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'is paper proposes an artificial spiking neural network (SNN) sustaining the cognitive abstract process of spatial concept
learning, embedded in virtual and real robots. Based on an operant conditioning procedure, the robots learn the relationship of
horizontal/vertical and left/right visual stimuli, regardless of their specific pattern composition or their location on the images.
Tests with novel patterns and locations were successfully completed after the acquisition learning phase. Results show that the
SNN can adapt its behavior in real time when the rewarding rule changes.

1. Introduction

Mastering abstract concepts seems like a key to reach a
higher level of cognition, allowing animals to gather more
complex knowledge [1]. Concepts save time by avoiding
learning every stimuli, regrouping them in general categories
to deal with new situations. According to Zentall et al. [2],
three main hierarchical types of abstract concepts are de-
fined. Perceptual or natural abstract concepts consist in
finding physical similarities between different objects or
stimuli and are a first type of categorization. A second type,
relational concepts, concerns the general rule or abstract
relationship between stimuli that is not directly related to
their specific physical attributes. In that sense, it is a second-
order process [3, 4]. For example, sizes (such as small and
large) are abstract categories that are determined by com-
paring the sizes of the presented objects. 'us, the di-
mensional relationship is not tied to the exact physical size of
the objects but compared and developed from experience.
Finally, associative or functional concepts imply that one
stimulus or characteristic is interchangeable with another
one (i.e., Dogs-Barking). 'is paper focuses on spatial ab-
stract concepts as a prior step toward achieving a relational
above/below neural circuit.

'ere is an abundant collection of empirical data on
relational concepts, as well as in the literature. Animal
models and methodologies are also numerous with many
levels of comparison [5–9]. Recently, this higher cognitive
process was explored with invertebrates. Astonishingly, it
was shown that bees could learn several different types of
relational concepts, despite having a small brain that consists
of less than one million neurons [10–15]. Even if some
progress is made to relate the learning process and the neural
substrates [16], no precise neural circuit is currently known
to explain concept learning from a complete sensory to
motor architecture, be it natural or artificial. Also, the re-
lationship between perceptual and relational concept levels
remains mostly unexplored from a computational neuro-
robotic perspective.

Neural modeling is one computational tool that that
maybe helpful for approaching this problem, more pre-
cisely by elaborating a precise artificial neural circuit that
correlates the behavioral observations. Few articles have
explored the abstract concept learning process phenome-
non from this angle. 'erefore, this article seeks to further
study the topic under a spiking neural network (SNN)
paradigm. Moreover, this research also goes a step beyond
an SNN by implementing the whole cognitive process in a
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complete virtual and physical neurorobotic model [17].
'is allows validation of the proposed computational
model in a brain-body-environment or embodied cognitive
context [18].

SNNs are bioinspired neural models that have em-
phasis on single spike events and their temporal-
coincidental relations [19, 20]. Generally, the learning
rule used from these neural models is based on synaptic
changes from a spike-timing dependent plasticity (STDP)
process [21–23]. As such, this paper uses a specific SNN
model to sustain the representation of a spatial concept
learning process.

In this study, a spatial visual task with different images
composed of horizontal/vertical and left/right patterns are
shown in front of a static robot. From an operant condi-
tioning procedure, the robot has to decide which side to
choose (left or right). Hence, from reinforcements, it learns
to associate different spatial relations, independently of
specific stimulus patterns shown and their locations. 'is
visual learning scenario is partially inspired from the one
made with bees [11, 24], which fully succeeded in learning
two relational abstract concepts (above/below, left/right, and
same/different) with generalization transfer tests. 'is paper
is in the continuity of our previous work, which was to build
an SNN that sustains the identity concept learning process in
the neurorobotic domain [25].

'e next section describes the methodology and the
details on the learning protocol. It is followed by results,
highlighting the spatial concept learning process from the
synaptic to the behavioral changes. 'e last section contains
a discussion on the current model’s limitations and the
future perspectives of this learning model.

