microbiota in AS

To date, no distinct AS microbiome signature has been

characterized. However, through the advancements in

microbiome analysis outlined above, it has been demon-

strated that the intestinal microbiota composition of

those with AS is altered vs healthy controls. There is

variation in the nature of this intestinal microbial dysbio-

sis between studies, dependent on the study population,

mode of microbiome analysis and type of sample ana-

lysed [29]. Table 1 highlights findings of human studies

to date displaying altered intestinal bacterial composi-

tion in those with AS.

The intestinal microbiome and as pathogenesis

Although there is strong evidence to implicate changes

in the intestinal microbiome in AS disease pathogenesis,

the biological mechanisms by which it contributes to de-

velopment of AS are still under investigation. Multiple

postulations, including interplay with genetics, an altered

intestinal epithelial and mucosal barrier with associated

immune dysregulation, and altered bacterial function

with dysregulation of microbial metabolites, have been

proposed in an attempt to link the intestinal microbiome

with the pathogenesis of AS.

HLA-B27 and the microbiome

The association of the major histocompatibility complex

class I (MHC-1) HLA-B27 with AS is well established.

Up to 90% of patients with AS possess the HLA-B27 al-

lele [3]. However, only 5% of the healthy population who

are positive carriers will develop AS [39]. Despite inten-

sive research, the precise pathogenic role of HLA-B27 in

AS remains unknown. However, several hypotheses

have been interrogated, including arthritogenic peptide

presentation, cell surface HLAB27 dimer recognition by

NK receptors, and HLA-B27 misfolding with subsequent

activation of pro-inflammatory endoplasmic reticulum

stress [40].

Recently, an alternative hypothesis, linking the interac-

tion between the HLA-B27 allele and the intestinal

microbiota, coined ‘B-27 shaped flora’ [8], and the in-

creased risk of development of AS was proposed.

Evidence for this concept is supported by the demon-

stration of HLA-B27 transgenic rats raised under germ-

free conditions failing to develop an arthritic phenotype

[41]. Interestingly, once recolonized with commensal

microbiota, >80% of the HLA-B27 transgenic rats devel-

oped both arthritis and colitis [42], establishing a causa-

tive association between the HLA-B27–microbiota

interaction and disease penetrance. Furthermore, the

substantial influence that HLA-B27 allele carriage alone

has on alteration of the intestinal microbiome of healthy

individuals without disease was recently described [43].

One may thus postulate that HLA-B27-dependent intes-

tinal dysbiosis potentially occurs before AS phenotypic

development, and not merely as a consequence of dis-

ease, thus playing a potential role in AS disease initia-

tion. However, evidence to date is circumstantial, and

the precise mechanistic role of HLA-B27 in the develop-

ment of gut dysbiosis and subsequent development of

AS requires further investigation.

Alteration of the intestinal epithelial barrier

The intestinal epithelium plays a key role in tissue ho-

meostasis, functioning as an effective physical and bio-

chemical barrier against both pathogenic and

commensal microorganisms [44]. Tight junctions form

connections between adjacent intestinal epithelial cells

and tightly regulate the paracellular movement of water,

ions and solutes across the epithelium [45]. Of note, in

normal circumstances these tight junctions preclude the

passage of bacteria, pathogens and toxins [45]. If the in-

tegrity of the tight junction is compromised, there is a

corresponding increase in intestinal permeability, leading

to a leaky gut phenomenon [46]. Such dysregulation of

tight junctions and subsequent increased intestinal per-

meability has been demonstrated to be present in both

AS patients and their first-degree relatives [47]. The dis-

ruption of intestinal epithelial integrity, dysbiosis and in-

testinal inflammation are likely to be interrelated closely,

both temporally and spatially. Studies in HLA-B27 rat

models suggest that both intestinal inflammation and

impaired intestinal barrier function develop simulta-

neously [48]. It remains to be elucidated whether the in-

tegrity of the intestinal epithelium is compromised by

intestinal inflammation or whether dysbiotic changes

that precipitate epithelial breakdown (such as the intesti-

nal bacterial upregulation of the tight junction modulator

zonulin [49]) culminate in intestinal inflammation, or per-

haps an interplay of both, are responsible for increased

intestinal permeability.