2. Methodology

2.1. Protocol. 'e visual task consists in learning horizontal/
vertical and left/right spatial concepts. Images are projected
in front of a robot. Each of them has two sides (left and
right): one side contains two black/white motifs aligned
vertically and the other side contains two motifs aligned
horizontally (Figure 1). 'e first experiment consists of
grouping patterns (horizontal or vertical), which are per-
muted on three possible positions on each side. 'us, all
images are first randomized for the side of the horizontal and
vertical patterns, second for the position, and third for the
individual stimulus patterns composing them (Figure 2).
Images cover the whole field of view of the robot’s camera.
'e second experiment tests stimuli on novel locations, once
the learning phase is completed. Finally, a third experiment
allows to validate the SNN under less precise conditions, by
using a real robot.

Following an image capture, the robot takes a di-
chotomous left or right decision according to a chosen
stimulus, randomly selected prior to learning. 'is action is
manifested by directly rotating its motor towards it. From a
conditioning procedure, a reward is consistently applied on
the vertical or the horizontal motif, depending on the
desired learning rule. Along with the task and with few
positive reinforcers, the robot learns the horizontal/vertical

or left/right relation, ignoring the exact individual pattern
features as well as its location on its side. To validate the
robustness of the SNN, the experiment ends with the
presentation of novel patterns at new locations.

2.2. Architecture. 'e neural circuit is organized into four
basic layers: a sensory input layer, an integrative layer, a
decision layer, and a motor output layer (Figure 3). 'e
sensory visual neurons are linked to a camera that captures
images of 4 : 3 ratio. 'ese neurons are arranged in a 3×15
array, with each of them overlapping a different spatial
section, hence completely covering the visual field. In this
experiment, sensory neurons only integrate black intensity
with numerical values.'ese are averaged and normalized in
a percentage scale.'erefore, the spiking activities of sensory
visual neurons reflect the stimulus patterns shown in front of
the robot. Once an image of the robot’s view is captured, a
cooldown prevents the camera from triggering before an
action is made. Otherwise, constant stimulus inputs from
this layer would prevent the SNN from integrating and
acting on a single image.

'e sensory input layer forwards signals to integrative
neurons. 'ese are topographically organized in a neigh-
borhood configuration, separated in left/right and upper/
mid/lower logical sections. In the current model, the first
level of integration is composed of 12 neurons (six for
vertical and six for horizontal detection). 'is allows the
SNN to react to local stimuli. More precisely, each in-
tegrative element can respond to any vertical or horizontally
displayed black stimulus. A second integrative level regroups
all horizontal and vertical neurons for each side (View-
VerticalLeft, ViewVerticalRight, ViewHorizontalLeft, and
ViewHorizontalRight).

From the integrative neurons, signals are propagated to
the decision layer, more precisely to the Predictor neurons.
'ose Predictor neurons are linked to their associated
Choose neuron (ChooseLeft, ChooseRight, ChooseVert, and
ChooseHor) with a weak excitatory synapse and a synaptic
learning rule (STDP) and are also connected to the action
layer. Prior to learning, Predictor neurons cannot trigger
Choose neurons alone. As rewards are given, the STDP rule
strengthens those specific synapses. 'is eventually allows
the correct Predictor to trigger its associated Choose neuron.
Rewards are simulated by moving a block in front of an
infrared sensor located at the back of the robot. In this study,
the learning rule from STDP needs a third factor (the re-
ward) to be activated [26, 27]. When no reward is given, it
implies that the robot took a wrong decision and the synapse
strongly weakens.

'e decision layer also contains Go neurons (GoV-
ertLeft, GoVertRight, GoHorLeft, GoHorRight). For ex-
ample, when the horizontal Choose neuron spikes, the Go
horizontal neuron allows the proper action (turn left/right)
to be done, depending on where the horizontal stimulus is
located.

'e action layer consists of two motor neurons (Action-
TurnLeft, Action-TurnRight), orienting the robot towards
the chosen side. Prior to learning, when a pattern is detected

2 Computational Intelligence and Neuroscience



in the sensory visual layer, a randomized action is triggered
by sending a delayed signal to motor neurons. 'is action
could eventually be bypassed from the Predictor neurons in
the decision neural, after learning.

2.3. Neural Dynamic. 'e spiking neural model used in this
paper and the neural architecture were achieved with the
SIMCOG software [28]. 'e neural dynamic is based on
standard properties, which are membrane potential varia-
tion (equations (1), (3), and (4)), nonlinear integration of
excitatory/inhibitory inputs (equation (2)), threshold for
spike events, absolute refractory period, and an after spike
hyperpolarization state. Since the neural circuit is well de-
fined, the tuning of the starting synaptic weights was
manually adjusted prior to launching the final experiment
(supplementary materials for starting synaptic weight values
at http://aifuture.com/res/2018-spatial). 'e learning rule
used in the proposed model integrates a STDP function
(equation (5)) only available for synapses in the decision
layer.

Leaky integrator neural dynamic:

vm(k) � f vm(k− 1) + 􏽘 vi􏼐 􏼑, (1)

where vm(k) �membrane potential at cycle k, vi � synaptic
input as calculated in equation (2), and f �membrane
potential curve as calculated in equation (3).

General function describing the postsynaptic potential
curve:

vi(t) �
ae−t/τ , if t≤ tMax,

0, if t> tMax,

⎧⎨

⎩ (2)

where a �maximum amplitude (set from 2 to 20), τ � tau
(set to 7), t � time since spike (cycle), and tMax�maximum
duration of a PSP (set from 1 to 10 cycles).

Membrane potential function:

f vm( 􏼁 �

g vm, 0( 􏼁, if vm < vm Rest,

vmRest, else if vm � vm Rest,

g vm, 1( 􏼁, else if vm < vm Threshold,

100, else,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where vmRest�membrane potential rest value (set as 43)
and vmThreshold� threshold value (set as 65).

Membrane potential output:

g vm, d( 􏼁 �
min each v in vecwhere v > vm( 􏼁, if d � 0,

max each v in vecwhere v < vm( 􏼁, if d � 1,
􏼨

(4)

where vec� [4, 11, 18, 23, 28, 32, 36, 42, 43, 44, 45, 47, 50, 53,
58, 65, 100], ascending phase to reach threshold�

exp(0.8 + 0.3∗ t) + 40 for each t from 0 to 8, ascending phase
from post action potential to rest � log 10(0.9 + 0.2∗ t)∗ 100
for each t from 1 to 7, and action potential� 100.

General STDP function.

Δw � a∗ b∗ e
−abs tpost−tpre( )/c, (5)

where Δw � synaptic weight change, a �multiplicator factor
(set to 1.0), b � 1 when tpost > tpre, −1 when tpost < tpre,
c� time-constant (set to 100/3), STDP coefficients for Δw:
duration of the synaptic change� 1000 cycles, max. synaptic
change in one paired spike� 25%, and max. global synaptic
change� 100%.

Figure 1: Similar virtual and physical environments, showing the robots and their view. On the left side, the virtual environment displays
the robot’s view on the bottom left part. In this case, it consists of a left vertical and a right horizontal image, composed of two different
patterns (O and X).

Figure 2: All patterns used in this study. 'e top six patterns are
shown in the first part of the experiment. 'e three lower patterns
represent the novel patterns used at the end of the simulation.
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2.4.PhysicalEnvironment. After tuning the SNN parameters
and evaluating them in a virtual world, it was embedded in a
physical environment using a Raspberry Pi 3 mounted with a
160×120 resolution camera and two servomotors (for pan/
tilt camera rotation). 'e objective of this simulation was to
verify the SNN’s capability to learn with less precise variables
(i.e., timing of events, camera detection, etc.). To embed the
SNN in the Raspberry Pi robot, it only required a single
modification. Since the robot does not contain infrared
sensors, the reward was instead given by displaying a red
sheet of paper in front of it. Hence, an additional reward
visual neuron was linked to the camera, in order to perceive
the red color.