It is postulated that once there is an increase in intes-

tinal permeability, increased translocation of intestinal

microbes to the systemic circulation is facilitated, with

the subsequent priming of immunological reactions,

Role of the intestinal microbiome in AS
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such as leucocyte recruitment and activation and re-

lease of soluble mediators [10, 50]. This theory is sup-

ported by the demonstrated high levels of

lipopolysaccharide, a bacterial endotoxin, in the serum

of those with AS [51]. Furthermore, translocated intesti-

nal microorganisms might themselves precipitate an in-

flammatory cascade at extra-intestinal sites, as evident

in endotoxin-induced uveitis [52].

Microbiota-induced immune dysregulation

There is an increasing body of evidence to suggest that

alterations in the composition of the intestinal microbiota

lead to dysregulation of the mucosal immune balance,

with implications in AS pathogenesis. The IL-23/Th cell

17 (Th17) signalling axis has been demonstrated to be

central in the pathogenesis of AS [53]. Th17 cells are a

subtype of effector T cells proposed to play a crucial role

in immunological defence against microbial infections

[54]. The differentiation of Th17 cells is stimulated by a

number of cytokines, with IL-23, in particular, implicated

in driving its pathogenic potential through the expression

of the key transcription factor retineic-acid-receptor-re-

lated orphan nuclear receptor gamma (ROR-ct) [55].

Th17 subsequently mediates its effects through the

release of cytokines, including IL-17, of which IL-17A is

the signature cytokine of the lineage [56]. The patho-

genic potential of this type 17 response is evident in the

DBA/1 murine model, which spontaneously develops

AS-like enthesitis in normal circumstances, but upon

neutralization of IL-17A it fails to do so [57].

Its role is further supported in human studies by the

demonstration of increased levels of both IL-17 and IL-

TABLE 1 Human studies depicting altered intestinal bacterial composition in AS compared with healthy controls

Study
reference

Study
population

Sample
analysed

Analysis
method

Increased microbiota
abundance AS

Decreased microbiota
abundance AS

[30] Italy
AS (n¼9)
HC (n¼9)

Terminal
Ileal biopsies

16S rRNA
sequencing

Lachnospiraceae,
Ruminococcaceae,

Rikenellaceae,
Porphyromonadaceae,
Bacteroidaceae families

Veillonellaceae,
Prevotellaceae families

[31] China
AS (n¼97)

HC (n¼114)

Faecal samples WGS Prevotella spp., Prevotella
copri

Bifidobacterium spp.,
Bifidobacterium bifidum

Bacteroides spp.

[32] Sweden
AS (n¼150)
HC (n¼17)
UC (n¼18)

Faecal samples 16S rRNA
sequencing

Proteobacteria,
Enterobacteriaceae,

Bacilli,
Streptococcus spp.,

Actinobacteria

Bacteroides,
Lachnospiraceae

[33] China
AS (n¼41)
HC (n¼19)

Faecal samples 16S rRNA
sequencing

Prevotella,
Dialister,

Comamonas,
Collinsella,

Streptococcus,
Alloprevotella

Eubacterium ruminantium,
Ruminococcus gnavus,

Lachnospira,
Bacteroides

[34] China
AS (n¼103)
HC (n¼104)

Faecal samples 16S rRNA
sequencing

Bacteroidetes,
Meg,

Dorea,
Blautia

Lachnospira,
Ruminococcus,

Clostridium

[35] China
AS (n¼22)
HC (n¼16)

Faecal samples 16S rRNA
sequencing

Proteobacteria
Enterobacteriaceae

Bacteroidetes

[36] China
AS (n¼127)
HC (n¼123)

Faecal samples WGS Clostridiales bacterium,
Clostridiales bolteae,

Clostridiales hathewayi

Bifidobacterium adolescentis,
Coprococus comes,

Lachnospiraceae
[37] China

AS (n¼29)
HC (n¼37)

Faecal samples WGS Flavonifractor plautii,
Oscillibacter,

Parabacteroides
distasonis,

Bacteroides nordii
[38] China

AS (n¼85)
HC (n¼62)