3. Results

Figure 4 represents the neural behavior dynamic of the main
elements achieving the spatial concept learning task. For
each trial, the sensory neural layer (3×15 array of neurons)
captures the image with one horizontal pattern on one side

and one vertical pattern on the other side. 'ese are
composed of two different black and white motifs (3× 4
pixels). 'ree examples of the robot’s view are shown at the
top of the figure. 'e sensory layer forwards the signal to the
integrative layer resulting in associated spike events of the
four main neurons (graphics A to D). From these, a single
Choose neuron from the decision neural layer (graphics E to
H) emits an action potential.

In the first experiment, the desired output was set on the
vertical stimulus. 'en the rewarding rule was modified, as
of cycle 2000, to give a reward when choosing the horizontal
pattern. One can see that the SNN fully adapted its behavior
even when changing the rewarding rules online. 'e reverse
situation (learning horizontal stimulus before the vertical
one) was also tested with no effect on the learning procedure
(not shown). Since the image sequence is randomized, in-
cluding both the patterns and the horizontal or vertical sides,
several trials were done. In all cases, the SNN succeeded in
learning, adapting its behavior according to the desired
output.

Neuron
Neuron camera
Neuron IR
Neuron motor

Synapse excitatory
Synapse inhibitory
Synapse STDP

Figure 3: Full view of the SNN architecture, composed of the robot and four different functional neural layers.
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At the beginning of the simulation, the synaptic links
between the Predictor neurons and the Choose neurons are
weak. 'us, the choice of action is random. During the
experiment, a positive reinforcement (Graphic I) is applied
when the SNN succeeds in choosing the correct action
(Graphics J and K). 'is learning process is shown in
graphics L to Owith an increase in the synaptic weights from
several rewards. 'e learning step factor was designed to
reach the threshold point after three correct associations, but
it could have been done differently for smooth learning or
even to trigger a learnt response after a single correct trial.
When the SNN constantly predicted the correct action, a last
test was done with novel patterns (see example at cycle 4100).

In the second experiment, most images were displaying
verticals on the left side, up until cycle 2200 (Figure 5).'is

allowed the SNN to learn between two choices: left and
vertical. To prevent the robot from only learning the left
side rule (from the ChooseLeft neuron), few horizontal-
left/horizontal-right images were shown (for example, see
at cycle 250). After cycle 2200, vertical patterns were
shown on the right, verifying that the SNN could still use
the learnt vertical rule even though it was on a novel
location.

'e real experimentation, using the Raspberry Pi, gave
similar results, though it was necessary to run the experi-
ment a few times before succeeding. 'e main difficulty
here was with respect to the timing and manual image
adjustments in front of the camera; otherwise, it was not
capturing images correctly in the sensory input layer. Also,
since no infrared sensors were available on the real robot, the

Dynamical neural events of a spatial concept learning task: pattern novelty test
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Figure 4: Dynamical neural representations of the virtual simulation, showing the SNN’s behavioral adaptation according to given rewards.
Graphics A–K represent neural spike events and L–O consist of synaptic STDP coefficients.'e final test includes novel patterns composing the
stimulus. In the top row of the figure, only few images from the whole set are shown for clarity, the arrow indicating the perceived stimulus.
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rewards were instead given by showing red colored papers in
front of it, which were perceived by its camera. 'is added
some artifacts during the simulation. Video and simulation
results are available as supplementary materials: http://
aifuture.com/res/2018-spatial.