Faecal samples WGS Bacteroides coprophilus,
Parabacteroides

distasonis,
Eubacterium siraeum,

Acidaminococcus
fermentans,

Prevotella copri

Enterococcus faecium,
Eubacterium hallii,

Coprococcus catus,
Faecalibacterium prausnitzii,

Coprococcus eutactus

HC: healthy control; WGS: whole-genome metagenomic shotgun sequencing; UC: ulcerative colitis.
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23 in the serum of those with AS [58], in addition to in-

creased numbers of circulating Th17 cells in those with

AS [59]. Furthermore, the serum IL-17 concentrations of

patients with AS have been shown to be correlated

closely with their BASDAI score, further implicating IL-17

in disease activity, but also catalysing interest in its fu-

ture potential as a disease biomarker [60]. Excitingly, IL-

17A has also been exploited successfully as a therapeu-

tic target, with the monoclonal antibody targeting IL-

17A, secukinumab, demonstrating efficacy in the man-

agement of AS [61, 62].

One caveat to IL-17 antagonism is its associated in-

creased risk of IBD exacerbation [63]. This highlights the

differences in the immunopathogenic pathways driving

these conditions, despite their high degree of co-

familiality. Furthermore, surprisingly, two clinical trials

[64, 65] evaluating IL-23 inhibition as a therapeutic tar-

get in AS failed to achieve their primary endpoints. This

has stimulated further research into the precise patho-

genic role of IL-23 in AS, particularly its varying degrees

of significance at different sites of inflammation, includ-

ing the axial skeleton and entheses [66].

Furthermore, what exactly precipitates IL-23/Th17

axis activation remains under investigation. Several im-

munological studies have postulated a role of the intesti-

nal microbiota as a pathogenic link between IL-23/Th17

and AS development. One hypothesis suggests a link

with intestinal villi Paneth cells, which specialize in the

secretion of antimicrobial peptides, including defensins,

lysozymes and cathelicidins.

These antimicrobial peptides are produced following

exposure to pathogenic microorganisms (pathobionts)

and have an essential role in modulating microbial com-

position and enteric pathogen invasion [67]. The antimi-

crobial peptide defensin has proved to be crucial to the

defence against pathobionts and modulation of micro-

biota composition [68]. Defensins exert their effect via

chemoattraction of macrophages, T lymphocytes and

mast cells [68], in addition to the production of pro-in-

flammatory cytokines and chemokines [69]. Murine

models deficient in alpha defensin, compared with those

overexpressing the human Paneth cell alpha defensin 5

(DEFA-5), demonstrated significantly different microbiota

composition [70]. Furthermore, those with overexpres-

sion of DEFA-5 displayed a reduction in colonization

with segmented filamentous bacteria and, subsequently,

reduced Th17 skewing [70]. Segmented filamentous

bacteria are commensal bacteria that induce IL-17 [13].

Murine models lacking segmented filamentous bacteria

have reduced levels of IL-17 and a subsequent in-

creased susceptibility to infection, particularly with the

pathobiont Citrobacter spp. [13]. However, restoration of

segmented filamentous bacteria in these murine models

is associated with a corresponding increase in the intes-

tinal production of IL-17 and a heightened resistance to

infection [71]. Interestingly, the levels of Paneth cell-de-

rived DEFA-5 have been demonstrated to be increased

in the terminal ileum of AS patients with acute intestinal

inflammation [72]. Thus, one may postulate that

activation of Paneth cells by intestinal pathobionts pre-

cipitates the activation and release of antimicrobial pep-

tides, such as DEFA-5, with subsequent further

alteration of the intestinal microbiota resulting in immune

system activation, implication of the type 17 immune re-

sponse and development of AS.

An alternative hypothesis involves the microbiota-in-

duced activation of mucosa-associated invariant T

(MAIT) cells. IL-17 produced by Paneth cells in the gut

has been shown to activate MAIT cells in those with AS

[73]. MAIT cells are innate-like lymphocytes with anti-

bacterial potential, which, when activated, induce a

rapid immunological response with the production of

pro-inflammatory cytokines, including both IL-17 and

TNF-a [74]. Notably, germ-free mice display an absence

of MAIT cells [75], and riboflavin metabolites of bacteria

and fungi have been shown to activate MAIT cells [49].

Furthermore, MAIT cells have been demonstrated to be

elevated in the serum of AS patients [73]. Thus, one

may postulate that MAIT cells, released secondary to

dysbiosis, stimulate an aberrant immunological response

and thus AS pathogenesis. However, evidence for both

these theories remains circumstantial, and significant

additional research is required to elucidate the precise

role of the intestinal microbiome–immune axis in AS

pathogenesis.

Microbiota metabolic function

Intestinal microbial metabolites are essential for host ho-

meostasis, and intestinal dysbiosis is associated with

significant alteration in the gut metabolic profile [76].

Such dysregulation of the gut metabolome has been im-

plicated in the pathogenesis of AS, with HLA-B27 ex-

pression in murine models shown to alter the intestinal

metabolic profile dramatically [77].

One such association is the finding of increased levels

of sulphate-reducing bacteria in the faecal samples of

those with AS [78]. Sulphate-reducing bacteria catalyse

the reduction of inorganic sulphate to hydrogen sulphide

[79], and increased levels of this metabolic product have

been demonstrated in the intestinal lumen of those with

AS [78]. Although a convincing association has been

drawn, undeniably further studies are required to estab-

lish a causative relationship, in addition to identifying the

precise pathogenic mechanism that these sulphate-re-

ducing bacteria play in disease development.

Butyrate, a short-chain fatty acid (SCFA) intestinal me-

tabolite, has also been implicated in AS pathogenesis

[80]. It is normally found in high concentrations in the in-

testinal tract, where it is the end product of microbial

fermentation of indigestible polysaccharides [81]. Short-

chain fatty acids play a crucial role in defence against

infection and inflammation via recruitment and matura-

tion of various subsets of immune cells, in addition to

mediating host–microbe interactions [82]. One method

by which they exert their function is via the G-coupled

protein receptors (GPRs), namely GPR-41 and GPR-43,

thus inhibiting histone deacetylases, modulating host

gene expression and inducing autophagy [83].

Interestingly, mouse models deficient in GPR-43 display
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exacerbated or unresolving inflammation in models of

colitis and arthritis, but demonstrate full resolution of their

inflammatory response, with increased production of in-

flammatory mediators and immune cell recruitment, upon

activation of GPR-43 by short-chain fatty acids [84].

Reduced levels of butyrate metabolism have recently

been identified in AS gut microbiota [38] and, correspond-

ingly, reduced levels of several species capable of pro-

ducing short-chain fatty acids, such as Eubacterium halli

and Faecalibacterium prausnitzii, were also demonstrated

in the microbiota of AS patients [38]. This provides further

evidence for the potential role of altered intestinal micro-

bial metabolites in the pathogenesis of AS; however, fur-

ther mechanistic studies are required.

Potential therapeutic strategies

The established link between the intestinal microbiome

in AS disease pathogenesis has catalysed much re-

search in the area of microbiota modulation as a thera-

peutic target in AS management.

Antimicrobials

Antimicrobial use is associated with a significantly al-

tered taxonomic, genomic and functional ability of intes-

tinal microbiota [85]. Exploitation of this common side

effect, by the therapeutic application of antimicrobials to

alter intestinal luminal microbiota composition, was thus

explored.

SSZ is a DMARD composed of an antimicrobial, sulfa-

pyridine, in addition to salicylate [86]. One of its mecha-

nistic properties includes alteration of the intestinal

microbial flora [87], with one study demonstrating de-

creased numbers of non-sporing anaerobes associated

with its use [88]. In the management of AS, it is associ-

ated with improved early morning stiffness and reduced

ESR, in addition to efficacy in the management of pe-

ripheral, but not axial disease [89, 90].

An alternative antimicrobial agent demonstrating

promise in the management of AS is moxifloxacin, a flu-

oroquinolone antibiotic, with action on both Gram-posi-

tive and -negative bacteria [91]. Its use was shown to

be associated with a marked sustained reduction in

ESR and CRP in those with AS [91]. Furthermore, in

mouse models, the antimicrobial rifaximin was also ef-

fective in halting AS progression and modulating intesti-

nal microbial composition [92].