4. Discussion

Abstract concept learning is thought to be a higher cognitive
process and a key feature of intelligent natural species. 'e
recent literature in neuroscience suggests that that even
invertebrates with small brains could reach this level of

complexity. 'is attractive fact stimulates the emulation of
the cognitive phenomenon with a bioinspired artificial
spiking neurons approach embedded in a neurorobotic
model. One working hypothesis of this paradigm relies on a
level of computational general intelligence level, based on
functional cognitive processes that are related for specific
physical body structures and environments. However, the
simulation of a cognitive process from a precise artificial
neural circuit and a given robot implementation does not
intend to reflect a natural one, but only reproduce the
function and the behavior with artificial substrates,
grounded in a real-world context.
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Dynamical neural events of a spatial concept learning task: location novelty test
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Figure 5: Dynamical neural representations of the virtual simulation, showing the ability of the SNN to adapt its behavior according to given
rewards. Graphics A–K represent neural spike events and L–O consist of synaptic STDP coefficients. 'e final test includes a novel location of
the stimulus. In the top row of the figure, only few images from the whole set are shown for clarity, the arrow indicating the perceived stimulus.
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'is project intends to be a prior step to reach the re-
lational concept level, from designing a specific SNN as-
sociated to the spatial abstract concepts of horizontal/
vertical and left/right. Beyond the main objective of simu-
lating this learning process through a neurorobotic model,
the present experimentation also serves as a prototypemodel
to further study the development of a general neural design,
which could sustain the three different types of concept
learning, as well as several forms of concept inside each
category.

In its current form, the SNNmodel is limited by its small
visual scale (retina) and a single color perception (black).
'e SNN design is also restricted to detect perfect horizontal
or vertical stimuli. Hence, it would be unable to perform
when seeing an angled stimulus in front of it, which is
another possible test for the generalization property. In the
same perspective, scaling up or down stimuli was not
possible in this experiment, again from the limitative ca-
pability of the retina. However, these issues could be cor-
rected in future works. Furthermore, a higher discrimination
would be a desirable feature to include in the present SNN
model, since it is needed in the above/below and same/
different relational concepts, as well as its full validation
from transfer tests. However, we believe that the core neural
layers of this architecture would remain and could be used in
more related complex studies.

Does the relational concept learning process emerge
from experiences and synaptic modifications of an existing
neural circuit, or does it need the addition of new neurons as
in the developmental neural phases? Is the relational concept
structured in a bottom-up neural hierarchy? Does the first-
order perceptual level of categorization sustain the second-
order relational abstract concept? As a start toward an-
swering those questions from a neurorobotic model per-
spective, the proposed SNN allows learning two spatial
concepts from a specific set of neurons and synapses. At first,
the learning rule was unknown for the robot, but as rewards
were given, the SNN adapted its behavior from supervised
reinforcements in an operant conditioning procedure. Also,
the SNN exhibited a behavioral plasticity when changing the
rewarding rule online.

In the present experiments, it is not necessary to dis-
criminate stimulus patterns, for example, to differentiate the
black square stimulus and the X shape stimulus. 'is lower
level of perception was not required to achieve the spatial
learning task for left/right and horizontal/vertical patterns.
However, it certainly represents a critical step to reach the
relational abstract learning level. For example, in the above/
below scenario, determining the constant visual spatial
referent while the location of the other visual pattern varies
requires a perceptual discrimination and a functional action
of comparison.'is is a future work for our team to integrate
the present model and build an SNN that links this spatial
concept level to a second-order relational concept.

Another objective of this paper is to provide comparative
experimental data between different computational robotic
models, as well as developing benchmarks for testing in-
cremental complexity scenarios in the field of abstract
concept learning.

5. Conclusion

'is paper shows that the proposed SNN, controlling virtual
and physical robots, succeeded to learn the spatial concept of
horizontal/vertical and left/right visual patterns from a
conditioning procedure and synaptic modifications. 'is
experiment intends to be a first step study to reach the
second-order relational concepts as in the above/below case.
We believe that this bioinspired approach may open new
perspectives to reach higher artificial cognition in the
neurorobotic domain.

Data Availability

'e complete access to all parameters and result data used to
support this study, as well as the SIMCOG software, is
available from the corresponding author upon request.
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