Undoubtedly, evidence of the application of these an-

timicrobial agents provides promise for the potential role

of antimicrobials in targeting the intestinal microbiome in

those with AS.

Diet, probiotics and prebiotics

Dietary intake has the potential to change the composi-

tion of intestinal microbiota, thus altering immune ho-

meostasis [93]. Although still an area of evolving

research, dietary modifications, such as a low-starch

diet, are associated with symptomatic benefit in those

with AS, in addition to reduction in the requirement for

pharmacological therapy [94]. Intestinal microbiota rely

on dietary starch for growth [94]; hence, by inference,

reduction in starch intake might modulate the intestinal

microbiome, with potential benefit in AS.

In recent years, there has been an explosion of re-

search analysing the application of probiotics and prebi-

otics in a myriad of inflammatory and autoimmune

disorders, including AS. Probiotics are combinations of

beneficial live microorganisms, whereas prebiotics work

to alter the structure and metabolism of beneficial com-

mensals already present in the intestinal microbiota [95].

Both pro- and prebiotics strive to improve intestinal mi-

crobial health, strengthening the epithelial barrier and

modulating immune responses [95]. Promising results

were observed in HLA-B27 transgenic rat models, with

Lactobacillus rhamnosus showing benefit in preventing

colitis [96], in addition to prebiotic treatment demon-

strating efficacy in reducing colitis [97]. However, human

studies have been less successful, with two randomized

trials demonstrating no significant difference between

probiotic use vs placebo in those with SpA [98, 99].

Further studies are warranted, to identify the optimal

pro-/prebiotic combination capable of modulating the in-

testinal microflora in those with AS.

Faecal microbiota transplantation

Faecal microbiota transplantation (FMT) involves the

transfer of stool from a healthy donor, with a relatively

stable intestinal microbiota composition, to the intestine

of the recipient [100]. The proposed role of this technique

is to restore a normal intestinal microbiome to the recipi-

ent, with subsequent modulation of immune homeostasis

[100]. It has demonstrated therapeutic benefit in the man-

agement of refractory Clostridium difficile infections [101]

and in IBD [102]. However, its application has yet to be

elucidated in AS. Notably, FLORA (NCT03058900), an on-

going double-blind, placebo-controlled randomized con-

trol trial is evaluating the application of faecal microbiota

transplantation in the treatment of peripheral PsA [103].

This should provide valuable information for the potential

use of the technique in intestinal microbial manipulation in

patients with SpA, including AS. Additionally, further re-

search is required to characterize the safety of faecal

microbiota transplantation fully, in addition to optimal

methods of delivery [12]. Although in its infancy, faecal

microbiota transplantation is an exciting potential thera-

peutic avenue in the management of AS associated intes-

tinal microbiome dysregulation.

Conclusion

Despite the declaration by Hippocrates >2000 years ago

that ‘all disease begins in the gut’, understanding the

elaborate, highly intricate and dynamic relationship be-

tween the intestinal microbiota, health and disease path-

ogenesis is only in its infancy. The intestinal microbiome

plays a crucial role in gut homeostasis and, as outlined

Patricia Harkins et al.
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throughout, dysregulation of this has significant implica-

tions for immune system modulation and AS disease

pathogenesis. Although alteration of the microbiota in

those with AS is established, studies to date have, un-

fortunately, failed to identify a consistent uniform alter-

ation. This could be accounted for by study

heterogeneity, including the type of sample analysed,

the method of analysis, the diversity in severity of AS,

and the influence of pharmacological treatment, in addi-

tion to potential bias from external factors altering the

microbiota, such as age, sex, ethnicity, diet and BMI.

The significant advancements in analytical methods, in

addition to accounting for biases such as those outlined

above, could provide more reproducible data to estab-

lish a microbial signature unique to AS. Although we ex-

plored potential biological mechanisms by which the

intestinal microbiome might participate in disease patho-

genesis, the evidence remains circumstantial, and fur-

ther studies are required to establish the precise

pathogenic contribution of dysbiosis to the development

of AS. It is an extremely exciting time in intestinal micro-

biome research, and the potential for exploitation of its

dysregulation as a therapeutic target provides substan-

tial impetus for further animal and human studies.
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